
Copyright © 2009 Tech Science Press CMES, vol.39, no.1, pp.67-99, 2009

Evaluation of Elastic-Plastic Crack Tip Parameters using
Partition of Unity Finite Element Method and Pseudo

Elastic Analysis

Raju Sethuraman1 and N.R.Rajesh2

Abstract: This paper presents a methodology based on Partition of Unity Fi-
nite Element Method (PUFEM) and Pseudo Elastic Analysis for solving material
non-linear fracture problems within the scope of total deformation theory of plas-
ticity. Local enrichment base functions are used to represent the asymptotic field
near the crack tip and discontinuous field across the crack faces. An iterative lin-
ear elastic analysis using PUFEM is carried out for the determination of elastic-
plastic crack tip stress fields by treating effective material properties as spatial field
variables. The effective material parameters are defined using deformation the-
ory and are updated in an iterative manner based on strain controlled projection
method using experimental uniaxial tensile test curve. Discrete system of linear
equations for the elastic-plastic analysis is obtained from the weak form of the
equilibrium equation using the enriched trial function. Application of the present
methodology has been illustrated considering non-linear fracture problems for the
evaluation of elastic-plastic crack-tip parameters using boundary layer analysis.
Ramberg-Osgood model with different hardening exponents is used to characterize
the material behavior. Results of the present study for J-dominant HRR field and K
dominant elastic field are compared with both the analytical and non-linear finite
element solutions and found to be in very good agreement.
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ai coefficient associated with local patch influence function ψxi

bi body force vector component
BBB strain displacement matrix
DDD constitutive matrix
E Young’s modulus
Ee f f effective Young’s modulus
FFF force vector
In dimensionless integration constant
JI , JII mode I and mode II J-integrals
Jx1 , Jx2 sum and product J-integrals
JSx1 , JSx2 symmetric sum and product J-integrals
JASx1 , JASx2 anti symmetric sum and product J-integrals
K stress intensity factor
KKK stiffness matrix
q function defined in Eq. 42
m hardening exponent
ni unit outward normal component
Ni nodal shape function
NNNen enriched shape function matrix
Si j deviatoric stress tensor component
ti surface traction vector component
ui displacement vector component
W strain energy density
xi Cartesian co-ordinates
α yield offset in Ramberg-Osgood model
δi j Kronecker delta
ε experimental uniaxial total strain
ε

p
eq equivalent plastic strain

εi j strain tensor component
ν Poisson’s ratio
νe f f effective Poisson’s ratio
σ experimental uniaxial stress
σ0 yield stress
ε0 yield strain
σi j stress tensor component
σeq equivalent stress
τ shear traction
Φ Hencky’s scalar valued function
φ partition of unity function
ψ local patch influence function
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Ω domain
Γ surface
Γt traction prescribed surface
Γc crack surface
∂Ωel element boundary

Superscript

e elastic
p plastic
el element

Subscript

eq equivalent
eff effective
en enriched

Abbreviations

CCT Centre Crack Tension specimen
DECT Double Edge Crack Tension specimen
EPFM Elastic Plastic Fracture Mechanics
EPRI Electrical Power Research Institute
FEM Finite Element Method
GFEM Generalized Finite Element Method
LEFM Linear Elastic Fracture Mechanics
PEM Pseudo Elastic Method
PU Partition of Unity
PUFEM Partition of Unity Finite Element Method
PUM Partition of Unity Method
SECT Single Edge Crack Tension specimen
SIF Stress Intensity Factor
XFEM Extended Finite Element Method

1 Introduction

Most of the modern engineering structural materials undergo large scale inelastic
deformation at the crack tip and conventional SIF based fracture design is no longer
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valid. Instead, Elastic-plastic fracture characterization is required for life prediction
and damage tolerant design of engineering structures. Rice (1968) proposed a path
independent line integral called J-integral encircling the crack tip to characterize
the elastic-plastic fracture field. Using the line integral, Hutchinson (1968a, 1968b)
and Rice and Rosengren (1968) studied stress/strain singularities dominant at the
crack tip region of an elastic-plastic material. Their study showed the existence
of stress/strain singularity, known as HRR singularity, well within the plastic zone
surrounding the crack tip. Results also showed that the intensity coefficient of this
singularity, J-integral, uniquely characterize the elastic-plastic crack tip field

Work of Shih and German (1981) using finite element analysis under small scale
yielding condition for mode-I problems showed that though J-integral characterizes
the elastic-plastic crack tip field, the region of influence of HRR singularity varies
from geometry to geometry and also depend on the material hardening parameter.
Bradford (1984) analyzed the crack tip stress and strain field in an edge cracked
square plate under mode-II loading in the elastic-plastic regime with power law
hardening material model assumption. He has shown that the HRR singularity is
applicable for a wide range of loading conditions, right from small scale yielding
to general yielding conditions. Atluri et al. (1984) proposed T*-integral as an alter-
nate elastic-plastic fracture parameter during stable crack growth since J-integral is
not valid in this case due to unloading at the crack tip.

In recent years, considerable research is being carried out in meshless methods,
a new class of numerical method, for solving partial differential equations asso-
ciated with boundary value and initial value problems. These methods are highly
suitable for crack propagation problems, large deformation studies and complex
geometries where remeshing is time consuming and expensive. Various commonly
used meshless methods are Smooth Particle Hydrodynamics (SPH), Diffuse Ele-
ment Method (DEM), Element Free Galerkin method (EFGM), H-P cloud method,
Reproducing Kernel Particle Method (RKPM), Meshless Local Petrov-Galerkin
Method (MLPG) [Atluri and Zhu (1998)], Partition of Unity Finite Element Method
(PUFEM) [Melenk and Babuska (1996)], Generalized Finite Element Method (GFEM)
[Strouboulis, Babuska and Copps (2000)], Extended Finite Element Method (XFEM)
[Sukumar and Prévost (2003)] and etc.

