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Parameter identification of beam-column structures
on two-parameter elastic foundation

F. Daghia1, W. Hasan1, L. Nobile1 and E. Viola1,2

Abstract: In this paper, a finite element model has been developed for analysing
the flexural vibrations of a uniform Timoshenko beam-column on a two-parameter
elastic foundation. The beam was discretized into a number of finite elements hav-
ing four degrees of freedom each. The effect of end springs was incorporated in
order to identify the end constraints.
The procedure for identifying geometric and mechanical parameters as well as the
end restraints of a beam on two-parameter elastic foundation is based on experi-
mentally measured natural frequencies from dynamic tests on the structure itself.
An iterative statistical identification method, based on the Bayesian approach, was
used to identify a set of geometric, physical and mechanical parameters of the above
mentioned structure.
Simulated measured natural frequencies of the structure were used throughout the
identification method. The engineer’s confidence in the modelling of the various
parameters was also quantified and incorporated into the revision procedure.

Keywords: Bayesian analysis, parameter estimation, finite elements, two-parameter
elastic foundation.

List of main symbols

P Axial force
N Normal force
V Shearing stress
M Bending moment
p External axial load per unit length
q External shear load per unit length
m External moment per unit length
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u Axial displacement
v Transverse displacement
φ Rotation
ε Longitudinal strain
γ Shearing strain
χ Curvature
ρ Mass density
A Cross-sectional area
I Moment of inertia
E Young’s modulus
G Shear modulus
κ Shear coefficient
k Winkler foundation modulus
kp Pasternak foundation modulus
K1, K2, K Linear end spring moduli
γ1, γ2, γ Rotational end spring moduli
δWe External virtual work
δWi Internal virtual work
WPe Work of compressive axial force
Φe Strain energy
ECe Kinetic energy
EPT Total dynamic potential energy
Nv, Nφ Vectors of interpolation functions
q Nodal displacement vector
K Stiffness matrix
M Mass matrix
r Vector of unknown parameters
λ Eigenvalue
ψ Eigenvector
S Sensitivity matrix
Cεε Covariance matrix of experimental error
Crr Covariance matrix of prior parameters
β Confidence coefficient
H Estimator matrix
L Length of beam
b Width of beam
hi Depth of i-th element
EIi Flexural stiffness of i-th element
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1 Introduction

In recent years, inverse problems have been extensively treated in engineering for
a wide range of applications. The identification of unknown parameters always
requires a mathematical model of the structure under consideration. The two main
methods used for inverse analysis are the finite element method (FEM) and the
boundary element method (BEM), [Mellings and Aliabadi (1995)]. In this paper
the FEM, which is a well established procedure for structural analysis [Zienkiewicz
(1997); Atluri, Gallagher and Zienkiewicz (1983)], will be used for the parameter
identification of beam-column structures on two parameter elastic foundation.

The subject of beam-columns on elastic foundation occupies an important role
in the study of soil-structure interaction problems. Several authors studied the
free vibrations of Euler-Bernoulli beams on Winkler elastic foundation [Doyle and
Pavlovic (1982); Eisenberger, Yankelevsky and Adin (1985); Laura and Cortinez
(1987); Pavlovic and Wylie (1983); De Rosa (1989); Lai, Chen and Hsu (2008)],
considering partial foundation and non-uniform elastic foundation, too. Particular
foundation models were also studied [Kerr (1964); Fletcher and Hermann (1971);
Jones and Xenophontos (1977)]. For a more accurate representation of the char-
acteristics of many practical beams, the elastic foundation was idealized by two-
parameter model (Winkler-Pasternak), and the effects of shear deformation (Timo-
shenko beam) and rotatory inertia on the dynamic behaviour were evaluated [Wang
and Stephens (1977); Wang and Gagnon (1978); Filipich and Rosales (1988)]. In
the aforementioned studies, the direct problem was solved by determining the nat-
ural frequencies and modes of vibration in terms of the system parameters.

In order to ensure high reliability of the structures, their actual behaviour has to be
accurately predicted. The attaining of the actual behavioural predictions of struc-
tures depends on the correctness of all the parameters affecting the structural re-
sponse. Generally, systems do not have well-defined properties because they man-
ifest a statistical nature. Therefore, it is necessary to gain as many details about
the response as possible in order to treat engineering problems. The treatment of
structural systems with statistical properties has been presented in a general form
including correlation between variables, too.

Theoretical bases of identification techniques based on the sensitivity analysis can
be found in [Eykhoff (1974); Collins and Thomson (1969); Berman and Flan-
nelly (1971); Baruch and Bar Itzhach (1978); Baruch (1984); Adelman and Haftka
(1986); Wang, Huang and Zhang (1993)]. The theory developed is applicable to
any problem leading to an eigenvalue equation. Referring to the aim of this paper,
sensitivity theory is a mathematical field that has its predominant use in investigat-
ing the change in the statistical properties of vibrating structural system behaviour
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due to parameter variations. Sensitivity of the physical property of a dynamic sys-
tem to variations of different parameters can be determined by estimating the cor-
responding partial derivatives at some fixed combinations of the parameters them-
selves. More recently, there has been strong interest in promoting systematic struc-
tural optimisation as a useful tool for the practicing structural engineering of large
problems [Araùjo, Mota Soares and Moreira de Freitas (1996); Frederiksen (1998);
Hongxing, Sol and de Wilde (2000); Araùjo, Mota Soares, Moreira de Freitas, Ped-
ersen and Herskovits (2000)]. Considerable effort has been devoted to the general
problem of structural parameters identification. In the past three decades, statis-
tical identification method, which considers the parameters as stochastic variables
and provides the assessment from dynamic response, has been extensively used
[Hasselman and Hart (1972); Hart (1973); Collins, Hart, Hasselman and Kennedy
(1974); Hart and Torkamani (1974); Hart and Yao (1977); Torkamani and Ahmadi
(1988) - a, b, c].

