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Intensity of stress singularity at a vertex and along the free
edges of the interface in 3D-dissimilar material joints using

3D-enriched FEM

W. Attaporn1 and H. Koguchi2

Abstract: In the present study, a stress singularity field along free edges meeting
at a corner in a three-dimensional joint structure is investigated. The order of stress
singularity is determined using an eigen analysis based on a finite element method.
Intensities of stress singularity not only at the corner but also along the free edge
of interface are determined directly without any post-processing by a new FEM
formulation referred to as a three-dimensional enriched FEM. Result in the present
analysis is also compared with that in another numerical method. It was slightly
larger than the intensity of stress singularity, which was determined by a three-
dimensional boundary element method (BEM).

Keywords: Intensity of stress singularity, 3D-enriched FEM, singular point, sin-
gularity corner, singularity line.

1 Introduction

Industrial products such as electronic devices and heat endurance parts are com-
posed of dissimilar materials. A mismatch of material properties causes a failure
at the free edge of joint because a stress concentration occurs along the free edge
of interface especially at the vertex of joint. Consequently, a stress field at a vertex
in dissimilar material joints has been investigated using several numerical methods
proposed by many authors. The study on this field has been carried out step by
step.

Williams (1952) used the mathematical procedure for analyzing stress singularities
in infinite wedges and successfully applying to the analysis of stress distribution at
the vicinity of a crack tip [Williams (1957)]. Zak and Williams (1963) used eigen
functions for analyzing stress singularity field at a crack tip perpendicular to a bi-
material interface. They found that a real part of eigen value is within the range
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of 0 to 1, and expressed a relationship between stress distribution and the order of
stress singularity at the crack tip. Aksentian (1967) determined eigen values and
eigen vectors at the singular point in plane intersecting a free edge of the interface
in three-dimensional dissimilar joints. Bogy (1971) and Bogy and Wang (1971)
analyzed the plane problem of bonded dissimilar material wedges under a surface
traction and determined the stress singularity field at the corner in the wedge. They
determined the order of stress singularity depending on material constants and the
angle of wedges. Kawai, Fujitani and Kobayashi (1977) performed the stress anal-
ysis at a conical surface pit and applied Williams’ method to the three-dimensional
crack problems. Numerical analysis of characteristic roots for conical pit problem
was made for determining eigen values at the vertex of conical pit. Kawai, Fujitani
and Kumagai (1977) investigated stress singularity of a three-dimensional surface
crack, especially its peculiar behavior at the free end of the crack front line, and
then analyzed the surface crack problem by employing spherical coordinates. Ben-
them (1977, 1980) determined the eigen values using eigen analysis and examined
stress components of Cartesian coordinate at the vertex of a quarter-infinite crack
in a half-space for various Poisson’s ratios.

Bazent and Estenssoro (1979) and Yamada and Okumura (1981) developed a finite
element analysis for solving eigen value equation to determine directly the order
of stress singularity and the angular variation of the stress and displacement fields.
This eigen analysis was used to evaluate the order of singularity at a point where
a crack meets a free surface in an isotropic material. Then, this eigen analysis
based on a finite element was adapted by Pageau, Joseph and Biggers (1995) to
use for analyzing the inplane deformation of wedges and junctions composed of
anisotropic materials. The stress and displacement fields were obtained from eigen
formulation for real and complex orders of stress singularity. Pageau and Biggers
(1995) applied to analyze the joints including fully bonded multi-material junc-
tions intersecting a free edge as well as materials containing crack intersecting a
free edge. This study showed that the order of singularity in the three-dimensional
stress field could be accurately determined with a relatively small number of ele-
ments. Pageau and Biggers (1996) determined the order of stress singularity and
the angular variation of the displacement and the stress fields around the singular
points in plane intersecting a wedge front in the three-dimensional anisotropic ma-
terial structures using the two-dimensional displacement formulation under a plane
strain assumption.

Koguchi (1996) examined the order of stress singularity at vertex and also along the
stress singularity line between two isotropic materials in joints using eigen analy-
sis. The stress distributions around the vertex were determined using a boundary
element method (BEM). Koguchi (2006) determined the intensity of singularity
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by fitting the stress profile that obtained from BEM analysis with a least square
method.

