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A meshfree poly-cell Galerkin (MPG) approach for
problems of elasticity and fracture

C. Zheng1, S. C. Wu2,3,4 X. H. Tang1 and J. H. Zhang1

Abstract: A novel meshfree poly-cell Galerkin method is developed for prob-
lems of elasticity and fracture. To improve accuracy, a poly-cell support is proposed
to ensure the alignment of shape function support and the integration domain. By
orthonormalizing basis functions, the improved moving least-square is formulated
soundly, in which frequent matrix inversions are avoided. The Nitsche’s method
is introduced to treat the essential boundary conditions. It is found that computed
solutions are more accurate than those obtained using the circle support used in
standard MLS. Furthermore, numerical results present the superconvergent prop-
erty, compared with the theoretical values in both displacement and energy norms.
In fracture analyses, the stress intensity factors can be evaluated independent of
J-integral path with better accuracy, and rather smooth stress field can be achieved,
even near to region of the crack tip. It is also found the present MPG works well
even for extremely distorted meshes.

Keywords: Meshfree; Poly-cell local support; Improved MLS; Superconvergence;
Fracture.

1 Introduction

The finite element method (FEM) [Zienkiewicz and Taylor (2000)] has been widely
applied to solve various type problems of engineering and science in the past sev-
eral decades. However, due to its strong reliance on the element mesh, there are
some inherent shortcomings in simulating such as problems of highly nonlinear,
large deformation and crack propagations with arbitrary paths [Belytschko, Lu and
Gu (1995)]. To tackle these problems, meshfree methods have been alternatively
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developed and significant progress has been achieved in recent years. They in-
clude the element-free Galerkin method (EFG) [Belytschko, Lu and Gu (1994)],
the reproducing kernel particle method (RKPM) [Liu, Jun and Zhang (1995)], the
meshless local Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998), Atluri,
Sladek, etc (2000)] and the point interpolation method (PIM) [Liu (2002), Wu, Liu,
Zhang and Zhang (2008), Cui, Liu, Li, Zhao, Nguyen and Sun (2008)], etc. As
a novel numerical technique typically independent of element meshes, meshfree
methods have also been used to solve fracture problems [Atluri and Shen (2002),
Sukumar, Moran and Belytschko (1998), Gu and Zhang (2008), Ching and Batra
(2001), Fleming, Chu, Moran, Belytschko (1997), Brighenti (2005)].

The background mesh is employed in conducting the EFG regardless of the ac-
tual geometrics and a regular mesh is preferred generally. Compared with FEM,
meshfree methods based on the background mesh have more difficulty in accu-
rate integration. This is mainly due to the boundary misalignment of integration
domains and shape function supports [Liu, Zhang, Wang, Zhong, Li, Han (2006)].

The stabilized nodal integration method is then presented, but the nodal volume is
not easy to evaluate [Bessel and Belytschko (1994)], especially for 3D problems of
complex geometries. To evaluate the volume of nodal support [Zhou, Wen, Zhang,
Zhang (2003)], The Voronoi diagrams are thereafter adopted, and other meshfree
methods based on the Voronoi diagrams are formulated [Atluri and Zhu (1998),
Braum and Sambridge (1995), Zheng, Zhang and Wu (2008)]. However, the gen-
eration of Voronoi diagram is actually very time-consuming and more expensive
than the Delaunay triangulation used in the standard FEM [Idelsohn, Onate, Calvo,
Facundo (2003), Idelsohn and Onate (2006)].

S.N. Atluri developed a type of true meshfree method [Atluri, S.N. and Zhu, T.L.
(1998); Atluri S.N. and Shen S.P. (2002)], which has been widely used in the prob-
lems of large deformation, metal forming, multi-scale, dynamic fracture, moving
boundary and phase change and etc. [Atluri, S.N (2004); Atluri, S. N., Han, Z. D.
and Rajendran, A. M. (2004); Atluri, S.N., Liu, H.T. and Han, Z.D. (2006); Atluri,
S.N., Liu, H.T and Han, Z.D. (2006); Han. Z. D. and Atluri, S. N. (2004); Han Z.
D., Rajendran, A. M and Atluri, S. N. (2005); Han ZD, Liu HT, Rajendran AM,
et al. (2006), Sladek J., Sladek V., Atluri, et al. (2004); Sladek J., Sladek V. , et
al. (2005)] In MLPG, local-Galerkin weak form in order to avoid the need for a
background mesh and integrations are performed on subdomains surrounding the
nodes[Atluri, S.N. and Shen, S. (2005)].