MLPGM originated by Atluri (2004) is considered as a true mesh free method since
does not require any mesh either for the interpolation of the solution variables or for
the integration of the weak form as compared to EFGM which requires background
mesh for integration. The MLPG method has been further enhanced to solve 3D
elasto-static problems [Han and Atluti (2004)], non linear static and dynamic prob-
lems [Han, Rajendran, Atluri (2005)] and 2D stationary and transient problems in
piezoelectric and magneto-electric-elastic material models with continuously vary-
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ing material properties [Sladek.S, Sladek.V, Solek, Atluri (2008)]. Enriched mesh-
less methods based on EFGM has been developed for fracture analysis in the three
dimensional domain by Chen et al. (2005) and in functionally graded materials by
Wen, Aliabadi and Liu (2008). Li, Liu, Wang (2008) studied crack propagation
under ductile fracture using RKPM and Gurson-Tvergaard-Needleman constitutive
model.

Basic theory and applications of Partition of Unity Finite Element Method are ex-
plained in detail with numerical examples in the report of Melenk and Babuska
(1996). PUFEM uses patch based interpolation approximations compared to el-
ement based interpolation approximations of standard FEM. Treating the entire
domain as group of overlapping patches with local enrichment functions defined
over each patch, PUFEM enforces continuity over the entire domain using a set
of C0 functions called PU functions. Moes, John Dolbow and Belytschko (1999)
proposed PUFEM based enrichment technique using Heaviside and trigonometric
functions for modeling the cracks. The accuracy of the method was demonstrated
by predicting crack growth with relatively coarse mesh. Strouboulis, Babuska and
Copps (2000, 2001) discussed in detail the design and implementation of General-
ized Finite Element Method as a direct extension of standard finite element method.
Discontinuities and singularities were modeled using special enrichment functions
under the framework of partition of unity. Sukumar and Prèvost (2003) have stud-
ied in detail the numerical implementation of Extended Finite Element Method in
linear elastic materials. Quasi-static crack growth in mixed and pure mode cases
is studied in their work. The versatility of PUFEM was demonstrated by Fan, Liu
and Lee (2004) by directly extracting pure mode stress intensity factors in a mixed
mode problem. They used enrichment functions only at the crack tip correspond-
ing to truncated asymptotic series of linear elastic displacement field along with
p-version FEM and used coincident nodes to simulate rest of the crack surface.
Cai and Zhu (2008) proposed a new Local Meshless Shepard and Least Square
(LMSLS) method based on the local Petrov-Galerkin weak form in which Shepard
least square interpolation (SLS) offer much needed Kronecker-delta property for
imposing the essential boundary conditions.

Though substantial research has been carried out in elastic regime using partition
of unity concept, study in elastic-plastic regime is still in the developing stage. Rao
and Rahman (2004) used elastic-plastic crack tip enrichment functions to capture
the HRR singularity using element free Galerkin method. Elguedj et al. (2006)
studied about various EPFM enrichment functions for XFEM modeling and used
incremental non-linear solver for the elastic-plastic analysis. Elastic-plastic frac-
ture solutions of various crack problems are compared with linear solutions in their
work. Hagihara, et al. (2007) used element-free Galerkin method to calculate
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elastic-plastic fracture mechanics parameters, J-integral and T* -integral for both
stationary crack problem and stable crack growth problem in 2D domain. Long,
Liu and Li (2008) studied elastic-plastic fracture problems using meshless Petrov-
Galerkin method and incremental plasticity analysis.

Pseudo elastic method, initially developed by Desikan and Sethuraman (2000) is
an iterative method based on the Hencky’s total deformation theory of plasticity,
where material properties are treated as spatial field variables. Same methodology
is used in elastic-plastic fracture study along with element free Galerkin method by
Sethuraman and Reddy (2004, 2008) and in the inelastic analysis of 2D problems
using Radial Point Interpolation Method by Dai, Liu, Han and Li (2006).

In the present paper, pseudo elastic methodology is coupled along with partition of
unity finite element method for elastic-plastic fracture characterization and simula-
tion of HRR singular field at the crack tip. Effectiveness of the proposed method
has been demonstrated by the elastic-plastic analysis of various fracture problems
using different material hardening models.

2 Methodology

The present work is based on the two numerical methods namely Pseudo Elastic
Method (PEM) and Partition of Unity Finite Element Method (PUFEM). This sec-
tion outlines PUFEM followed by PEM.

For static elastic-plastic problems in a continuous medium, the weak form of the
equilibrium equation (principle of virtual work) is written as

∫∫∫
Ω

σi jδεi jdΩ−
∫∫∫

Ω

biδuidΩ−
∫∫
Γt

tiδuidΓ = 0 (1)

2.1 Partition of unity finite element method approximation

Explicit form of partition of unity frame work is used to generalize the standard
FEM approximations which result in node based conforming approximation com-
pared to element based approximation in FEM. Unlike FEM, PUM treats the do-
main as an assemblage of overlapping node centered sub domains called covers or
patches. Approximations representing local behavior are defined for the patches
and are called patch functions. Solution for the entire domain is developed by mul-
tiplying patch functions with corresponding partition of unity function.

For the given domain of patches {Ωi} with each patch having a set of local patch
influence functions, ψi, the partition of unity approximation for displacement at
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any arbitrary location xxx in the domain Ω is of the form

uuuh(xxx) = ∑
i∈N

φi

(
M

∑
j=1

a(i)
j ψ

(i)
j

)
(2)

where M is the number of local functions associated with each patch, N is set of
nodes in the domain and a(i)

j are constant coefficients associated with ψ
(i)
j . Set of

functions φi (one for each patch) are C0 partition of unity on Ω with the following
properties

0≤ φi(xxx)≤ 1 ∀xxx ∈Ωi

N

∑
i

φi(xxx) = 1 ∀xxx ∈Ω (3)

In the present study, set of elements that share a common node is used to form a
patch with vertex at that node. For four node quadrilateral elements, maximum
number of overlapping patches at any point xxx in the domain is 4. Shape functions
of the vertex node corresponding to each element of the patch are used to form the
partition of unity function for that patch.