Leblond and Leguillon (1999) examined the asymptotic behavior of the stress in-
tensity factors near an angular point of a crack front in homogeneous isotropic
elastic body in the cases of the crack presents a notch or a corner.

Dimitov, Andra and Schnake (2001, 2002) presented the three-dimensional eigen
analysis which was solved iteratively using Arnoldi method. This method needs
only the small banded matrix when compared with normally used determinant
method. The order of singularities at corners and free edges of the interface in
laminate composite material joints were determined using the eigen analysis.

Lee and Im (2003) used a two-state M-integral for computing the near-tip stress
intensities around three-dimensional wedges and used an eigen analysis for deter-
mining eigen values and eigen vectors.

Apel, Leguillon, Pester and Yosibash (2008) determined edge singularity by the use
of three-dimensional Williams’ expansion. The edge stress intensity factors along
the reentrant wedge front were determined using a quasi-dual function method.
Omer and Yosibash (2008) and Yosibash, Omer and Dauge (2008) computed the
complex eigen function by using a p-version finite element method and examined
the edge stress intensity factors at the edge vicinity in three-dimensional anisotropic
multi-material interfaces using a quasi-dual function method.

From the above, many authors individually determined the intensities of singular-
ity at a corner singular point or along the free edges of the interface in a three-
dimensional dissimilar material joint.

However, the intensity of singularity should be considered at the singularity cor-
ner together with that along the free edge of the interface in a three-dimensional
material joint.

The normal use of a standard finite element analysis is hard to analyze a stress
field at a singular point in a real dissimilar material joint. It is very difficult to
determine the intensity of stress singularity by fitting the three-dimensional stress
profile with a least square method. Moreover, an extremely large number of el-
ement and much calculation time are required for determining three-dimensional
stress profiles around a singular point.

To reduce the number of element and the calculation time, many authors have devel-
oped element-free methods which can be simply called as meshless methods. Nay-
roles, Touzot and Villon (1992) proposed the diffuse element method. Belytschko,
Lu and Gu (1994) presented the element–free Galerkin method (EFGM). Later,
Atluri and Zhu (1998) originated the meshless local Petrov-Galerkin (MLPG). The
MLPG method is truly meshless method as no meshes are required either for inter-
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polation purposes or for integration proposes. Then, Atluri and Zhu (2000) applied
the MLPG methods to solve the elasto-static problems. Furthermore, the various
researches of MLPG method were given by Atluri and his colleagues such as Atluri
and Shen (2002); Atluri, Han and Shen (2003); Atluri (2004a); Atluri, Han and Ra-
jendran (2004b); Atluri, Lui and Han (2005); Atluri, Lui and Han (2006). The
MLPG for three-dimensional elasto-static is developed by Li, Shen, Han and Atluri
(2003) and for the problem of topology-optimization of elastic structures is devel-
oped by Li and Atluri (2008).

Hagihara, Tsunori, Ikeda and Miyazaki (2007) proposed the elastic-plastic EFGM
to determine the fields of displacement, strain and stress for a crack problem, and
calculated the elastic- plastic fracture mechanics parameters (J-integral and T ∗-
integral). Nie, Chang and Fan (2007) presented a high performance parallel seam-
less connection between the FEM mesh generation process and the FEM structure
analysis process for a new node-based seamless finite element method. Wen, Ali-
abadi and Liu (2008) introduced the EFGM with enriched radial base functions for
determining the stress singularity at a crack tip.

A kind of meshless FEM namely enriched FEM for three-dimensional joints is pre-
sented in this study. The new enriched FEM formulation is extended the enriched
FEM formulation in the papers of Benzley (1974) and Pageau and Biggers (1997)
to determine the intensities of stress singularity at a singularity corner together with
those along the free edge of the interface in three-dimensional dissimilar material
joints. The papers of Benzley (1974) and Pageau and Biggers (1997) are briefly
explained later. Recently, the enriched FEM has gained much attention from many
authors. Wen-Hwa Chen and Cheng-Hung Chen (2005) developed the enriched
meshless method using meshless interpolations and a global Galerkin approach for
the analysis of three-dimensional fracture problems.