The present work introduces a novel Galerkin meshfree approach. In order to im-
prove the accuracy of numerical integration in Galerkin methods, a poly-cell local
support is introduced. This local support can make sure of the alignment of in-
tegration domains and shape functions supports, which will be detailed in Sec. 2.
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Moreover, in the standard moving least square (MLS) interpolation [Lu, Belytschko
and Gu (1994)], orthonormalized basis functions are used and a novel scheme of
obtaining the orthonormalized basis functions is presented. This type of MLS is
termed as the improved MLS, which avoids the frequent matrix inversion. This
good property permits one to construct interpolation functions with general nodes
even when the number of nodes is small or irregularly distributed.

For most of meshfree methods, the treatment of essential boundary conditions is not
as simple and trivial as the standard FEM, due to the absence of Kronecker delta
property of shape functions. The Lagrange multiplier method [Sonia and Antonio
(2004)] can impose the essential boundary conditions weakly, but it increases the
total number of unknowns and the resulted global stiffness is no longer positive def-
inite. Though the penalty method is widely used without increasing the dimensions
of discretized system equations, it is very probable to result in the ill-conditioned
system of equations owing to the too large scale parameter. In the present work, the
Nitsche’s method [Sonia and Antonio (2004)] is introduced to treat the essential
boundary conditions. It has a scale parameter as well, but not very large values
are required for the implementation. More important is that the global stiffness
obtained is symmetric and positive definite. This implies that the system equations
can be solved efficiently and performed using the well-developed code for FEM
with very little modification.

This paper is outlined as follows. Sec. 2 briefs the construction of poly-cell local
support domain. In Sec. 3, the improved MLS approximation is formulated in de-
tails based on the classical MLS scheme. Sec. 4 presents the procedure of Nitsche’s
method for the enforcement of essential boundary conditions, and then derives the
discretized system equations for elasticity problems. Sec. 5 conducts an intensive
study of elasticity and cracks to demonstrate the properties of the present MPG.
Finally, some conclusions are drawn in last Sec. 6.

2 2. Poly-cell support construction

In the construction of mesh-free trial function, each node possesses a domain that is
usually termed as “domain of influence” or “local support”. Generally, this type of
local support is a circular domain or rectangular domain centered by an interested
node [Atluri and Zhu (1998), Belytschko, Lu and Gu (1995)]. Furthermore, this
trial function support is not identical with the integration domain, which results
in extra computational difficulty and especially inaccurate domain integration. To
better discretize the problem domain and improve the numerical accuracy, a novel
poly-cell local support is proposed to replace the traditional local support.

In the poly-cell local domain, a background mesh is firstly generated that may cover
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the whole problem domain. The background mesh can be either Voronoi diagram
[Zheng, Zhang and Wu (2008)] or regular mesh, and the regular rectangular mesh
shown in Fig. 1a is preferred in this paper. For an arbitrary node, its host cell needs
to be found firstly, and then the local support domain can be obtained by extending
the size of host cell in four directions (x+, x−, y+, y−). The nodal support domain
so constructed is named the poly-cell local support of given node. The extending
distance in direction x+ can be sampled as

dx+
eI = necx (1)

where cx is the size of host cell in the x direction, ne is a constant integer (ne=2 in
this work). The extending distances in other directions are obtained in the similar
way.

After obtaining the local support, the weight function requires to be defined based
on this poly-cell local domain. Suppose a nodeI has a local support shown in Fig.
1b, then the weight function of node I is defined by

wI(x,y) = [ f (x)g(y)]α (2)

f (x) =

{ (x−xmin
I )(x−xmax

I )
(xI−xmin

I )(xI−xmax
I ) if xmin

I < x < xmax
I

0 else
(3)

g(y) =

{ (y−ymin
I )(y−ymax

I )
(yI−ymin

I )(yI−ymax
I ) if ymin

I < y < ymax
I

0 else
(4)

where α is a constant parameters larger than 1.0, which will be studied in Sec. 5.