The method of Bayesian estimation has been used for system identification in the
field of automatic control, too. It should be noted that since the early 1970s, inves-
tigations involving statistical properties of vibrating structural systems have been
performed. A few earlier papers [Hasselman and Hart (1972); Hart (1973); Collins,
Hart, Hasselman and Kennedy (1974); Hart and Torkamani (1974)] illustrate very
clearly the principle and the technique of the Bayesian sensitivity analysis through
its application to simple systems. More recently, Bayesian identification tech-
niques have been applied to more complex estimation problems [Lai and Ip (2006);
Daghia, de Miranda, Ubertini and Viola (2007)]. In general, both systematic and
random errors are present in the identified parameters. A measure of the precision
of the estimated values can be provided by the variance matrix of the estimated
parameters.

In dealing with an identification procedure, a particular mention has to concern the
line of research involving the dynamic behaviour of systems and the damage de-
tection in structures by modal vibration characterization. To this end, it is worth
noting that identification procedures to improve a finite element model using ex-
perimental modal data are presented in [Antonacci, Capecchi, Silvano and Vestroni
(1992); Wu and Li (2004)]. Experimental structural vibration data can be used to
identify unknown loads applied to a structure [Huang and Shih (2007)] as well as
structural damping, stiffness coefficients and restoring forces [Liu (2008) – a, b].
The problem of modelling for parameters identification in distributed structures is
worked out in [Baruh and Boka (1992); Baruh and Meirovitch (1985)]. Identifica-
tion procedures to study steel structures using experimental modal data are reported
in [Morassi and Rovere (1997); Kosmatka and Ricles (1999); Bicanic and Chen
(1997); Capecchi and Vestroni (1999); Rytter, Krawczuk and Kirkegaard (2000)].
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These techniques can be employed to evaluate the real structural behaviour. More-
over, both the location and the extent of structural damage can be correctly deter-
mined using only a limited number of natural frequencies.

Although researchers have focused on the identification of structural parameters,
to the authors’ knowledge no-one has dealt with the identification of geometri-
cal, physical and mechanical parameters of Timoshenko beam structures on two
parameter elastic foundation. So, the aim of the present work is to formulate an
appropriate FE model for the identification of physical and mechanical parameters
of beam-column structures resting on two-parameter elastic foundation (Winkler
and Pasternak). The identification procedure incorporates a more accurate model
with respect the ones employed in the above mentioned papers. The effects of
axial force and rotatory inertia are also included. It should be noted that an Euler-
Bernoulli beam element resting on one-parameter foundation (Winkler model) and
consisting of two nodes, each having two degrees of freedom of transverse dis-
placement and bending rotation, was studied in [Viola and Hasan (1996); Hasan,
Ricci and Viola (1998); Viola, Ricci and Nobile (1999)] to identify restraint condi-
tions. In this paper, the equations of motion are obtained by Hamilton’s principle.
In the iterative algorithm an estimator matrix depending on the particular identifi-
cation method adopted is introduced. It depends on the sensitivity matrix, the diag-
onal covariance matrix of errors on the measured data and the diagonal covariance
matrix of initial parameters. The introduction of a coefficient for accelerating the
convergence improves the identification technique and can be defined as improved
statistical method [Torkamani and Ahmadi (1988) - a, b, c].

A numerical example is presented, where the sensitivity matrix are calculated using
the first three natural frequencies of the structure.

As far as the numerical identification procedure is concerned, some further papers
should be mentioned. They deal with problems regarding the parameter estimation
from measured displacements of crack edges in isotropic or orthotropic materi-
als [Hasan, Piva and Viola (1998); Federici, Piva and Viola (1999)] or structures
[Zhang, He, Xiao and Ojalvo (1993); Salane and Baldwin (1990)], which can be
investigated by means of the statistical numerical approach under consideration.

This paper is arranged into six sections and three appendices. Section 1 covers
the state of the art, that is the introduction to the problem. Section 2 reports the
Timoshenko beam equations, namely the equilibrium, congruence, constitutive and
fundamental equations for the static case. Section 3 deals with the finite element
formulation where various matrices of the system under consideration are assessed.
The identification method is illustrated in Section 4. In Section 5, an illustrative
example is worked out and numerical results are graphically shown. Finally, in
section 6 some conclusions are drawn.
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The Appendices of the paper report, in extended notation, the relationships involved
in the matrices considered in the eigenvalue problem.