Ayhan and Nied (2002) used the enriched FEM to determine stress intensity factors
along the crack front except at the singular point where the crack front intersects the
free surface. Ayhan, Kaya and Nied (2006) applied the enrich FEM for the analysis
of three-dimensional interface crack in the dissimilar material structures. Later,
Ayhan (2007, 2009) developed the three-dimensional enriched FEM to compute the
stress intensity factors (2007) and the mixed-mode stress intensity factors (2009)
for three-dimensional cracks contained in functionally graded materials (FGMs).

The three-dimensional enriched FEM formulation for determining the intensity of
stress singularity at a corner singular point is not expressed until now. Therefore,
the intensities of stress singularity at the corner and also along the free edge of
interface are directly determined by this method without any post-processing.
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2 Formulation of 3D-enriched FEM

A traditional FEM is generally used for investigating unknown displacements at
each node in a FEM model. The displacement can be expressed using a hexahedron
element as

ui =
8

∑
n=1

Nnūin, (1)

where Nn is the standard interpolation function associated with node n and ūin is
nodal displacement at node n for direction i (i= 1, 2 and 3 are x, y and z directions,
respectively).

For the enriched FEM, Benzley (1974) expressed the displacement function of
two-dimensional enriched FEM for determining the stress intensity factors in two-
dimensional structures including a crack tip. See Eq. 2.

ui =
4

∑
n=1

Nnūin +KIQiI (r,θ)+KIIQiII (r,θ) (2)

In equation 2, QiI and QiII are the asymptotic mode I and mode II crack tip dis-
placement functions in polar coordinates (r, θ ), KI and KII are the stress intensity
factors of mode I and mode II, respectively. The arbitrary Benzley’s quadrilateral
element with a singular point S is shown in Fig. 1.

 
Figure 1: A quadrilateral element with a singular point

Pageau and Biggers (1995) determined the asymptotic displacement function in
cylindrical coordinates along a wedge front using eigen analysis. Pageau and Big-
gers (1997) further created the enriched element formulation for determining stress
intensity factors along a wedge front in solid structures with wedge configurations
and multi-material junctions.

In this paper, the intensities of singularity are determined along the free edges meet-
ing at a vertex. Figure 2 shows the location of points O in spherical and cylindrical
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coordinates, which are located for expressing displacement fields around the sin-
gular points at the corner and along singularity lines, respectively.

 
Figure 2: The location of points O in spherical (left) and cylindrical (right) coordi-
nates

The displacement formulation including the asymptotic displacement terms around
the singular points along the free edges meeting at a vertex is expressed using a
hexahedron element as the following equation.

ui =
8

∑
n=1

Nnūin +
J

∑
j=1

Kc
i j 6Qc

i j (r,θ ,φ)+
J

∑
j=1

[
MX

∑
m=1

{
Ñlx

m Klx
i jm 6Qlx

i j (R,Θ, z̄)
}]

+
J

∑
j=1

[
MY

∑
m=1

{
Ñly

m Kly
i jm 6Q

ly
i j (R,Θ, z̄)

}] (3)

In equation 3, J represents the number of eigen value, p j, obtained from eigen
analysis. MX and MY are the number of singularity points along the singularity
lines in x axis (singularity line x, lx) and y axis (singularity line y, ly), respectively.
Ñlx

m and Ñly
m are the standard interpolation functions of a 2-node linear element

along the singularity lines x and y, respectively. Then the asymptotic displacement
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field terms are expressed as

6Qc
i j (r,θ ,φ) = Qc

i j (r,θ ,φ)−
Last ec

∑
a=1st ec

NaQ̄c
i ja (r,θ ,φ) ,

6Qlx
i j (R,Θ, z̄) = Qlx

i j (R,Θ, z̄)−
Last elx

∑
a=1st elx

NaQ̄lx
i ja (R,Θ, z̄) ,

6Qly
i j (R,Θ, z̄) = Qly

i j (R,Θ, z̄)−
Last ely

∑
a=1st ely

NaQ̄ly
i ja (R,Θ, z̄) .