Using finite element shape functions as patch cover functions and considering the
standard displacement finite element degrees of freedom, PUFEM displacement
approximation in Eq. 2 can be written as

uuuh(xxx) = ∑
i∈N

Ni(xxx)

(
uuui +

M

∑
j=1

a(i)
j ψ

(i)
j (xxx)

)
(4)

Hierarchical enrichments are used in the present study for two dimensional crack
modeling and is of the form [Moes, John Dolbow and Belytschko (1999)]

uuuh(xxx) =
{

u1

u2

}
= ∑

i∈N
Ni(xxx)


{

u1
i

u2
i

}
︸ ︷︷ ︸

i∈N

+H(xxx)
{

a1
i

a2
i

}
︸ ︷︷ ︸

i∈N f

+
4

∑
α=1

Φα(xxx)
{

b1
iα

b2
iα

}
︸ ︷︷ ︸

i∈Nc

 (5)

where superscripts 1, 2 represent the components in x1 and x2 directions respec-
tively. Nc is the set of nodes in the crack tip region and N f is the set of crack face
nodes other than those in crack tip region, H(xxx) is Heaviside function, Φα(xxx) are
crack tip enrichment functions, ui’s are the nodal displacement degrees of freedom,
ai’s are enriched degrees of freedom associated with Heaviside function and bi’s
are enriched degrees of freedom associated with crack tip enrichment functions.
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Crack discontinuity other than crack tip region is modeled using Heaviside func-
tion, H(xxx) which takes value +1 for points above the crack and -1 for points below
the crack.

Heaviside function used in the present study is of the form

H( f (xxx)) =

{
1 f (xxx) > 0
−1 f (xxx) < 0

(6)

where xxx is any point in the domain and f (xxx) is signed area of a triangle formed by
crack end points and xxx as vertices.

For isotropic materials, the asymptotic displacement field near the crack tip region
is represented by the following four enrichment functions [Fleming, Chu, Moran,
Belytschko, Lu and Gu (1997)].

Φα =
{√

r sin(θ/2),
√

r cos(θ/2),
√

r sin(θ)sin(θ/2),
√

r sin(θ)cos(θ/2)
}

(LEFM){
r1/(m+1) sin(θ/2),r1/(m+1) cos(θ/2), r1/(m+1) sin(θ)sin(θ/2),

r1/(m+1) sin(θ)cos(θ/2)
}

(EPFM)

(7)

where r,θ are crack tip polar co-ordinates and m is the strain hardening expo-
nent. The above functions are used to represent the crack tip region with the first
term,

√
r sin(θ/2) modeling the discontinuity across the crack face.

Positive semi definite system resulting from the linear dependence of finite ele-
ment shape functions and patch functions is solved using the perturbation approach
[Duarte, Babuska and Oden (2000)].

2.2 Discrete Equations

In the absence of body forces, the weak form of equilibrium equation in Eq. 1 can
be written in the following matrix form∫
Ω

δεεε
TDDDεεεdΩ−

∫
Γ

δuuuTtttdΓ = 0 (8)

Trial function (Eq. 5), can be written in the form{
u1

u2

}
= NNNenuuuen (9)

where

NNNen = [NNN1 NNN2 .... NNNN ] (10)
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and

uuuen =


{

u1
1

u2
1

}{
a1

1
a2

1

}{
b1

1α

b2
1α

}
α=1...4︸ ︷︷ ︸

node1

. . .

{
u1

N
u2

N

}{
a1

N
a2

N

}{
b1

Nα

b2
Nα

}
α=1...4︸ ︷︷ ︸

nodeN


T

(11)

Components of NNNen are given by

NNNi =


{

Ni 0
0 Ni

}
︸ ︷︷ ︸
conventional

{
NiH 0

0 NiH

}
︸ ︷︷ ︸

Heaviside enrichement

{
NiΦα 0

0 NiΦα

}
α=1..4︸ ︷︷ ︸

asymptotic enrichment

 (12)

For conventional nodes (not enriched), components of NNNen and uuuen are

NNNi =
[

Ni 0
0 Ni

]
, uuui =

{
u1

i
u2

i

}
(13)

For nodes 1, 2, 5, 6 which are enriched with degrees of freedom associated with
Heaviside function (refer Fig. 1), components of pmbNen and uuuen are

NNNi =

 Ni 0
0 Ni︸ ︷︷ ︸

conventional

NiH 0
0 NiH︸ ︷︷ ︸

Heaviside enrichement

 uuui =
{

u1
i u2

i a1
i a2

i
}T

(14)

For nodes 3, 4, 7, 8 which are enriched with degrees of freedom associated with
asymptotic functions (refer Fig. 1), components of NNNen and uuuen are

NNNi =

 Ni 0
0 Ni︸ ︷︷ ︸

conventional

{
NiΦα 0

0 NiΦα

}
α=1...4︸ ︷︷ ︸

asymptotic enrichment

 uuui =
{

u1
i u2

i
{

b1
iα b2

iα
}

α=1...4

}T
(15)

Substituting δεεε = BBBenδuuuen, δuuu = NNNenδuuuen in Eq. 8∫
Ω

[BBBenδuuuen]
TDDDBBBenuuuendΩ−

∫
Γ

[NNNenδuuuen]
TtttdΓ = 0 (16)

where

BBBen =
[
BBBu

1 BBBa
1

{
BBBb

1α

}
α=1...4

... BBBu
N BBBa

N

{
BBBb

Nα

}
α=1...4

]
(17)
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Components of BBBen are given by

BBBu
i =

Ni,1 0
0 Ni,2

Ni,2 Ni,1

 , BBBa
i =

(NiH),1 0
0 (NiH),2

(NiH),2 (NiH),1

 ,

BBBb
iα =

(NiΦα),1 0
0 (NiΦα),2

(NiΦα),2 (NiΦα),1α=1...4


(18)

( ),1, ( ),2 represent partial derivatives with respect to x1, x2 co-ordinates.