2 Timoshenko beam equations for static case

Consider a plane prismatic beam of length L. The structure is made of linear-elastic,
homogeneous and isotropic material. Denote E and G the Young’s modulus of
elasticity and the shear modulus, respectively, and by ρ the mass density. Let Oxyz
be a cartesian coordinate system in which the origin O is located at the centroid
of the left end cross-section of the beam, the x-axis coincides with the geometric
axis, the y and z axes coincide with the principal axes of the cross-section. The
cross sectional area and the moment of inertia with respect to the neutral axis are
functions of x and can be denoted by A(x) and I(x), respectively. Consequently, the
flexural rigidity EI(x) and mass per unit length ρA(x) are variable along the x-axis.

The plane and straight beam in Fig. 1, restrained in an arbitrary way at its ends, is
supposed to be in equilibrium under a general load system. The y and z components
of external forces per unit length are denoted by q = q(x) and p = p(x), respectively,
and the external moments per unit length by m = m(x). 4

components of strain through the strain-displacement 
relations. The deformation of the beam is completely 
defined by the strain components which are the 
longitudinal strain ε(x), the shearing strain γ(x) and the 
curvature χ(x).  
The strain-displacement relations can be obtained by the 
application of the principle of virtual forces. The external 
virtual work δWe is 

( )
0

d
l

eW pu qv m xδ φ= + +∫ ,                                                (2) 

the internal virtual work is 

( )
0

d
l

iW N V M xδ ε γ χ= + +∫                                               (3) 

Combining eqs. (1) and (2) and  integrating by parts, the 
condition for compatibility δWe=δWi gives 
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for any kinematic boundary conditions. 
When the beam is made of linear-elastic, homogeneous 
and isotropic material, the constitutive equations are: 
N= EAε,   V=GΛγ,  M=EIχ                          (6) 
where Λ=A/κ, with κ being  the shear coefficient 
depending on the geometry of the cross-section. 
Combining eqs. (1), (5) and (6), the system of three 
ordinary differential equations of second order can be 
obtained  
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It should be noted that eqs. (8), (9) are coupled through 
the variables v and φ. 

3 Finite element formulation 

The beam column is partitioned into a finite number of 
elements. For the typical element shown in Fig. 1, the 
strain energy including the effects of the two-parameter 
foundation,  shear deformation and end springs  is 

Figure 1:  Typical column finite element 
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where x is the local coordinate along the geometrical axis, 
k is the Winkler foundation modulus, kP is the shear 
foundation modulus, Ki (i=1,2) is the linear end spring 
modulus and γi (i=1,2) is the rotational end spring 
modulus. Note that the effect of end springs is 
incorporated in order to identify end constraints. 
The work done by the compressive axial force is 
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The Kinetic energy of the beam element including the 
rotatory inertia effect is given by 
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where ρ is the mass density of the beam material and t is 
the time. 
The representation of displacement v and rotation φ is 
performed by means of algebraic shape functions that 
exactly satisfy the homogeneous form of the static 
equations (8) and (9). 
Thus, displacement v and rotation φ can be expressed as 

( ) T
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( ) T

ex φφ = N q                                                            (14) 

where Nv and Nφ are vectors of interpolation functions of 
displacement v(x) and rotation φ(x), respectively, and qe is 
the nodal displacement vector. 
The shape functions for displacement are given by the 
following: 
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Figure 1: Typical column finite element

At some point on the beam’s axis, a normal force N = N(x), a shearing stress
V = V (x) and bending moment M = M(x) are considered to act on the left side of
an element dx. On the opposite side where the location is x+dx from the origin the
stress resultants acquire incremental changes of dN, dV and dM in the interval dx.
The equilibrium conditions on stress resultants are

dN
dx

+ p = 0,
dV
dx

+q = 0,
dM
dx

+m = V (1)
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Axial displacement u = u(x), transverse displacement v = v(x) and rotation of the
cross-section φ = φ(x) are independent variables that allow us to determine the
components of strain through the strain-displacement relations. The deformation of
the beam is completely defined by the strain components which are the longitudinal
strain ε(x), the shearing strain γ(x) and the curvature χ(x).
The strain-displacement relations can be obtained by the application of the principle
of virtual forces. The external virtual work δWe is

δWe =
l∫

0

(pu+qv+mφ)dx, (2)

the internal virtual work is

δWi =
l∫

0

(Nε +V γ +Mχ)dx (3)

Combining eqs. (1) and (2) and integrating by parts, the condition for compatibility
δWe = δWi gives

l∫
0

[
N
(

du
dx
− ε

)
+ V

(
dv
dx

+φ − γ

)
+ M

(
dφ

dx
−χ

)]
dx = 0 (4)

from which it follows that

ε =
du
dx

, γ =
dv
dx

+φ , χ =
dφ

dx
(5)

for any kinematic boundary conditions.

When the beam is made of linear-elastic, homogeneous and isotropic material, the
constitutive equations are:

N = EAε, V = GΛγ, M = EIχ (6)

where Λ = A/κ , with κ being the shear coefficient depending on the geometry of
the cross-section.

Combining eqs. (1), (5) and (6), the system of three ordinary differential equations
of second order can be obtained

d
dx

(
EA

du
dx

)
+ p(x) = 0 (7)
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d
dx

[
GΛ

(
dv
dx

+φ

)]
+ q(x) = 0 (8)

d
dx

(
EI

dφ

dx

)
+ m(x) = GΛ

(
dv
dx

+φ

)
(9)

It should be noted that eqs. (8), (9) are coupled through the variables v and φ .