(4)

Where Qc
i j, Qlx

i j and Qly
i j represent the asymptotic displacement fields in the direction

i at corner (c), singularity lines x and y, respectively. Then, Q̄c
i ja, Q̄lx

i ja and Q̄ly
i ja are

the asymptotic displacement fields at node a which is taken by the assumption of
singularity domains. An a can be a number of node in a hexahedron element (1
to 8) depends on the 3 lists of node numbers; the lists of the singularity corner
domain (ec), the singularity line domains (elx and ely) associated with x and y axes,
respectively. The example of the list of singularity enriched domains is shown in
Fig. 3. Na is the standard interpolation function of the node a in a hexahedron
element.

 
Figure 3: The list of singularity enriched domains (example)

2.1 Numerical singular displacement field

The angular variation of displacements and the eigen values could be determined
by finite element formulation using an interpolation function [Yamada and Oku-
mura (1981), Pageau and Biggers (1995)]. Figure 4 shows a definition of the finite
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Figure 4: Definition of the finite element geometry for eigen analysis in spherical
coordinates

element geometry for eigen analysis in spherical coordinates at the singularity cor-
ner and along the singularity line where a singular stress state occurs at point S.
The spherical domain surrounding the singular point is divided into 8-node quadri-
lateral elements. A point O is located in an element. The location of point O in
spherical coordinate can be expressed as

r = ρr0 = r0

(
1+ζ ∗

2

) 1
p

, θ =
8

∑
n=1

Hnθn, φ =
8

∑
n=1

Hnφn. (5)

The interpolation functions of an 8-node quadrilateral elements at nodes n are ex-
pressed as the following equations.

When n is located at the corner nodes in the element,

Hn =
1
4

(1+ξ
∗
n ξ
∗)(1+η

∗
n η
∗)(ξ ∗n ξ

∗+η
∗
n η
∗−1) . (6)
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When n is located at the middle nodes which ξ ∗n is zero in the element,

Hn =
1
2
(
1−ξ

∗2)(1+η
∗
n η
∗) . (7)

When n is located at the middle nodes which η∗n is zero in the element,

Hn =
1
2

(1+ξ
∗
n ξ
∗)(1−η

∗) . (8)

Where ξ ∗, η∗ and ζ ∗ are the natural coordinates of element whose ranges are de-
fined as shown in Fig. 4.

The displacement at the singular point is taken as zero and the displacement fields
around the singular point in i-directions are assumed to be of Eq. 9.

{
u∗j
}

=
(

r
r0

)p j {
f j (θ ,φ)

}
(9)

Where

{
f j (θ ,φ)

}
=

8

∑
n=1

Hn (ξ ∗,η∗,ζ ∗)
{

ū∗n j
}

(10)

Angles θ and φ in the spherical coordinates are expressed using the interpolation
functions as follows:

θ =
8

∑
n=1

Hn (ξ ∗,η∗,ζ ∗){θn}, φ =
8

∑
n=1

Hn (ξ ∗,η∗,ζ ∗){φn} (11)

Then, the eigen equation is derived by principles of virtual work for deducing the
root p j.(

p2 [Ã]+ p
[
B̃
]
+
[
C̃
])
{U}= 0 (12)

Where
[
Ã
]
,
[
B̃
]

and
[
C̃
]

are matrices consisting of elastic modulus matrix [C] and
differential operator matrix [B]. {U} is the displacement vector. There are a lot of
root p that related to the order of singularity(λ ,λ = 1− p), obtained from solving
the characteristic equation.

Here, the angular variation of displacements
(

ū∗rn j, ū
∗
θn j, ū

∗
φn j

)
can be derived by

eigen analysis. After that, the asymptotic displacement function around the singu-
larity corner Q̄c

i ja in Eq. 4 is directly calculated by the eigen vectors
(

ū∗rn j, ū
∗
θn j, ū

∗
φn j

)
in spherical coordinates and then converted to Cartesian coordinates as Eq. 16.
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However, to express the continuous singularity fields along the singularity lines,
only the cross section of the spherical domain at φ = π/2 is considered. The three-
dimensional eigen vectors

(
ū∗rn j, ū

∗
θn j, ū

∗
φn j

)
around the singular points of this cross

section are converted to the three-dimensional eigen vectors
(

ū∗Rn j, ū
∗
Θn j, ū

∗
z̄n j

)
in

cylindrical coordinates as follows:
ū∗Rn j
ū∗

Θn j
ū∗z̄n j

= [A]−1 [F ]