Eq. 16 reduces to

KKKenuuuen = FFFen (19)

where KKKen and FFFen are the stiffness matrix and force vector defined by

KKKen =
∫
Ω

[BBBen]
T DDDBBBendΩ =

∫
Ω

 [BBBu]T

[BBBa]T{
BBBb

α

}T
α=1..4

DDD
[
BBBuBBBa

{
BBBb

α

}
α=1..4

]
dΩ (20)

KKKen =
∫
Ω

 [BBBu]T DDDBBBu [BBBu]T DDDBBBa [BBBu]T DDD
{

BBBb
α

}
α=1..4

[BBBa]T DDDBBBu [BBBa]T DDDBBBa [BBBa]T DDD
{

BBBb
α

}
α=1..4{

BBBb
α

}T
α=1..4 DDDBBBu

{
BBBb

α

}T
α=1..4 DDDBBBa

{
BBBb

α

}T
α=1..4 DDD

{
BBBb

α

}
α=1..4

dΩ

(21)

FFFen =
∫
Γt

[NNNen]
T tttdΓ (22)

Shape functions of the vertex node, corresponding to its support elements in the
patch, are used to construct the partition of unity function for that patch. These
shape functions have value unity at the vertex and zero on the boundary of the patch.
Together these shape functions form C0 partition of unity over the entire domain
ensuring inter element continuity. Therefore trial function at any interior point
depends on the non zero shape functions of four surrounding nodes and associated
degrees of freedom. Thus construction of stiffness matrix and force vector can be
done element wise and assembled in the usual finite element procedure.

Element stiffness matrix is given by

KKKel
en =

∫
Ωel

[
BBBel

en

]T
DDDBBBel

endΩ (23)
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where

BBBen =
[
BBBu

1 BBBa
1

{
BBBb

1α

}
α=1...4

BBBu
2 BBBa

2

{
BBBb

2α

}
α=1...4

. . .

BBBu
3 BBBa

3

{
BBBb

3α

}
α=1...4

BBBu
4 BBBa

4

{
BBBb

4α

}
α=1...4

]
(24)

Size of element stiffness matrix varies with its associated nodal enriched degrees
of freedom. For an element with no enriched nodes, size of stiffness matrix will
be same as that of conventional element i.e. 8x8. If all four nodes of an element
are enriched with Heaviside function, size of stiffness matrix will be 16x16 and for
elements with all four nodes asymptotically enriched, size of stiffness matrix will
be 40x40.

Elemental load vector is given by

FFFen =
{

Fu
1 Fa

1

{
Fb

1α

}
α=1...4

Fu
2 Fa

2

{
Fb

2α

}
α=1...4

Fu
3 Fa

3

{
Fb

3α

}
α=1...4

Fu
4 Fa

4

{
Fb

4α

}
α=1...4

}T
(25)

with components

Fu
i =

∫
Γt∩∂Ωel

NNNT
i tttdΓ,

Fa
i =

∫
Γt∩∂Ωel

[NNNiH]TtttdΓ,

Fb
iα =

∫
Γt∩∂Ωel

[NNNiΦα ]TtttdΓ

(26)

For plane stress, constitutive matrix DDD is given by

DDD =
E

1−ν
2

1 ν 0
ν 1 0
0 0 (1−ν)/2

 (27)

E is replaced by E/ (1-ν2), and ν by ν / (1- ν) for plane strain.

For elastic-plastic problems, in evaluating the stiffness matrix KKK, the effective Pois-
son’s ratio and effective Young’s modulus are used appropriately. In stiffness ma-
trix and subsequent stress evaluation, the constitutive matrix is changed from DDD to
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DDDe f f using the material parameters Ee f f and νe f f . The element stiffness matrix for
elastic-plastic analysis can be written as

KKKel
en =

∫
Ωel

[
BBBel

en

]T
DDDe f f BBBel

endΩ (28)

The construction of constitutive matrix DDDe f f is detailed in the next section.

2.3 Pseudo Elastic Methodology

The stress-total strain relationship for materials under Hencky’s total deformation
theory of plasticity is

εi j =
(

1+ν

E
+Φ

)
σi j−

(
ν

E
+

Φ

3

)
σkkδi j (29)

where Φ is a scalar valued function defined in deformation theory and is given in
terms of equivalent stress and equivalent plastic strain as

Φ =
3
2

ε
p
eq

σeq
(30)

The equivalent plastic strain and equivalent stress are given by

ε
p
eq =

√
2
3

ε
p
i jε

p
i j,σeq =

√
3
2

Si jSi j (31)

The deviatoric stress tensor is defined as

Si j = σi j−
1
3

σkkδi j (32)

Eq. 29 can rewritten in the following form

εi j =
(

1+νe f f

Ee f f

)
σi j -

(
νe f f

Ee f f

)
σkkδi j (33)

where νe f f and Ee f f are the effective material parameters and are defined as

1
Ee f f

=
1
E

+
2
3

Φ, νe f f = Ee f f

(
ν

E
+

Φ

3

)
(34)

These effective material parameters are functions of the final state of stress. Since
the final state of stress at every point is unique, νe f f and Ee f f can be treated as field
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variables at every spatial point. Elastic-plastic stress-strain relation in Eq. 33 de-
scribes the elastic behavior of the continuum for constant values of νe f f and Ee f f .
Geometrically Ee f f is nothing but the secant modulus defined on the experimen-
tal uniaxial material curve. Thus effective material parameters in all iterations are
calculated using experimental uniaxial curve and Eq. 34. Though strain controlled
projection method, arc method and Neuber’s method [Desikan and Sethuraman
(2000)] can be used to calculate Ee f f in successive iterations, only strain controlled
projection method is used in the present study. The constitutive matrix DDDe f f for
elastic-plastic regime is evaluated by substituting these modified material parame-
ters Ee f f and νe f f as E and ν in Eq. 27.