3 Finite element formulation

The beam column is partitioned into a finite number of elements. For the typical el-
ement shown in Fig. 1, the strain energy including the effects of the two-parameter
foundation, shear deformation and end springs is

Φe =
1
2

l∫
0

EI
(

∂φ

∂x

)2

dx+
1
2

l∫
0

GΛ

(
∂v
∂x

+φ

)2

dx

+
1
2

l∫
0

kv2dx+
1
2

l∫
0

kP

(
∂v
∂x

)2

dx+
1
2

K1v(x, t)2
x=0

+
1
2

γ1 φ (x, t)2
x=0 +

1
2

K2v(x, t)2
x=l +

1
2

γ2 φ (x, t)2
x=l (10)

where x is the local coordinate along the geometrical axis, k is the Winkler founda-
tion modulus, kP is the shear foundation modulus, Ki (i=1,2) is the linear end spring
modulus and γi (i=1,2) is the rotational end spring modulus. Note that the effect of
end springs is incorporated in order to identify end constraints.

The work done by the compressive axial force is

WPe =−1
2

l∫
0

P
(

∂v
∂x

)2

dx (11)

The Kinetic energy of the beam element including the rotatory inertia effect is given
by

ECe =
1
2

l∫
0

ρA
(

∂v
∂ t

)2

dx+
1
2

l∫
0

ρI
(

∂φ

∂ t

)2

dx =
1
2

l∫
0

ρAv̇2dx+
1
2

l∫
0

ρIφ̇
2dx (12)

where ρ is the mass density of the beam material and t is the time.

The representation of displacement v and rotation φ is performed by means of al-
gebraic shape functions that exactly satisfy the homogeneous form of the static
equations (8) and (9).
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Thus, displacement v and rotation φ can be expressed as

v(x) = NT
v qe (13)

and

φ (x) = NT
φ qe (14)

where Nv and Nφ are vectors of interpolation functions of displacement v(x) and
rotation φ(x), respectively, and qe is the nodal displacement vector.

The shape functions for displacement are given by the following:

Nv1 =
[

1−3
x2

l2 +2
x3

l3 +
(

1− x
l

)
Ω

]
1

1+Ω

Nv2 =
[
−x+2

x2

l
− x3

l2 −
(

x− x2

l

)
Ω

2

]
1

1+Ω

Nv3 =
[

3
x2

l2 −2
x3

l3 +
x
l
Ω

]
1

1+Ω

Nv4 =
[

x2

l
− x3

l2 +
(

x− x2

l

)
Ω

2

]
1

1+Ω

(15)

while the shape functions for rotation are:

Nφ1 =
6
l2

(
−x+

x2

l

)
1

1+Ω

Nφ2 =
[
−1+4

x
l
−3

x2

l2 −
(

1− x
l

)
Ω

]
1

1+Ω

Nφ3 =
6
l2

(
+x− x2

l

)
1

1+Ω

Nφ4 =
[

2
x
l
−3

x2

l2 −
x
l
Ω

]
1

1+Ω

(16)

where

Ω =
12EI
GΛl2 (17)

is the ratio of the beam flexural stiffness to the shear stiffness.

The bending curvature χ and shear strain γ are expressed as

χ =
∂φ

∂x
= Bbqe (18)
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γ =
∂v
∂x

+φ = Bsqe (19)

where

Bb =
∂

∂x
Nφ (20)

Bs =
∂

∂x
Nv +Nφ = Bv +Nφ (21)

Substituting eqs. (18)-(21) into eqs. (10)-(12) gives

Φe =
1
2

qT
e kebqe +

1
2

qT
e kesqe +

1
2

qT
e keW qe +

1
2

qT
e kePqe +

1
2

qT
e ke1qe +

1
2

qT
e ke2qe

(22)

ECe =
1
2

q̇T
e mevq̇e +

1
2

q̇T
e meφ q̇e (23)

WPe =−1
2

qT
e kegqe (24)

where

keb =
l∫

0

BT
b EIBbdx (25)

is the flexural stiffness matrix,

kes =
l∫

0

BT
s GΛBsdx (26)

is the shear stiffness matrix.

keW =
l∫

0

NT
v kNvdx (27)

is the stiffness matrix due to Winkler foundation,

keP =
l∫

0

BT
v kpBvdx (28)

is the stiffness matrix due to shear foundation,

ke1 = K1
(
NT

v Nv
)

x=0 + γ1
(
NT

φ Nφ

)
x=0

(29)
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is the stiffness matrix due to left end springs,

ke2 = K2
(
NT

v Nv
)

x=l + γ2
(
NT

φ Nφ

)
x=l

(30)

is the stiffness matrix due to right end springs,

keg =
l∫

0

BT
v PBvdx (31)

is the geometric stiffness matrix,

mev =
l∫

0

ρANvNT
v dx (32)

is the consistent mass matrix for translational inertia,

meφ =
l∫

0

ρINφ NT
φ dx (33)

is the consistent mass matrix for rotatory inertia, and the superposed dot denotes
differentiation with respect to time t.

The stiffness matrix ke and the consistent mass matrix me for the beam element can
be obtained as

ke = keb +kes +keW +keP +ke1 +ke2−keg (34)

me = mev +meφ (35)

Matrices (34)-(35) are listed in extensive notation in Appendix A.