ū∗rn j
ū∗

θn j
ū∗

φn j

 (13)

Where

[A]−1 =

0 cos(Θ) sin(Θ)
0 −sin(Θ) cos(Θ)
1 0 0

 (14)

[F ] =

sin(θ)cos(φ) cos(θ)cos(φ) −sin(φ)
sin(θ)sin(φ) cos(θ)sin(φ) cos(φ)

cos(θ) −sin(θ) 0

 (15)

Hence, the elements around the singular point of this cross section become the
3-node linear elements as shown in Fig. 5.

Then the asymptotic displacement functions Q̄lx
i ja and Q̄ly

i ja along the singularity

lines are calculated by using the displacements
(

ū∗Rn j, ū
∗
Θn j, ū

∗
z̄n j

)
and then con-

verted to Cartesian coordinates as Eq. 17.

The asymptotic displacement functions Q̄c
i ja, Q̄lx

i ja and Q̄ly
i ja in Cartesian coordinates

are expressed as the following equations.

Qc
x j =

( r
L

)psc
j
([ 8

∑
n=1

Hsc
n ū∗rn j

]
sin(θ)cos(φ)−

[
8

∑
n=1

Hsc
n ū∗φn j

]
sin(φ)

+

[
8

∑
n=1

Hsc
n ū∗θn j

]
cos(θ)cos(φ)

)

Qc
y j =

( r
L

)psc
j
([ 8

∑
n=1

Hsc
n ū∗rn j

]
sin(θ)sin(φ)+

[
8

∑
n=1

Hsc
n ū∗φn j

]
cos(φ)

+

[
8

∑
n=1

Hsc
n ū∗θn j

]
cos(θ)sin(φ)

)

Qc
z j =

( r
L

)psc
j

([
8

∑
n=1

Hsc
n ū∗rn j

]
cos(θ)−

[
8

∑
n=1

Hsc
n ū∗θn j

]
sin(θ)

)

(16)
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And

Qlx
x j = Qly

y j =
(

R
L

)psl
j
([

3

∑
n=1

Hsl
n ū∗Rn j

]
cos(Θ)−

[
3

∑
n=1

Hsl
n ū∗Θn j

]
sin(Θ)

)

Qlx
y j = Qly

x j =
(

R
L

)psl
j
([

3

∑
n=1

Hsl
n ū∗Rn j

]
sin(Θ)+

[
3

∑
n=1

Hsl
n ū∗Θn j

]
cos(Θ)

)

Qlx
z j = Qly

z j =
(

R
L

)psl
j
([

3

∑
n=1

Hsl
n ū∗z̄n j

]) (17)

Here, the radius r at the singularity corner and the radius R at the singularity point
along the singularity line are expressed as

r =
√(

x− xc
S

)2 +
(
y− yc

S

)2 +
(
z− zc

S

)2
, (18)

R = Rlx
√(

y− ylx
S

)2 +
(
z− zlx

S

)2 (19)

where the singular point is on the singularity line in x-axis and

R = Rly

√(
x− xly

S

)2
+
(

z− zly
S

)2
(20)

where the singular point is on the singularity line in y-axis.

An integration point in the FEM analysis is located at (x, y, z) in Cartesian coordi-
nates. The singularity corner is located at the point S of (xc

S, yc
S, zc

S). The singular
points along the singularity lines x and y are located at (xlx

S , ylx
S , zlx

S ) and (xly
S , yly

S ,zly
S ),

respectively.

Then, the angles θ , φ and θ are expressed as following equations.

θ =
π

2
± tan−1

(∣∣z− zc
S

∣∣
r

)
(21)

The angle θ is smaller than π/2 when the point O is higher than the singular point
in z-direction and larger than π/2 when the point O is lower than the singular point
in z-direction.