Compared with the traditional circular and rectangular local support, the poly-cell
local support domain has at least two advantages:

(i) It guarantees the alignment of integration domain and support of the shape
functions, which can significantly improve the accuracy of numerical integra-
tion. Moreover, all the points in a certain integration domain possess the same
set of supporting nodes. If a “cell” is defined as an integration sub-domain,
and an “element” is defined as an area possessing the same set of supporting
nodes, then in MPG, each cell also possesses an “element”. This good prop-
erty makes the code for MPG have the very similar form as that of standard
FEM.

(ii) The evaluation of distance between integration point and field node is avoided,
and the computation order is always of order N2(N is the number of total field
nodes). Instead, neighboring cells always need to be found, which is also re-
quired in FEM to allocate the general stiffness matrix (If the band property is
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(a) Schematic of constructing poly-cell local support based on regular background mesh. 

(b) A sampling local support of interested node I. Note that this node may  

not be at the center of the support domain. 

(c) Illustration of the poly-cell support with intersecting the discontinuous line. 

Figure 1: Poly-cell local support construction based on regular background rectan-
gular mesh.
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(b) Standard MLS interpolation (c) improved MLS interpolation 

Fig. 2. A comparison of standard MLS and improved MLS interpolation Figure 2: A comparison of standard MLS and improved MLS interpolation

used to reduce the cost of memory). Thus the time cost in the computation
will be of order N after a simple program organization.

In fracture problems, there exists displacement discontinuity when the poly-cell in-
tersects a progressive crack. The way of dealing with discontinuity in MPG is sim-
ilar to other meshfree methods, and the “visible criteria” is utilized in the present
paper. As clearly illustrated in Fig. 1c, the existence of discontinuous line makes
some integral point invisible, at which the weight value of the interested node I is
0.0 when constructing the trial function and nonzero at those of visible point.

In addition, to improve the accuracy, many times of local refinement are usually
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(a) 4 regular nodes (b) 4 irregular nodes 

Figure 3: Nodes distributions for the standard patch test, 2×2 model of mesh is
adopted

Figure 4: A 2D cantilever beam subjected to parabolic traction on the right end

required especially close to the crack tip. This definitely results in too many support
nodes of an interested Gaussian point, which also needs too much time for the
construction of trial functions. In the present implementation, for the cells in the
mesh degeneration zone, their neighboring cells are divided into four parts by four
directions (x+, x−, y+, y−). The minimum size of the neighboring cells and host
cell is used as the extending distance cx in each part. This modification can sharply
reduce the time cost for constructing shape functions in fracture problems.

3 Improved moving least-square method

The MLS approximate scheme is now a commonly used alternative for construct-
ing shape functions in most of meshfree methods proposed so far. Two excellent
features make it more popular than other interpolant scheme: (1) the approximated
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Figure 5: Three discretized models of the cantilever beam by different nodal irreg-
ularities

field is continuous and smooth over the entire problem domain; and (2) it is capable
of producing an approximation in desired order of consistency and compatibility.
Unfortunately, the moment matrix inversion is always required, and the inverse of
this matrix does not exist sometimes when the number of nodes is small or the
nodes scatter collinearly in some cases. By orthonormalizing basis functions, an
improved MLS is formulated to overcome above inherent drawbacks.

3.1 Briefing the moving least-square

Consider a field u(x) defined in the 2D domain Ω with boundary ~A, which can be
approximated over the poly-cell local support in the following form

u(x)≈ uh(x) =
n

∑
i=1

ai(x)pi(x) = aT (x)p(x) (5)

where p(x) is a vector of basis functions built by the Pascal’s triangles, a(x)T ={a1(x),
a2(x),. . . , am(x)} is a vector of unknown parameters that depends on xT =[x, y], and
n is the number of nodes inside the local support. For two dimensions, basis func-
tion p(x) of order 1 and 2 is written respectively by

pT (x) =
{

p1(x) p2(x) p3(x)
}

=
{

1 x y
}

m = 3 (6)

pT (x) =
{

p1(x) p2(x) · · · p6(x)
}

=
{

1 x y xy x2 y2
}

m = 6 (7)

where m is the number of monomial terms.