3 Numerical Implementation

3.1 PUFEM Implementation

PUFEM implementation presented in the current study is based on the work of
Sukumar and Prévost (2003). Domain is discretized with mesh without considering
crack geometry. Crack geometry is considered as a virtual segment across interi-
ors of a group of elements and is assumed to be terminating in the interior of an
element. The crack face discontinuity and crack tip singular field are characterized
using Heaviside and asymptotic enrichment functions. A sample mesh is shown in
Fig. 1 with an edge crack terminating at interior of an element. 4 nodes around
the crack tip usually form the node set Nc for asymptotic enrichment. Alternatively
a fixed circular domain around the crack tip can also be used to identify nodes
for asymptotic enrichments. Nodes that belong to elements that are split by the
crack segment, but not selected for asymptotic enrichment, are included in the set
N f for Heaviside enrichment. Nodes that are enriched with asymptotic functions
have 10 degrees of freedom per node (two conventional degrees of freedom and
eight degrees of freedom associated with four enrichment base functions). Nodes
with Heaviside enrichment have 4 degrees of freedom per node (two conventional
degrees of freedom and two degrees of freedom associated with enrichment base
function).

Nodes 1, 2, 5, 6 of the above mesh belong to node set Nc and nodes 3, 4, 7, 8 be-
long to node set N f . Signed area of the triangle formed with material point (either
gauss point /node) and end points of the crack segment as vertices is used to assign
the value of Heaviside function. Construction of element stiffness matrices and el-
ement force vectors for partitioned elements include integration of discontinuous
functions. The partitioned elements are ones whose all nodes are enriched, thus en-
compassing the discontinuity (crack). The elements ‘A’, ‘B’, ‘C’ are the partitioned
elements for the mesh shown in Fig. 1.
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Figure 1: Nodal enrichment scheme and crack representation in a regular mesh

Integration Points

Crack
segment

+

-

d c

a b

'
1ξ

1ξ

'
2ξ

2ξ

Integration Points

Crack
segment

+

-

d c

a b

'
1ξ

1ξ

'
2ξ

2ξ

 

Figure 2: Partitioning of element intersected by crack segment
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Integration of stiffness matrix in case of elements with crack segment in the inte-
rior requires special treatment because of the discontinuous enrichment functions
involved. Element is partitioned into smaller subdomains conforming to the crack
segment.

Stiffness evaluation requires looping over smaller partitioned subdomains as shown
in Fig. 2. Integration over domain ‘abcd’ requires evaluation of shape functions,
which are defined only for the parent element, at local gauss points. This is done by
mapping physical co-ordinates of gauss points in the subdomain ‘abcd’ to mapped
quadrilateral of the parent element i.e. (ξ ′1, ξ ′2)→ xxx→ (ξ1, ξ2). Newton-Raphson
iterative method is used for this purpose.

Contribution of subdomain ‘abcd’ to elemental stiffness matrix is given by

KKKabcd
en =

∫
Ωabcd

[
BBBen(xxx(ξ (ξ ′)))

]T DDDe f fBBBen(xxx(ξξξ (ξξξ ′))) det(J(ξξξ (ξξξ ′))) det(J(ξξξ ′))dξ
′
1dξ

′
2

(35)

where ξξξ (ξ1,ξ2) is the parent element co-ordinate system and ξξξ ′(ξ ′1,ξ
′
2) is the sub-

domain co-ordinate system.

Global co-ordinate system is aligned with crack tip co-ordinate system for calculat-
ing of asymptotic enrichment functions and post processing of results. If any one
node of an element is enriched, its contribution to element stiffness matrix is to be
added in addition to contribution associated with conventional degrees of freedom.
Strain-displacement matrices of partitioned elements ‘A’, ‘B’, ‘C’ are

BBBA
en = [BBBu

1 BBBa
1 BBBu

2 BBBa
2 BBBu

6 BBBa
6 BBBu

5 BBBa
5]

BBBB
en =

[
BBBu

2 BBBa
2 BBBu

3 BBBb
3α BBBu

7 BBBa
7 BBBu

6 BBBb
6α

]
BBBC

en =
[
BBBu

3 BBBb
3α BBBu

4 BBBb
4α BBBu

8 BBBb
8α BBBu

7 BBBb
7α

] (36)

Global stiffness matrix and force vector are constructed similar to standard finite
element method. Global nodal degrees of freedom array is created first, using all
nodal degrees of freedom including both conventional and enriched degrees of free-
dom. Element stiffness matrices evaluated using Eq. 28 are assembled in the global
stiffness matrix according to the global degrees of freedom of its member nodes.

3.2 Pseudo Elastic Implementation

Pseudo elastic method is an iterative procedure based on the elastic-plastic stress
strain relation given in Eq. 33. All material points are assigned uniaxial material
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 Figure 3: Projection method to evaluate effective material parameters using exper-
imental uniaxial tensile curve

properties, E and ν in the initial iteration. After the first iteration, effective modu-
lus, Ee f f , at all material points are calculated using projection method as illustrated
in Fig. 3. Point A corresponds to equivalent stress at a material point after the first
iteration and point B is the corresponding point on experimental uniaxial tensile
curve.

The effective modulus, Ee f f (secant modulus of experimental uniaxial curve) is the
slope of the line OB. Effective Poisson ratio, νe f f is calculated using Eq. 34. Values
of Ee f f and νe f f are used as modified material parameters in the next analysis.
Iterations are repeated until the state of stress and strain of all material points follow
the uniaxial material curve. Points D, E, F represent corresponding points on the
material curve in subsequent iterations.