φ = tan−1
(

y− yc
S

x− xc
S

)
(22)

When the singular point is located on the singularity line x,

Θ = tan−1
(

z− zlx
S

y− ylx
S

)
. (23)
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When the singular point is located on the singularity line y,

Θ = tan−1

(
z− zly

S

x− xly
S

)
. (24)

The interpolation function, Hn is composed of the interpolation function Hsc
n of

spherical domain element around the singularity corner and the interpolation func-
tion Hsl

n of cylindrical domain element around the singular points along the sin-
gularity lines. Firstly, the formulations of Hsc

n are in the form of Eqs. 6 to 8 but
the natural coordinate parameters ξ ∗ and η∗ are replaced by ξ̂ and η̂ that obtained
from the location of angle θ and φ as the following equation.

ξ̂ =
2(φ −φ2)

φd
, η̂ =

2(θ −θ8)
θd

(25)

Where φd = φ3−φ1 and θd = θ5−θ3.

At last, the formulations Hsl
n of the 3-node linear element in Fig. 5 are

Hsl
1 =

1
2
(
−η̂ + η̂

2) , Hsl
2 = 1− η̂

2, Hsl
3 =

1
2
(
η̂ + η̂

2) (26)

where η̂ = 2(Θ−Θ2)
θd

and Θd = Θ3−Θ1.

2.2 Singularity enriched domain

The influence of singular stress state is considered in the three-dimensional en-
riched FEM and represented by the asymptotic displacement fields in each element.
It is called that “three-dimensional enriched domain”. The enriched domains are
composed of the singularity corner domain, the singularity line x and y domains as
shown in Fig. 6. It has many types of element associated with the three-dimensional
enriched domains. The FEM models with the various sizes of the three-dimensional
enriched domains are analyzed using the three-dimensional enriched FEM.

3 FEM model and boundary conditions

Generally, dissimilar material tensile block as shown in Fig. 7 can be used as
a standard numerical model to investigate the characteristics of stress field and
compare the numerical results with other methods of many researchers. In the
present study, the case of a large difference of Young’s moduli is considered and the
three-dimensional dissimilar material joint is subjected to a uniform tensile stress
σ . The joint structure is symmetrical in x=10 and y=10 planes. An upper half
model of a symmetrical structure is analyzed using a three-dimensional enriched
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FEM. The FEM model and boundary conditions are shown in Fig. 8. The small
elements are arranged near the corner and singularity lines.

A uniform tensile stress is applied on upper side of FEM model in the z-direction.
The FEM model is fixed in the x-direction on the right side, fixed in the y-direction
on the back and fixed in the z-direction at the bottom of the model. The material
properties with the large difference of Young’s moduli dissimilar material joint are
shown in the table 1. The upper material (material 1) is hard and the lower material
(material 2) is soft.

Table 1: Material properties

Material E(GPa) ν

1 215 0.28
2 2.97 0.38

4 Eigen analysis results

In this analysis, first of all, eigen values and eigen vectors are investigated by eigen
analysis when two different materials are bonded. The eigen analysis models are
subdivided to 8-node quadrilateral elements in division of angles θ and φ are π/18
as shown in Fig. 4. Solving Eq. 12 yields many roots p j and eigen vectors cor-
responding to each eigen value are obtained. However, when the root p j is within
the range of 0 < p j < 1, the stress field has singularity. The results of eigen value
and the order of singularity at the singularity corner and singularity lines points are
shown in table 2 and 3.

The subscript j is 1 for the first eigen value which causes a stress singularity in both
cases. The angular variations of displacement fields for the eigen values psl

j and psc
j

which lead to a singular stress state, respectively are shown in Figs. 9 to 10. Then,
Eq. 3 has normalized to Eq. 27 so that the singular fields lead to the state which
the angular variation of stress components around the singularity corner is one at
the angle θ = π/2 and φ = π/4, σθθ (θ = π/2) = Kθθ r−λ j .

ui =
8

∑
n=1

Nnūin +
J

∑
j=1

Kc
i j

E2
6Qc

i j (r,θ ,φ)+
J

∑
j=1

[
MX

∑
m=1

{
Ñlx

m
Klx

i jm

E2
6Qlx

i j (R,Θ, z̄)

}]

+
J

∑
j=1

[
MY

∑
m=1

{
Ñly

m
Kly

i jm

E2
6Qly

i j (R,Θ, z̄)