Inserting the total dynamic potential energy

EPT = ∑
e

(Φe +ECe−WPe) (36)

into Hamilton’s principle leads to the governing matrix equation for free vibrations
of the Timoshenko beam-column on the two-parameter elastic foundation as

Kq+Mq̈ = 0 (37)

where q is the global displacement vector and

K =
n

∑
i=1

(Keb +Kes +KeW +KeP +Ke1 +Ke2−Keg) (38)
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is the global stiffness matrix,

M =
n

∑
i=1

(
Mev +Meφ

)
(39)

is the global consistent mass matrix.

The global stiffness matrix can be expressed as

K = diag(ααα, βββ , . . . , βββ , ξξξ ) (40)

where matrices ααα , βββ , ξξξ are expressed as

ααα =


a′ b c d
b e′ f g
c f 2a 0
d g 0 2e

 (41)

βββ =


2a 0 c d
0 2e f g
c f 2a 0
d g 0 2e

 (42)

ξξξ =


2a 0 c d
0 2e f g
c f a′′ h
d g h e′′

 (43)

The explicit expressions for the respective element matrices are listed in appendix
B.

The global consistent mass matrix can be expressed as

M = diag(αααm, βββ m, . . . , βββ m, ξξξ m) (44)

where

αααm =


A B C D
B E F G
C F 2A 0
D G 0 2E

 (45)

βββ m =


2A 0 C D
0 2E F G
C F 2A 0
D G 0 2E

 (46)
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ξξξ m =


2A 0 C D
0 2E F G
C F A H
D G H E

 (47)

The explicit expressions for the respective element matrices are listed in appendix
C.

4 The identification method

Denote by

r = (r1 r2 . . . rm)T (48)

the vector of unknown parameters ri (i=1, 2, ... m) to be identified, e.g. geometric
or structural parameters. Mass and stiffness matrices in eq. (49) are functions of
these parameters of the system and therefore the eigenvalues and eigenvectors are
implicit functions of these same parameters. Eq. (37) can be written as

[K−λi(r)M]ψψψ i(r) = 0 (49)

where λi(r), ψψψ i(r) are the eigenvalues and the eigenvectors, respectively.

The functional relationship between the modal characteristics and the parameters
can be expressed in terms of a Taylor’s series expansion{

λλλ (r)
ψψψ(r)

}
=
{

λλλ (ra)
ψψψ(ra)

}
+S(r− ra) (50)

where

ra = (r1a r2a . . . rma)T (51)

is the vector of prior estimates of parameters, λλλ (ra) and ψψψ(ra) are are the vectors
of eigenvalues and eigenvectors when r = ra ,

S =
∣∣∣∣ ∂λλλ/∂r
∂ψψψ/∂r

∣∣∣∣ (52)

is the sensitivity matrix. The partial derivatives of λλλ (ra) e ψψψ(ra) with respect to r
are

∂λi

∂ r j
= ψψψ

T
i

(
∂K
∂ r j
−λi

∂M
∂ r j

)
ψψψ i (53)
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∂ψψψ i

∂ r j
=− [K−λiM]−1

ψψψ
T
i

(
∂K
∂ r j
− ∂λi

∂ r j
M−λi

∂M
∂ r j

)
ψψψ i (54)

Substituting λi = ω2
i into eqs. (53) and (54) gives

∂ωi

∂ r j
=

1
2ωi

ψψψ
T
i

(
∂K
∂ r j
−ω

2
i

∂M
∂ r j

)
ψψψ i (55)

∂ψψψ i

∂ r j
=−

[
K−ω

2
i M
]−1

ψψψ
T
i

(
∂K
∂ r j
−2ωi

∂ωi

∂ r j
M−ω

2
i

∂M
∂ r j

)
ψψψ i (56)

The iterative algorithm for the identification method can be written as

r̂ = r+H
{

∆λλλ

∆ψψψ

}
=
(
r̂1 r̂2 .......... r̂m

)T (57)

where r is the vector of estimated parameters at the i-th iteration, r̂ the same vector
at the (i+1)-th iteration,

H = β
−1CrrST (β−1SCrrST +Cεε)−1 (58)

is an estimator matrix, with Cεε = diag(b1 . . .bn) the diagonal covariance matrix of
errors on the measured data, Crr = diag(a1 . . .an) the diagonal covariance matrix of
the priori parameters and β [Berman and Flannelly (1971); Baruch and Bar (1978)]
a confidence coefficient, and{

∆λλλ

∆ψψψ

}
=
{

λλλ s

ψψψs

}
−
{

λλλ (r)
ψψψ(r)

}
(59)

where λλλ s and ψψψs are vectors of experimentally measured values, λλλ (r) and ψψψ(r) are
vectors of eigenvalues and eigenvectors, respectively, obtained from solution to eq.
(49) with r = ra.

Convergence is evaluated at the end of each iteration prescribing confidence bounds,
as a rule 95%, to λλλ (r) and ψψψ(r).

If the number of measured eigenvalues and independent elements of eigenvectors
is equal to the number of parameters

H = S−1 (60)

Usually, the number of parameters exceeds the number of measured eigenvalues
and eigenvectors (under-determined system). The solution of the problem depends
on the prior estimates, the covariance matrices Cεε and Crr, and the coefficient β .
The structural analyst establishes the prior parameter values, the covariance matrix
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of the priori parameters and the confidence coefficient; the structural experimental-
ist establishes the covariance matrix of errors on the measured data.