4 Elastic Plastic Singular Crack Tip Field and J integral

Hutchinson (1968a, 1968b), Rice and Rosengren (1968) showed that in elastic-
plastic materials within the plastic zone, elastic strains are very small and stress
strain behavior reduces to pure power law even for general Ramberg-Osgood ma-
terial model. Based on deformation theory of plasticity, they proposed path inde-
pendent J-integral which characterizes the stress/strain field (HRR singularity) in
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non-linear materials as given below

σi j = σ0

(
J

ασ0ε0Inr

) 1
m+1

σ̃i j(θ ,m)

εi j = αε0

(
J

ασ0ε0Inr

) m
m+1

ε̃i j(θ ,m)

ui = αε0r
(

J
ασ0ε0Inr

) m
m+1

ũi(θ ,m)

(37)

where r and θ are the polar coordinates centered at the crack tip, In is a dimension-
less integration constant which is a function of strain hardening exponent, m and
σ̃i j, ε̃i j and ũi are dimensional functions which depend on θ and m [Shih (1983)].
J is the amplitude of the crack tip singular field. The above relations are based on
the power law hardening material response given by,

ε

ε0
= α

(
σ

σ0

)m
(38)

where α is the material constant, σ0 is the reference yield stress, ε0 = σ0/E is the
reference yield strain. For linear elastic materials, m=1 and for perfectly plastic
response, m = ∞. The J-integral defines the severity of the crack tip stress/strain
field both in the elastic and elastic-plastic regime. For a general cracked body
subjected to remote loading, J-integral in the absence of body forces is given by

J =
∫
Γ

Wdx2− ti
∂ui

∂x1
dΓ (39)

where Γ is any arbitrary closed contour around the crack tip starting from one crack
face to the other. W is the strain energy density defined by,

W =
∫

σi jdε i j (40)

while ttt is the traction vector and uuu is the displacement vector on path Γ.

4.1 Numerical Evaluation of J-integral

Indicial contour form of J-integral [Raju and Shiva Kumar (1990)] is given by

Jxk =
∫
Γ

[
Wnk−σi j

∂ui

∂xk
n j

]
dΓ k, j = 1,2 (41)
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Figure 4: A symmetric mesh around crack tip for J-integral evaluation using de-
composition method

ni is component of unit normal vector to the path Γ. Jx1 , component of J evaluated
in the x direction, is the sum of JI and JII (J-integrals associated with mode I and
mode II deformation) in mixed mode cases and Jx2 is the product integral.

A ring of elements around the crack tip, used for J-integral evaluation with bound-
aries Γ1 and Γ2 is shown in Fig. 4. Applying divergence theorem and using an
arbitrary function q(xxx) such that

q(xxx) = 1 on Γ1

q(xxx) = 0 on Γ2
(42)

contour integral is converted to an equivalent domain integral given by,

Jxk =−
∫
A

[
W

∂q
∂xk
−σi j

∂ui

∂xk

∂q
∂x j

]
dA+

∫
Γc+∪Γc−

[
Wnk−σi j

∂ui

∂xk
n j

]
qdΓ (43)

Above equation contains a domain integral term defined over an area enclosed by
Γ1, Γ2 and crack faces Γc+, Γc− and line integral term defined over crack faces
Γc+ and Γc−.

Decomposition method [Raju and Shiva Kumar (1990)] has been adopted in the
present study for domain integral evaluation of J in both pure and mixed mode
cases. In decomposition method, non zero line integral Jx2 along crack faces are
made to vanish by splitting stress field into symmetric and anti symmetric com-
ponents. This requires symmetric mesh about the crack axis. Displacement and
stress/strain fields are decomposed into symmetric and anti-symmetric components.
The displacement of symmetric node sets P and P’ in the domain are decomposed
into symmetric and anti symmetric components using Eq. 44. Nodes from elements
H, I, J, K, L, M and N form the set P and symmetric nodes from elements H’, I’, J’,
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K’, L’, M’ and N’ form the set P’ (refer Fig. 4).{
u1

u2

}
S
=

1
2

{
u1P +u1P’

u2P−u2P’

}
,

{
u1

u2

}
AS

=
1
2

{
u1P−u1P’

u2P +u2P’

}
(44)

Resulting displacement field gives rise to symmetric and anti symmetric stress/strain
fields. J-integral is evaluated by looping over the ring of elements.

Jxk =
N

∑
i

(Jxk)i (45)

where N is number of elements in the domain of evaluation.

Symmetric stress field is responsible for mode I deformation and anti-symmetric
stress field is responsible for mode II deformation. Evaluation of first term of Eq.
43 using symmetric field gives JI = JSx1 and using anti symmetric field, gives JII =
JASx1 . Because of symmetric and anti symmetric nature of stress and displacement
fields, JSx2 , JASx2 become zero.

5 Numerical Examples

Initially, the effectiveness of the present method is demonstrated using a bound-
ary layer analysis for an edge crack problem with its outer boundary subjected to
mode-I elastic displacement field. Next, various mode-I and mode-II problems are
considered for the study. J-integral and stress/strain fields are evaluated using the
present pseudo-elastic method and compared with the results available in literature
and also with the solution obtained from non-linear finite element analysis [ANSYS
(2000)].

5.1 Boundary layer analysis

Boundary layer approach is adopted here to predict the J-integral dominant HRR
field and K dominant elastic field around the crack tip under plane stress conditions.
In this method, displacement field corresponding to mode-I elastic solution is im-
posed on the outer boundary of the domain [Rao and Rahman (2004)]. Physical
domain of the problem consists of a square plate, size 100 mm, with an edge crack,
length 50 mm, terminating at centre of the plate.