Note that the coefficient ai(x) is an arbitrary function of interested node x, and m
is usually much smaller than n. To determine a(x), a quadratic functional I(x) is
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constructed using the approximated values of field function uh(x) and the nodal
parameters, ui=u(xi) as

I(x) =
n

∑
i=1

[
wi
(
aT (x)p(x)−ui

)2
]

(8)

in which wi is a weight function. The stationarity of Eq. (8) with respect to a(x)
leads to the following linear equation system:

a(x)= A−1(x)B(x)u (9)

where the moment matrix A and basis matrix B are expressed respectively

A(x)=
n

∑
i=1

wi(x)p(xi)pT (xi) (10)

B(x) =
[
w1(x)p(x1) w2(x)p(x2) · · · wn(x)p(xn)

]
(11)

u = (u1,u2, · · · ,un)T (12)

Substituting Eq. (9) back into Eq. (5) leads to

uh(x) =
n

∑
i=1

ϕiui = ΦΦΦ
T u (13)

and

ΦΦΦ
T (x) = pT (x)A−1(x)B(x) =

{
ϕ1(x) ϕ2(x) ... ϕn(x)

}
(14)

is the matrix of the usual MLS shape function.

The derivative of shape function Φ is given as

ΦΦΦ
T
,x(x) = pT

,x ·A−1 ·B+pT · (A−1),x ·B+pT ·A−1 ·B,x (15)

where a comma designates a partial derivative with respect to the indicated spatial
variable x.

It can be clearly seen that the inversion of moment matrix A have to be performed
frequently in both Eq. (14) and Eq. (15). Only the requirement of n»m is satisfied
can prevent the singularity of the weighted moment matrix A. Importantly, it is very
probable that the inversion of A does not exist especially for the case of arbitrarily
distributed nodes in the local circle support of interested node. On the other hand,
the frequent operation of matrix inversion usually results in the computationally
expensive cost. It is therefore, necessary to pursue some kind of special technique
to avoid the frequent inversion operation of moment matrix A in the presence of
higher order smoothness of the MLS shape functions.
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3.2 Improved moving least-square

An improved MLS approximation is then formulated by orthonormalizing the basis
functions p utilized in the conventional MLS [Lu, Belytschko and Gu (1994), Li
and Liu (2002)]. This scheme not only can ensure the existence of inversion of
coefficient matrix but extend our mind to connect different approximation scheme
used in different kinds of meshfree methods.

Firstly, define a symbol operator as below

( f (x),g(x))w =
n

∑
i=1

f (xi)g(xi)w(xi) (16)

where f and g can be arbitrary functions, n is the number of supporting nodes,
xidenotes coordinates of the node i, and wi(x) is a weight vector same to MLS.

3.2.1 Orthogonalizing vector p

The basis vector can be orthogonalized to avoid the frequent inversion of matrix
by the standard Schmitt orthogonal process. However, in order to obtain a simpler
form to program and implement, the basis functions are reorganized and the vector
p can be orthogonalized firstly as follows

s = {s1,s2, ...,sm}T = Vp (17)

where V is an orthogonalizing matrix with dimension of m×m. Assume Vi j is the
elementary of V in line i and column j, and then Vi j can be computed by

Vi j =


0 if (i < j)
1 if (i = j)

−
i−1
∑

k= j

(pi,sk)w
(sk,sk)w

Vk jif (i > j)
(i, j = 1,2, . . . ,m) (18)

The proof of Eq. (18) by Schmidt orthogonalizing formulas is given as below.

Proof
The standard Schmidt orthogonal operation is as follows:

s1 = p1 (19)

s2 = p2−
(p,

2s1)w

(s1,s1)w
× s1 (20)

. . .

si = pi−
i−1

∑
k=1

(p,
isk)w

(sk,sk)w
× sk (21)
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Substituting Eq. (17) into Eq. (21) yields

βi = pi−
i−1

∑
k=1

m

∑
j=1

(pi,sk)w

(sk,sk)w
×Vk js j (22)

in which si is computed with p1, p2, . . . , pi. Note that when j > k, Vk j=0, hence

si = pi−
i−1

∑
k=1

k

∑
j=1

(pi,sk)w

(sk,sk)w
×Vk j p j (23)

= pi−
i−1

∑
j=1

(
i−1

∑
k= j

(pi,sk)w

(sk,sk)w
×Vk j

)
p j (24)

Denote Eq. (24) in the matrix form and then Eq. (18) can be obtained.