It should be noted that, as appears from equation (57), during the iteration process
the estimator matrix (58) relates the revised parameters to the prior ones. Moreover,
comparison of the vectors for the initial estimates and for the revised parameters
will indicate which of the properties are found more accurately. According to the
Bayesian point of view, different tests must be repeated on series of tests in order
to obtain statistically relevant results.

 7

where r is the vector of estimated parameters at the i-th 
iteration, r)  the same vector at the (i+1)-th iteration, 

H = 1 T 1 T 1( + )rr rr εεβ β− − −C S SC S C                               (58) 

is an estimator matrix, with Cεε=diag(b1…bn) the diagonal  
covariance matrix of errors on the measured data, 
Crr=diag(a1…an) the diagonal covariance matrix of the 
priori parameters and β [Berman and Flannelly (1971); 
Baruch and Bar (1978)] a confidence coefficient, and 

( )
( )

s

s

⎧ ⎫⎧ ⎫⎧ ⎫Δ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬Δ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭
                               (59) 

where λs and ψs are vectors of experimentally measured 
values, λ(r) and ψ(r) are vectors of eigenvalues and 
eigenvectors, respectively, obtained from solution to eq. 
(49) with r = ra. 
Convergence is evaluated at the end of each iteration 
prescribing confidence bounds, as a rule 95%, to λ(r) and 
ψ(r).  
If the number of measured eigenvalues and independent 
elements of eigenvectors is equal to the number of 
parameters 
H = S-1                                                                           (60) 
Usually, the number of parameters exceeds the number of 
measured eigenvalues and eigenvectors (under-
determined system). The solution of the problem depends 
on the prior estimates, the covariance matrices Cεε and Crr, 
and the coefficient β. The structural analyst establishes 
the prior parameter values, the covariance matrix of the 
priori parameters and the confidence coefficient; the 
structural experimentalist establishes the covariance 
matrix of errors on the measured data. 
It should be noted that, as appears from equation (57), 
during the iteration process the estimator matrix (58) 
relates the revised parameters to the prior ones. Moreover, 
comparison of the vectors for the initial estimates and for 
the revised parameters will indicate which of the 
properties are found more accurately. According to the 
Bayesian point of view, different tests must be repeated 
on series of tests in order to obtain statistically relevant 
results. 

Figure 2:  Timoshenko beam-column 

Table 1:  Geometric and mechanical characteristics 

lenght L 7.5 m 

width b 0.2 m 

Depth of element  h1 0.30 m 

Depth of  element  h2 0.40 m 

Depth of  element  h3 0.50 m 

Young’s modulus E 31000000 KN·m-2

flexural  stiffness of  element  EI1 13950 KN·m2 

flexural stiffness of  element  EI2 33067 KN·m2 

flexural stiffness of  element  EI3 64583 KN·m2 

Mass density ρ 25 KN·m-3 

Winkler foundation modulus k 21.7 KN·m-2 

Pasternak foundation modulus kp 25 KN·m-2 

Linear end spring modulus K1=K2=K 300 KN·m-1 

Rotational end spring modulus γ1=γ2=γ 250 KN·m 

Shear modulus G 3/8E 

Shear coefficient κ 1.5 

Axial force P 50 KN 

 

5 Illustrative example 

Consider a Timoshenko beam-column with end springs 
and discontinuity in thickness, supported on an elastic 
foundation as depicted in Fig. 2.  The elastic foundation is 
idealized as constant two-parameter model characterized 
by two moduli k and kP. 
The geometric and mechanical properties of the beam-
column are illustrated in Tab. 1. 
The previously illustrated iterative method of 
identification is now applied to identify the nine 
parameters collected in the vector 

( )
( )

1 1 2 3

1 2 3 4 5 6 7 8 9

pK k k EI EI EI G P

r r r r r r r r r

γ= =r
                      (61) 

In the present identification procedure, only the first three 
natural frequencies and modal shapes are required to 
obtain an estimate. 
To simulate the experimental data, the measured natural 
frequencies are obtained from the eigenvalues obtained by 
solving the characteristic equation with the “actual” 
parameters as in Tab. 1.   

( )
( )

1 2 3 4 5 6 7 8 9

300 250 21.7 25 13950 33067 64583 11625000 50

r r r r r r r r r= =

=

r

                                                                                      (62) 
The analysis is performed by using ten finite elements for 
each beam element of constant depth. 
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Figure 2: Timoshenko beam-column

Table 1: Geometric and mechanical characteristics
lenght L 7.5 m
width b 0.2 m

Depth of element 1 h1 0.30 m
Depth of element 2 h2 0.40 m
Depth of element 3 h3 0.50 m
Young’s modulus E 31000000 KN·m−2

flexural stiffness of element 1 EI1 13950 KN·m2

flexural stiffness of element 2 EI2 33067 KN·m2

flexural stiffness of element 3 EI3 64583 KN·m2

Mass density ρ 25 KN·m−3

Winkler foundation modulus k 21.7 KN·m−2

Pasternak foundation modulus kp 25 KN·m−2

Linear end spring modulus K1=K2=K 300 KN·m−1

Rotational end spring modulus γ1 = γ2 = γ 250 KN·m
Shear modulus G 3/8E

Shear coefficient κ 1.5
Axial force P 50 KN
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5 Illustrative example

Consider a Timoshenko beam-column with end springs and discontinuity in thick-
ness, supported on an elastic foundation as depicted in Fig. 2. The elastic founda-
tion is idealized as constant two-parameter model characterized by two moduli k
and kP.