Physical domain and corresponding mesh used are shown in Figs. 5(a) and 5(b).
Quadrilateral mesh of 405 elements and 416 nodes are used to discretize the do-
main. Crack tip co-ordinate system is considered to be coincident with global co-
ordinate system. Finer mesh is used around the crack tip region. EPFM asymptotic
enrichment functions are used for modeling crack in the domain.
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 Figure 5: Geometrical details (a) Physical domain (b) Finite element model

Ramberg-Osgood material model

ε

ε0
=

σ

σ0
+α

[
σ

σ0

]m

(46)

where ε0 = σ0/E is considered for the analysis. The values of material parameters
used are Young’s modulus (E) =200 GPa, Poisson’s ratio (ν) =0.3, yield stress (σ0)
=700 MPa, yield offset α =0.1 and hardening exponent m =3.

Each element cut by the crack is partitioned into 16 smaller quadrilateral sub do-
mains, conforming to the crack edges and a higher order 6x6 Gauss quadrature
is used for the numerical integration. Penalty method is used to enforce the dis-
placement field along the outer periphery of the domain. Results obtained from the
present study are compared with both HRR singularity solution and linear elastic
crack tip field.

Computed elastic-plastic stress field from the present study under plane stress con-
dition along the radial lines at θ = 0◦, θ = 45◦ and θ = 90◦ ahead of the crack tip
are presented below. The variation of normalized radial stress (σrr/σ0) and tan-
gential stress (σθθ /σ0) with respect to a normalized radial distance (rσ0/J) ahead
of the crack tip for θ=0◦, θ=45◦ and θ=90◦ under plane stress condition are shown
in Figs. 6, 7 and 8 respectively.

The distribution of normalized shear stress σrθ /σ0 along radial lines θ=45◦ and
θ=90◦ are also given in Figs. 9(a) and 9(b). The above graphs clearly show the
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 Figure 6: Variation of normalized stress ahead of crack tip along θ = 0◦ (a) radial

stress (b) tangential stress
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 Figure 7: Variation of normalized stress ahead of crack tip along θ=45◦ (a) radial

stress (b) tangential stress

existence of J dominated crack tip zone as well as K dominated elastic outer zone
with smooth transition between the two zones.

5.2 Mode I Problems

Three mode I problems, (Fig. 10) Centre Crack Tension specimen (CCT), Single
Edge Crack Tension specimen (SECT) and Double Edge Crack Tension specimen
(DECT), subjected to remote tension in both plane stress and plane strain conditions
are considered for the pseudo-elastic analysis and fracture characterization.
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Figure 8: Variation of normalized stress ahead of crack tip along θ=90◦ (a) radial
stress (b) tangential stress
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 Figure 9: Variation of normalized shear stress ahead of crack tip along (a) θ=45◦

(b) 90◦

Crack length (a) =50 mm, width (W) =100 mm and L/W=10 are used as geometrical
dimensions for modeling the specimens. Ramberg-Osgood material model with
Young’s modulus (E) = 200 GPa, Poisson’s ratio (ν) = 0.3, yield stress (σ0) = 200
MPa, yield offset α = 3/7 and hardening exponent m = 3, 5 and 10 is considered
for the present study. Half models of the physical domain are used for analysis in
case of CCT and DECT specimens, making use of symmetry and full model of the
domain is used in case of SECT specimen. Remote load corresponding to 80% of
the yield stress is applied. Domain is discretized with 345 elements and 372 nodes.
In present study, all nodes in the rectangular region of size 100x100 mm around the
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Figure 10: Geometrical configuration (a) Center crack tension specimen (b) Single
edge crack tension specimen (c) Double edge crack tension specimen

crack tip are enriched with asymptotic enrichment functions given in Eq. 7.

Penalty method is adopted for enforcing symmetric boundary condition in centre
crack and double edge crack problems and also for enforcing constraint equations
connecting enriched degrees of freedom of crack face nodes lying on the plane
of symmetry. Various domains, as shown in Fig. 11(b) are used for J-integral
evaluation to check the domain independence. J-integral values, calculated for the
normalized far field stress σ/σ0=0.5 and hardening exponent m=3 are compared
with results evaluated from EPRI estimation scheme [Anderson (2000)] in Tab. 1
for plane strain condition. Variation of J-integral values for different domains is
found to be less than 1%.

All three specimens are analyzed for various normalized boundary stresses/tractions
(σ/σ0) and for different strain hardening exponents. Normalized stresses are varied
from 0.1 to 0.8 for all cases with hardening exponent, m = 3, 5 and10.

J-integral values for different normalized far field stresses with m=3 for centre crack
problem under plane strain and plane stress conditions are presented in Figs. 12(a)
and 12(b). J-integral values from the present analysis are found to be in good
agreement with results of EPRI estimation scheme over the considered range of
loading.
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 Figure 11: (a) Domain discretization (b) Domains around crack tip for J-integral
evaluation

Table 1: Variation of J-integral for different domains

Domain no. J kJ/m2 JEPRI=12.877 % Deviation from EPRI scheme
1 12.8654 0.09
2 12.9181 0.32
3 12.9080 0.24
4 12.8800 0.02
5 12.8365 0.31

J-integral variation with different strain hardening exponents for same crack con-
figuration and loading, under plane strain and plane stress loading are presented in
Figs. 13(a) and 13(b) respectively. The effect of m on J is pronounced when σ/σ0
is more than 0.6.

Next, J-integral variation with the applied load for single edge crack problem for
m=3 under both plane cases are given next in Figs. 14(a) and 14(b).

Double edge crack specimen is also analyzed under identical conditions and the
results under plane strain and plane stress loading are presented in Figs. 15(a) and
15(b) respectively.

Stress and strain field evaluated ahead of the crack tip using the present method
are compared with HRR solution and non-linear finite element solution in Figs.
16 and 17. It is observed that the normalized stress fields σ22/σ0 and σ11/σ0 ob-
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                        (a)                                                                                   (b) 
 Figure 12: J-integral variation with the applied load for centre crack problem, m=3
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 Figure 13: J-integral variation with the applied load for centre crack problem for

various strain hardening exponents (a) Plane strain (b) Plane stress

tained from the present method matches well with the HRR solution closer to crack
tip (rσ0/J <5) but slightly under predict when compared with the HRR solution at
larger distances from the crack tip (rσ0/J >5). But better agreement between re-
sults of present study and non-linear finite element solution is observed at larger
distances compared to HRR results at the crack tip region. Prediction of normal
strains (ε11 and ε22) based on the present method matches well with the HRR and
FEA solutions.