3.2.2 Normalizing vector s

Normalizing the vector s yields

r(x) =
{

r1(x) r2(x) ... rm(x)
}T (25)

ri =
si√

(si,si)w
i = 1,2, ..., m (26)

Substituting Eq. (17) into Eq. (26) yields

r = Hp (27)

where H is an orthonormalizing matrix with dimension of m×m. Suppose Hi j is
the elementary of H in line i and column j, and then Hi j can be computed by

Hi j =
Vi j√

(si,si)w
(i, j = 1,2, ..., m) (28)

3.2.3 Computing shape functions Ô

Now use the vector r as the basis vector and substitute r as p into Eq. (5) of standard
MLS. A similar form of shape functions will be obtained as follows

ΦΦΦ
T = rT (x)A−1B (29)

A(x)=
n

∑
i=1

wi(x)r(xi)rT (xi) (30)
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B(x) =
[
w1(x)r(x1) w2(x)r(x2) · · · wn(x)r(xn)

]
(31)

Since the vector r is an orthonormalized vector, matrix A will be an identical ma-
trix, and then the modified shape functions is

ΦΦΦ
T = rT (x)B (32)

The partial derivative of shape function ΦΦΦ can be easily obtained as

ΦΦΦ
T
,x = rT

,xB+ rT B,x (33)

It can be found that, the improved MLS is conducted without any inversion of ma-
trix. This feature makes it more advantageous to very irregular node distribution
for creating the shape functions. This also implies the MPG very robust in simulat-
ing problems of cracks and complex geometries. Furthermore, the improved MLS
can work with any number of nodes in the poly-cell local support. When n>m, the
improved MLS is referred to as the standard MLS; and when n≤ m, it can still be
performed without any problems. This flexibility of selecting nodes indicates that
fewer nodes can be used for the function interpolation and domain integration.

Fig.2(a) gives an example of nodal interpolation. Both the MLS and improved MLS
are used for comparison and the weight functions are considered to be constant val-
ues. In standard MLS, linear base functions are adopted because the there are only
four supporting nodes. However, in the improved MLS, quadratic base functions
are adopted and four independent terms will be selected automatically. Fig.2(b)
and Fig.2(c) shows the shape functions of a corner node. It can be observed that
higher order of shape functions can be obtained for given number of nodes.

4 Discretized system equations

The Nitsche’s method is used to treat the essential boundary conditions. The ex-
tended Galerkin weak form is derived for elasticity problems. Consider a 2D solid
defined in Ω bounded by ~A (~A = ~At +~Au), the governing equations are given by

∇σ +b = 0 in Ω (34)

σ ·n = tΓ on Γt (35)

u = uΓ on Γu (36)

Using the Nitsche’s method [Sonia and Antonio (2004)], the extended Galerkin
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weak form for elasticity problems can be obtained as∫
Ω

(Lδu)T DLudΩ−
∫

Γu

δuT tdΓ−
∫

Γu

δ tT udΓ+β

∫
Γu

δuT udΓ =∫
Ω

δuT bdΩ+
∫

Γt

δuT tΓdΓ−
∫

Γu

δ tT uΓdΓ+β

∫
Γu

δuT uΓdΓ (37)

where L is the differential operator, and β is a positive constant scalar that ensures
the coercivity of the bilinear form. The value of β sharply influences the accuracy
of numerical solutions, which is thoroughly examined in the following patch test.