The geometric and mechanical properties of the beam-column are illustrated in Tab.
1.

The previously illustrated iterative method of identification is now applied to iden-
tify the nine parameters collected in the vector

r =
(
K γ1 k kp EI1 EI2 EI3 G P

)
=
(
r1 r2 r3 r4 r5 r6 r7 r8 r9

)
(61)

In the present identification procedure, only the first three natural frequencies and
modal shapes are required to obtain an estimate.

To simulate the experimental data, the measured natural frequencies are obtained
from the eigenvalues obtained by solving the characteristic equation with the “ac-
tual” parameters as in Tab. 1.

r =
(
r1 r2 r3 r4 r5 r6 r7 r8 r9

)
=
(
300 250 21.7 25 13950 33067 64583 11625000 50

)
(62)

The analysis is performed by using ten finite elements for each beam element of
constant depth.

The coefficients of variation in the diagonal covariance matrix of errors in measured
data are chosen as: a1=a2=a3=0.10.

The priori coefficients of variation are chosen as: b1=0.0037, b2=0.0155, b3=0.0093,
b4=0.0245, b5=0.0065, b6=0.0042, b7=0.0145,b8=0.04, b9=0.019.

Note that the choice of these coefficients is based on the experience of the analyst
and convergence is based on the prescribed confidence bound equal to 99% of the
experimentally measured frequencies.

Assuming the initial parameters 15% greater than the exact values and β=0.001, the
iterative procedure allows the determination of the final estimates as listed in Tab.
2. Note that all the parameters are well estimated, with errors varying from 0.05%
to 2.84%. The convergence for this case has been obtained after 11 iterations.

Figg. 3-11 show the influence of the coefficient β on the convergence velocity of
the identified parameters.
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Figure 3: Convergence of linear end
spring modulus
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Figure 4: Convergence of rotational
end spring modulus
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Figure 5: Convergence of Winkler
foundation modulus
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Figure 6: Convergence of Pasternak
foundation modulus
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Figure 7: Convergence of bending
stiffness for the first element
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Figure 8: Convergence of bending
stiffness for the second element

Another set of initial parameters was considered with the same coefficients of
variance-covariance matrices and coefficient β . Underestimated initial parameters
were selected in this case. It is important to note that also in this case the conver-
gence was good for all parameters with differences between exact and identified
values ranging between 0.16% and 3.36% . The number of iterations required was
the same as in the previous case (see Tab. 3).

From these two cases we can conclude that there is a problem symmetry when the
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Figure 9: Convergence of bending stiffness for the third element
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Figure 10: Convergence of shear mod-
ulus
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Figure 11: Convergence of axial force

initial values of the estimated parameters are all underestimated or overestimated.

Table 2: Final estimates and error (first set of initial parameters)

parameter K γ k kp EI1

Actual values 300 250 21.7 25 13950
Final estimates 300.139 251.025 21.583 25.710 14146.499

Final error 0.05% 0.41% 0.54% 2.84% 1.41%
parameter EI2 EI3 G P

Actual values 33067 64583 11625000 -50
Final estimates 33648.966 63848.796 11692426.403 -50.316

Final error 1.76% 1.14% 0.58% 0.63%

6 Conclusions and remarks

A method for the statistical identification of a beam-column resting on two-parameter
foundation has been proposed. It uses experimental response measurements of nat-
ural frequencies to improve some parameters of a finite element model. The finite
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Table 3: Final estimates and error (second set of initial parameters)

parameter K γ k kp EI1

Actual values 300 250 21.7 25 13950
Final estimates 299.503 248.948 21.853 24.159 13728.14

Final error 0.16% 0.42% 0.70% 3.36% 1.59%
parameter EI2 EI3 G P

Actual values 33067 64583 11625000 -50
Final estimates 32443.841 65187.764 11540230.02 -49.66

Final error 1.88% 0.94% 0.73% 0.68%

element model includes end spring effects in order to detect end constraints. In
the present study, the proposed method basically relies on three items, namely an
accurate mathematical model of the structure, a set of reliable modal model data
and a parameter estimation method based on the Bayesian sensitivity analysis.

The introduction of a confidence coefficient accelerating the convergence charac-
terizes the identification technique which can be defined as an improved statistical
method.

A numerical example is presented, where the sensitivity matrix is calculated using
the first three natural frequencies. This worked-out example is based on pseudo-
experimentally determined data.

In the statistical Bayesian estimation, priority is given to assessment of uncertain-
ties. The method takes into account both the confidence associated with mathemat-
ical modelling and parameter estimates. The parameters that have to be estimated
are considered as stochastic values of fixed probability distribution. Incorporat-
ing the uncertainties into the initial estimates, the scheme will lead to improved
estimate values for the parameters. As in each inverse problems, the parameters
in the mathematical model have to be adjusted repeatedly until its analytical re-
sponse match satisfactorily with those associated with the physical structure. This
is accomplished through two weighting matrices containing the confidences on the
measured natural frequencies and on the initial estimates.