}] (27)
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Figure 5: Definition of the finite element geometry for a cross section in cylindrical
coordinates
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Figure 6: 3D enriched domains in the side view (left) and the interface of dissimilar
material joint (right)

5 Boundary element analysis and model

Recently, many researchers have developed numerical methods for determining the
intensity of stress singularity in a three-dimensional dissimilar joint. One of them,
Koguchi (2006) used a boundary element method (BEM) for determining the in-
tensity of stress singularity fields at a vertex in three-dimensional joints with an
interlayer. The stress distributions near the vertex on the boundaries in a Carte-
sian coordinate are converted to express the inner stress distributions in a spheri-
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Figure 7: Three-dimensional dissimilar material joint under a uniform tensile stress
σ

 
        Boundary conditions                                   FEM model 
 

Figure 8:  FEM model and boundary connections 
 
 

 

Figure 9:  Distribution of angular variation of displacement fields in polar 
coordinates (R, Θ) 

sl
ijf

 
 
 

Figure 8: FEM model and boundary connections
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Figure 9: Distribution of angular variation of displacement fields f sl

i j in polar coor-
dinates (R,Θ)

Table 2: The order of singularity at a singularity corner

psc
j λ sc

j
Real Imaginary Real Imaginary

0.6018 0.0000 0.3982 0.0000
1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000

Table 3: The order of singularity at a singular point along the singularity line

psl
j λ sl

j
Real Imaginary Real Imaginary

0.6786 0.0000 0.3214 0.0000
1.0008 0.0000 -0.0008 0.0000
1.0003 0.0000 -0.0003 0.0000
1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000

cal coordinate. Afterwards, the intensities of stress singularity are determined by
fitting stress profiles using a least square method. In the present study, the three-
dimensional enriched FEM model, boundary conditions and material properties are
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Figure 10:  Distribution of angular variation of displacement fields on the θ – 
φ plane in spherical coordinates 

sc
ijf

5 Boundary element analysis and model 

Recently, many researchers have developed numerical methods for determining the 
intensity of stress singularity in a three-dimensional dissimilar joint. One of them, 
Koguchi (2006) used a boundary element method (BEM) for determining the 
intensity of stress singularity fields at a vertex in three-dimensional joints with an 
interlayer. The stress distributions near the vertex on the boundaries in a Cartesian 
coordinate are converted to express the inner stress distributions in a spherical 
coordinate. Afterwards, the intensities of stress singularity are determined by fitting 
stress profiles using a least square method. In the present study, the three-dimensional 
enriched FEM model, boundary conditions and material properties are identified to be 
the same as those in the paper of Koguchi (2006) in order to compare the difference 
of the intensity of stress singularity with each other. The briefly explanation of 
Koguchi (2006) is described. The BEM model is shown in Fig. 7. A symmetrical of 
three layers bonded structure is used for BEM analysis. Figure 11 shows the stress 
σθθ/σ profile at φ =π/4 and θ =π/2 versus r/L for intensity of stress singularity 
estimation by fitting curve with the following equation. 

Figure 10: Distribution of angular variation of displacement fields f sc
i j on the θ -φ

plane in spherical coordinates
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identified to be the same as those in the paper of Koguchi (2006) in order to com-
pare the difference of the intensity of stress singularity with each other. The briefly
explanation of Koguchi (2006) is described. The BEM model is shown in Fig. 7. A
symmetrical of three layers bonded structure is used for BEM analysis. Figure 11
shows the stress σθθ /σ profile at φ =π/4 and θ =π/2 versus r/L for intensity of
stress singularity estimation by fitting curve with the following equation.

σθθ

σ
= Kθθ0 +Kθθ1

( r
L

)−λ

+Kθθ2 ln
( r

L

)
+Kθθ3 ln

( r
L

)2
(28)

 
Figure 11: Stress σθθ /σ versus r/L for intensity of stress singularity estimation
(L=10 mm.)

The results of the intensity of stress singularity Kθθ1 at φ =π/4 and θ =π/2 is
0.1241.