To obtain the discretized system, the approximation u in Eq. (5) is substituted into
the weak form of Eq. (37), which leads to the following matrix form

Kq = f (38)

where

KIJ =
∫

Ω

BT
I DBJdΩ−

∫
Γu

Φ
T
I SNDBJdΓ−

∫
Γu

BT
I DT NT SΦJdΓ+β

∫
Γu

Φ
T
I ΦJdΓ

(39)

fI =
∫

Γt

Φ
T
I tΓdΓ+

∫
Ω

Φ
T
I bdΩ+

∫
Γu

BT
I DT NT SuΓdΓ+β

∫
Γu

Φ
T
I uΓdΓ (40)

BI =

[
∂ΦI
∂x 0 ∂ΦI

∂y

0 ∂ΦI
∂y

∂ΦI
∂x

]T

(41)

N =
[

nx 0 ny

0 ny nx

]
(42)

and

S =
[

sx 0
0 sy

]
(43)

sx =

{
1, if prescribed ux on Γu

0, if not prescribed ux on Γu
sy =

{
0, if prescribed uy on Γu

1, if not prescribed uy on Γu

(44)

For elastic plane stress problems the material matrix D is represented by Young’s
modulus E and Poisson’s ratio ν as

D =
E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (45)
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For plane strain problems, Eq. (45) holds by substituting E and ν with E/(1−ν2)
and ν/(1−ν), respectively.

5 Numerical examples

An intensive numerical study for the proposed MPG is conducted using a number
of elasticity and fracture problems. The variable units used in this paper are based
on international standard unit system unless specially denoted.

To study the convergence property of the MPG, two error indicators in displacement
and energy are, respectively, defined as follows:

||u−uexact ||2 =
√∫

Ω

(uexact −unumerical)2dΩ (46)

∥∥u−uexact
∥∥

e =

√
1
2

∫
Ω

(εexact − εnumerical)T D(εexact − εnumerical)dΩ (47)

where the superscript exact notes the exact or analytical solution, numerical denotes
a numerical solution obtained using a numerical method including the MPG.

The parameter α in weight functions will be studied in the cantilever beam prob-
lem and in other examples of this paper, α is evaluated 4.0 in this work. For all
the examples of this paper, linear basis is used for the improved MLS scheme. The
penalty factor β in Nitche’s method is evaluated 100×E. For each cell of back-
ground mesh, 3×3 Gaussian quadrature is used except the cells crossed by cracks,
where 5×5 Gaussian quadrature is used. The cells crossed the geometrical bound-
aries will be divided into 2×2 subcells to reduce the error of integration.

5.1 Standard patch test

For a numerical method working well for solid mechanics problems, the sufficient
requirement for convergence is to pass the standard patch test [Zienkiewicz and
Taylor (2000)]. Therefore, the first example is the standard patch test evaluated
by the present MPG. The problem is studied in a domain of dimension 1×1, and
the displacements are prescribed on all outside boundaries by the following linear
function.

ux = x (48)

uy = y (49)

In the MPG, 2×2 background mesh is adopted and the patch is represented by two
models (4 regular nodes and 4 irregular nodes) as shown in Fig. 3. The errors in
displacement for different β of the three models are listed in Table 1.
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Table 1: Relative error (||u−uexact ||2/||uexact ||2) for different β in the patch test

β Grid a Grad b
10000×E 6.387494157597449E-012 5.448332276743418E-009
100000×E 6.385993036423848E-013 5.448282241520079E-010

1000000×E 6.385960373324049E-014 5.448291486880150E-011
10000000×E 6.417295611370838E-015 5.448495876062633E-012
100000000×E 8.659913793448943E-016 5.450119488224402E-013

The computational results show that, with the increasing of penalty parameter β ,
the accuracy of numerical solutions is improved significantly. Thus it is suggested
that there exists an optimal numerically conformed number of β such that the MPG
solution is closest to the exact result. Too large β produces an ill-conditioned stiff-
ness matrix, and hence results in a low efficiency for solving the complicated prob-
lems.

It is observed that the β value varied from 104 ∼108×E can provide acceptable
accuracy, which is preferred in the following numerical examples. Though nodal
irregularity distribution decreases the accuracy of numerical solutions in the patch
test, the MPG solution is more closest to exact solution compared with those ob-
tained using EFG and NEM [Sukumar, Moran and Belytschko (1998)].

In conclusion, numerical results indicate the present MPG passes the patch test and
monotonically converges due to its capable of reproducing linear fields.