It is worthy of remark to point out that the present study has the innovative aspect
of contemplating identification of all the parameters affecting the dynamic free vi-
bration of a structure, that is to say the parameters describing its geometry, density,
boundary conditions and elastic constants.

It is well known that investigations and monitoring of structures are essential tools
to improve the knowledge of their structural behaviour. As far as the practica-
bility of a procedure for parameter identification is concerned, some noteworthy
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points are related to the importance of structures under investigation. Firstly, mea-
surements gathered by means of an automatic monitoring system installed in the
structure can make the refinement of the mathematical model possible. Secondly,
assumptions about the law of deformation of materials and hypotheses involving
various boundary conditions have to be made. Thirdly, a mathematical reference
model for the numerical simulation of the structures is always required. Usually,
such a model is based on the finite element method.

A number of researchers have presented methods to improve the analytical model
of structural systems and several non-destructive evaluations techniques have been
proposed especially for the determination of material properties of damaged and
non-damaged structures.

On the upshot, the identification techniques as useful tools in the structural analysis
process are gaining more and more popularity. However, it should be mentioned
that some aspects involving the inverse problems of structural systems are not com-
pletely resolved, such as the uniqueness of the results [Udwadia, Sharma and Shah
(1978)], the incompleteness of the measured data [Berman and Flannelly (1971)],
the ill-conditioned equations arising in structural system identification [Hasan and
Viola (1997)], among others. In the latter paper, the singular value decomposi-
tion method is used to investigate the ill-conditioning of physical and modal ideni-
fication methods and the quantities which make the identification problem well-
conditioned are pointed out.
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Appendix A Stiffness and mass matrices

keb =
EI

(1+Ω)2 l3


12 −6l −12 −6l
−6l

(
4+2Ω+Ω2

)
l2 6l

(
2−2Ω−Ω2

)
l2

−12 6l 12 6l
−6l

(
2−2Ω−Ω2

)
l2 6l

(
4+2Ω+Ω2

)
l2

 (A1)
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kes =
GΛΩ2

4l (1+Ω)2


4 −2l −4 −2l
−2l l2 −2l l2

−4 −2l 4 2l
−2l l2 2l l2

 (A2)

ke f =
kl

(1+Ω)2
13
35 + 7Ω

10 + Ω2

3 −
(

11
210 + 11Ω

120 + Ω2

24

)
l 9

70 + 3Ω

10 + Ω2

6

(
13
420 + 3Ω

40 + Ω2

24

)
l

−
(

11
210 + 11Ω

120 + Ω2

24

)
l

(
1

105 + 11Ω

60 + Ω2

120

)
l2 −

(
13

420 + 3Ω

40 + Ω2

24

)
l −

(
1

140 + Ω

60 + Ω2

120

)
l2

9
70 + 3Ω

10 + Ω2

6 −
(

13
420 + 3Ω

40 + Ω2

24

)
l 13

35 + 7Ω

10 + Ω2

3

(
11

210 + 11Ω

120 + Ω2

24

)
l(

13
420 + 3Ω

40 + Ω2

24

)
l −

(
1

140 + Ω

60 + Ω2

120

)
l2

(
11

210 + 11Ω

120 + Ω2

24

)
l

(
1

105 + 11Ω

60 + Ω2

120

)
l2


(A3)

keP =
kp

l (1+Ω)2 ·
6
5 +2Ω+Ω2 − 1

10 l −
(6

5 +2Ω+Ω2
)

− 1
10 l

− 1
10

(
2
15 −

Ω

6 + Ω2

12

)
l2 1

10 l
(
− 1

30 + Ω2

12

)
l2

−
(6

5 +2Ω+Ω2
) 1

10 l 6
5 +2Ω+Ω2 1

10 l

− 1
10

(
− 1

30 + Ω2

12

)
l2 1

10 l
(

2
15 −

Ω

6 + Ω2

12

)
l2


(A4)

keg =
P

l (1+Ω)2 ·
6
5 +2Ω+Ω2 − 1

10 l −
(6

5 +2Ω+Ω2
)

− 1
10 l

− 1
10

(
2
15 −

Ω

6 + Ω2

12

)
l2 1

10 l
(
− 1

30 + Ω2

12

)
l2

−
(6

5 +2Ω+Ω2
) 1

10 l 6
5 +2Ω+Ω2 1

10 l

− 1
10

(
− 1

30 + Ω2

12

)
l2 1

10 l
(

2
15 −

Ω

6 + Ω2

12

)
l2


(A5)
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mev =
ρAl
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35 + 7Ω

10 + Ω2

3 −
(

11
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l 9
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l −

(
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meϕ =
ρAl
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Appendix B Elements of the matrix K

a = 12θb +4θs +
(

13
35

+
7Ω

120
+

Ω2

24

)
θ f +

(
6
5

+2Ω+Ω
2
)

θp

−
(

6
5

+2Ω+Ω
2
)

θg (B1)
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11
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120
+
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)
θ f −
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(
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+
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where

θb =
1

(1+Ω)2
EI
l3 (B13)

θs =
1

(1+Ω)2
GΛ

4l
Ω

2 (B14)

θ f =
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(
ζ
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Appendix C Elements of the matrix M
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+
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(

9
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+
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6
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D =
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−
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2
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(
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+
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+
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]
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2
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(
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+
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+
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24

)
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]
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