6 3D enriched FEM results and discussion

The intensities of stress singularity at singularity corner (θ =π/2 and φ =π/4) and
singularity lines (θ =π/2) in the dissimilar material joints with a large difference
of Young’s moduli are determined using three-dimensional enrich FEM analysis.
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Figure 12: The increasing the singularity corner enriched domain for 0.1 mm of
element size (example)

 

Figure 13: The Kc
zz results versus the singular corner element size

Many cases of the element sizes near the singular points and the enriched domains
are analyzed to improve the accuracy of the intensity of stress singularity.

At first, the elements near the singularity corner are divided to small elements of all
equal sized hexahedron elements. The various sizes of those elements associated
with increasing of the singularity corner enriched domain in x, y directions upper
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Figure 14: The influence of the singularity line enriched domain in x-y plane

 
Figure 15: The results of the influence of the singularity line enriched domain in
x-y plane

and lower materials, are determined. The increasing of the singularity corner en-
riched domain for 0.1 mm of element size are shown in Fig. 12. The results are
shown in Fig. 13.

Figure 12 shows that when the corner enriched element size is equal or smaller
than 0.1 mm, the results of Kc

zz are nearly the same with each other in each case of
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the corner enriched domain. Hence, the 0.1 mm of element size can be used for
improving the accurate results and the small singularity corner enriched domain
gave the Kc

zz results near to the Kθθ1 results using BEM analysis. Generally, at the
plane (θ =π/2), the stress σzz in a Cartesian coordinate is the same as the stress σθθ

in a spherical coordinate.

After that, the influence of the singularity line enriched domain is analyzed as the
Fig. 14. The case of 1xy of the singularity corner enriched domain associated with
equal increasing of the singularity line enriched domains in the perpendicular with
singularity lines x and y is shown in Fig. 14. The results of 1xy-2z of the singularity
corner enriched domain associated with increasing of the singularity line enriched
domains (1xy-2z to 19xy-2z) are shown in Fig. 15.

 

Figure 16: The influence of the singularity line enriched domain in x-y plane in
various enriched domains in z-direction

Then, the increasing of the singularity corner and line enriched domains in x, y and
z directions is analyzed. The results of Kc

zz are shown in Fig. 16 and if the results of
Kc

zz are plotted only in the case of the singularity line enriched domain is 1.5 mm.
(15xy), the results of Kc

zz can be shown in Fig. 17.

The increasing of the singularity line domains in x-y plane give the results of Kc
zz at

singularity corner and the influence of the singularity line domains become stable,
see Figs. 15 to 17. Then, the increasing of the singularities corner and line enriched
domains in z direction to 0.4 mm (2z) give the results of Kc

zz near to the BEM re-
sults. Consequently, the result of Kc

zz at the singularity corner in dissimilar material
joint is 0.158 under the singularity corner enriched domain is 1xy−2z and the sin-
gularity line enriched domains are larger than 15xy−2z. It can be summarized that
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Figure 17: The results of Kc

zz when the singularity corner and line enriched domains
increase

 
Figure 18: The stress σθθ profile near the corner singular point at φ = π/4 and
θ = π/2

the intensity of stress singularity can be determined under the small of singularity
corner enriched domain and the large of singularity line enriched domains in x-y
plane. The result of Kc

zz in the three-dimensional enriched FEM analysis is larger
than the result of Kθθ1 in the BEM analysis about 27.3 %. It may be caused from
the influence of the intensities of stress singularity along the singularity lines when
the value of Kc

zz was determined by the three-dimensional enriched FEM. Finally,
the stress σθθ profile near the singularity corner at φ = π/4 and θ = π/2 obtained
from the three-dimensional enriched FEM is compared with that obtained from the
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standard FEM as shown in the Fig. 18.

Normally, stress singularity fields at a vertex can be expressed by using the standard
FEM with very small elements around the vertex. However, the addition of the
singular displacement fields into the FEM formulation for enriched element can
express the stress singularity fields at the singularity corner even if the element is
not small enough, see Fig. 18.

7 Conclusion

In the present paper, the new three-dimensional enriched FEM formulation at the
singularity corner was presented. Angular functions for singularities corner and
lines were derived from eigen analysis using a finite element method. The value
of the intensity of stress singularity at singularity corner effecting by the intensities
of stress singularity along the singularity lines, was determined and compared with
that value using a boundary element method.
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