5.2 Cantilever beam

A 2D cantilever beam with length L, height D and unit thickness is studied as a
benchmark problem here. The beam is fixed at the left end and subjected to a
parabolic traction P at the free end as shown in Fig. 4. The analytical solutions in
displacement and stress are available [Timoshenko and Goodier (1970)] as follows

ux =−P(y−D/2)
6EI

[
(6L−3x)x+(2+ν)(y2−2Dy)

]
(50)

uy =
P

6EI

[
3ν(y− 1

2
D)2(L− x)+

1
4
(4+5ν)D2x+(3L− x)x2

]
(51)

σxx =−P
I
(L− x)

(
y− 1

2
D
)

(52)

σyy = 0 (53)

σxy =−Py
2I

(y−D) (54)
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where I is the moment of the inertia given as I=D3/12.

The problem is solved for the plane stress case, in which the parameters are taken
as: L=8, D=1, P=-1, E=3.0×107 and ν=0.25.

5.2.1 Effects of nodal irregularity

To investigate the influence of nodal irregularities on the accuracy and convergence
of numerical solutions, a 10×64 background mesh is adopted and three models
with different degree of nodal irregularity (shown in Fig. 5) are used to examine
the present approach. The results of computed deflection along the neutral line are
plotted in Fig. 6a, together with the analytical solutions. Fig. 6b shows the stress
in x direction along the line (x = L/2) of the beam, the analytical solution is also
given.

It can be found that the numerical results of these three models obtained using
the present MPG are all in very good agreement with the analytical ones, and the
irregularity of the nodal distribution has little effect on the numerical results.

5.2.2 Convergence study

In the convergence study, three regular background meshes are used (4×10, 6×15
and 8×20) and in each cell a centered node is distributed. To study the effect of
parameter α , the convergence curves for α=3 and α=4 are plotted in displacement
and energy norm, respectively in Fig. 7a and b, in which the convergence rates
(generally the ratio of error norm to characteristic nodal spacing) are indicated by
R.

It can be clearly observed that MPG can provide the superconvergent solution and
the convergence rates for both αÂ£Â½3 and αÂ£Â½4 significantly exceed the
counterparts of FEM, in which the theoretical value is 2.0 for displacement and 1.0
for energy. In addition, compared with FEM, MPG also achieves more accurate
solutions, especially when α is increased. Thus, α is selected to be 4.0 as the
optimal parameter.

5.3 An infinite plate with a hole

Fig. 8 is the infinite plate with a central hole subjected to a tensile traction P of 1.
Due to its symmetric, only the upper right quadrant of the plate is modeled with
the dimensions of b in both x and y directions. The analytical stress can be found
in [Atluri, Liu and Han (2006), Roark and Young (1975)] in the polar coordinate
form:

σxx = P
{

1− a2

r2

[
3
2

cos2θ + cos4θ

]
+

3a4

2r4 cos4θ

}
(55)
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Figure 9: Three discretized models of the quarter infinite plate with a circular hole

σyy =−P
{

a2

r2

[
1
2

cos2θ − cos4θ

]
− 3a4

2r4 cos4θ

}
(56)

σxy =−P
{

a2

r2

[
1
2

sin2θ + sin4θ

]
+

3a4

2r4 sin4θ

}
(57)

where θ is measured counterclockwise from the positive x-axis. Traction boundary
conditions are enforced at x=1.0 and y=1.0 based on the above analytical solutions.

Similarly, the analytical displacement of the plate is given as

ur =
P

4µ

{
r
[

κ−1
2

+ cos2θ

]
+

a2

r
[1+(1+κ)cos2θ ]− a4

r3 cos2θ

}
(58)

uθ =
P

4µ

[
(1−κ)

a2

r
− r− a4

r3

]
sin2θ (59)
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Figure 10: Comparisons of convergence rates between the present MPG and FEM
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where

µ =
E

2(1+ µ)
, κ =

{
3−4υ Plane strain
3−µ

1+µ
Plane stress

(60)

The essential boundary conditions are u(x=0)=0, v(y=0)=0. The material used is
linear elastic with Young’s modules E=1.0×103 and poison’s ratio ν=0.3. The
other parameters in this problem are taken as: a=1 and b=5. The beam has a unit
thickness, and is taken as a plane strain problem.

Three types of regular background meshes are used (5×5, 10×10 and 15×15) and
the 5×5 mesh is shown in Fig.9 The convergence rates in both displacement norm
and energy norm are plotted in Fig. 10a and b, respectively.