The present study is extended to study the effect of normalized far field stresses
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 Figure 14: J-integral variation with the applied load for single edge crack problem

a) Plane strain b) Plane stress
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 Figure 15: J-integral variation with the applied load for double edge crack problem

under a) Plane strain b) Plane stress

on crack tip field. The normal stress distribution σ22/σ0, ahead of the crack tip
for three different loadings with m=3 for centre crack problem are plotted in Fig.
18. Invariance of the stress field with normalized far field stresses for a particular
hardening exponent and rσ0/J support the fact that the single parameter J can char-
acterize the entire crack tip field in non-linear materials. It can also be observed
that stress field from the present study is in close agreement with HRR solution
near the crack tip region (rσ0/J <5) and tend to deviate more from HRR solution at
higher values of rσ0/J.



Evaluation of Elastic-Plastic Crack Tip Parameters 93

0

2

4

6

8

10

12

0 5 10 15 20 25

Present method
HRR
FEA

σ 2
2/ 
σ 0

rσ0/J

0

2

4

6

8

10

12

0 5 10 15 20 25

Present method
HRR
FEA

σ 2
2/ 
σ 0

rσ0/J
  

0

2

4

6

8

0 5 10 15 20 25

Present method
HRR
FEA

σ 1
1/ 
σ 0

rσ0/J

0

2

4

6

8

0 5 10 15 20 25

Present method
HRR
FEA

σ 1
1/ 
σ 0

rσ0/J
 

                        (a)                                                                                   (b) 
 Figure 16: Stress variation ahead of the crack tip for centre crack problem under

plane stress condition with m=3 and stress ratio=0.5; a) σ22/σ0 vs. rσ0/J, b) σ11/σ0
vs. rσ0/J
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                        (a)                                                                                   (b) 
 Figure 17: Strain variation ahead of the crack tip for centre crack problem under

plane stress condition; a) ε22 vs. rσ0/J, b) ε11 vs. rσ0/J

5.3 Edge crack under shear

Next, an edge cracked specimen under mode II loading is considered [Bradford
(1984)] for the elastic-plastic analysis. Physical domain consists of a square plate,
size 100 mm, with an edge crack, 50 mm long, terminating at centre of the plate.
Loading of the plate is varied from small scale yielding to general yielding con-
dition. Equal and opposite traction is applied on the faces AB and CD while the
x2-displacement of the nodes on the edges AD and BC are fixed to simulate shear
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Figure 18: σ22/σ0 variation ahead of the crack tip for centre crack problem under
plane stress condition with m=3

as shown in Fig. 19(b). One of the nodes near to middle of BC is fixed to avoid
rigid body mode.

B

L

o x1

x2

A

D C

2u =0

2u =0 Γ

τ

a

B

L

o x1

x2

A

D C

2u =0

2u =0 Γ

τ

a

 
(a) (b) 

 
Figure 19: Edge cracked square plate subjected to shear traction. a) Physical con-
figuration b) Mesh with applied boundary condition
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Physical domain and mesh with applied boundary condition are shown in Fig. 19.
Power law hardening material model with m=3 is assumed.

ε =
σ

E
for ε ≤ ε0,

ε = ε0

(
σ

σ0

)m

for ε > ε0

(47)

The following material property values are used for the analysis: Young’s modulus
(E) =210 GPa, yield stress (σ0) =210 MPa and Poisson’s ratio (ν) =0.3. Von-Mises
yield criteria and plane strain state are assumed.

The magnitude of applied shear traction is varied from 10.2 to 104 MPa. J-integral
values, calculated using decomposition method, are presented in Fig. 20 along with
reference solution and found to be in close agreement over the considered range of
load application.
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Figure 20: Variation of J-integral with applied shear traction

Shear stress and shear strain ahead of the crack tip for external traction of 70 MPa
are compared with HRR and non-linear finite element solution and are presented
in Figs. 21(a) and 21(b) respectively. Here again, stress and strain field obtained
from the present method compare well with the J controlled HRR field and non-
linear finite element solution thereby illustrating the capability of the method in
predicting the stress-strain field for material non-linear problems within the scope
of deformation theory.
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                        (a)                                                                                   (b) 
 Figure 21: a) Variation of shear stress σ12 vs. rσ0/J ahead of crack tip b) Variation

of shear strain, γ12 vs. rσ0/J ahead of crack tip

6 Conclusions

A partition of unity finite element method coupled with pseudo elastic analysis
is presented for the elastic-plastic fracture characterization of material non-linear
problems. In the partition of unity finite element method enrichment functions are
used to model the crack face discontinuity and crack tip asymptotic field. The
applicability of the pseudo elastic method has been exploited within the partition
of unity finite element method framework for solving material non-linear problems
in a linear fashion.

Effectiveness of the method is illustrated considering various case studies. The re-
sulting stress field of the boundary layer approach, along various radial lines start-
ing from the crack tip, matched well with J dominated near tip field and K dom-
inated far field. Fracture parameter evaluated for case of CCT, SECT, and DECT
specimens showed close agreement with results of EPRI estimation scheme. Stress
and strain field obtained for these cases from the present study matched well with
HRR singular field for normalized distance, (rσ0/J) less than 5 and tend to devi-
ate more at larger normalized distances, but matches well with the non-linear finite
element solution.

J-integral values, estimated using the decomposition method, for edge crack prob-
lem subjected to remote shear traction are found to be in good agreement with the
available literature results. The asymptotic crack tip stress fields obtained by the
present method for the shear are compared with both HRR singular stress fields and
also with non-linear finite element solution and are found to be in good agreement.
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