It can be observed that the MPG achieves better accuracy and higher convergence
rates of 4.21 and 2.55 in displacement and energy norm, respectively. These nu-
merical rates are much larger than theoretical values and FEM, which show that the
MPG presents the superconvergent property.

Figure 11: Single edge-cracked plate under mode-I loading

5.4 Edge crack

A rectangular plate with an edge crack of length a is shown in Fig. 11a. The values
of the parameters are taken as: W=1, L=2, P=1.
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Figure 12: Meshfree background mesh for the edge crack problem

The stress intensity factors are evaluated by using the conservation integral which
is converted into the domain integral by using Green’s theorem [Chow and Atluri
(1998), Budiansky and Rice (1973), Li and Shih (1985)]. The domain of conserva-
tion integral is represented in Fig. 11b.

For comparison, two initial background meshes of 10×20 and 20×40 are used
and the initial meshes are refined hierarchically in the crack tip. Fig. 12 plots
the 10×20 mesh after 2 times of local refinement. Fig. 13a shows errors of stress
intensity factors (K1) with respect to different refinement times n when crack length
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(a) Stress contour of x.

(b) Stress contour of y.

(c) Stress contour of xy.

Figure 14: Contour of stress field of the edge crack problem
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Figure 15: Center-oblique crack plate under uniaxial loading

is a=0.5.

It can be clearly seen that the refinement can improve the accuracy significantly,
and 4 times of local refinement can provide the best accuracy using the mesh of
10×20, compared with the mesh of 20×40. This also indicates that we only need
to refine around the crack tip.

When crack length is 0.5 and refinement time is 4, the normalized K1 with different
domain size d of conservation integral is plotted in Fig. 13b.

It is well-known that the integration path generally influences the accuracy of nu-
merical solutions for both FEM and meshfree methods with circular local support
[Belytschko, Lu and Gu (1995)]. In the MPG, poly-cell local support is used to
tackle this problem. It can be found from Fig. 13b that, the stress intensity factor
evaluated using the present MPG is completely path-independent.

Since the coarse mesh can provide the satisfying results, background mesh of
10×20 is then used to compute the stress intensity factor K1. Table 2 shows the
normalized K1 of different crack length when 10×20 initial mesh is used and re-
finement time is 4. It can be observed that K1 evaluated by MPG is closed to the
analytical value.

For examination of gradient field especially for the crack tip field, the stress dis-
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Table 2: Normalized K1 for edge crack with different crack length
a 0.2 0.21 0.22 0.23 0.24 0.25 0.3 0.4 0.5

Numerical K1 1.0917 1.1359 1.1909 1.2373 1.2870 1.3392 1.6156 2.3808 3.5640
Analytical K1 1.0865 1.1328 1.1803 1.2289 1.2789 1.3302 1.6115 2.3580 3.5423

Normalized K1 1.0048 1.0027 1.0090 1.0068 1.0063 1.0067 1.0025 1.0097 1.0061

tributions of σx, σy, and τxy are also plotted in Fig. 14a, b, and c, respectively, in
which crack length is 0.5 and the 20×40 initial mesh is refined for 3 times.

It can be clearly seen that the stress field is special smoothing even near to the crack
tip without any postprocessing operations. This excellent feature makes MPG very
flexible and promising for crack analysis or the high gradient region.

5.5 Oblique crack

To further examine the numerical accuracy of the MPG in mixed-mode crack prob-
lems, an infinite plate with an inner oblique crack [Yau, Wang and Corten (1980)]
is studied as shown in Fig. 15. The parameters are taken as: L=10, P=1, a=1.

The analytical stress intensity factors of this problem can be computed by

KI = σ sin2
β
√

πa (61)

KII = σ cosβ sinβ
√

πa (62)

Table 3: Normalized K1 and K2 for oblique crack problem with different crack
angles

β 60˚ 55˚ 50˚ 45˚ 40˚ 35˚ 30˚
Numerical K1 0.9447 0.8490 0.7400 0.6290 0.5150 0.4160 0.3120
Analytical K1 0.9400 0.8410 0.7354 0.6267 0.5179 0.4123 0.3133

Normalized K1 1.0050 1.0099 1.0057 1.0036 0.9935 1.0099 0.9953
Numerical K2 0.5487 0.5970 0.6200 0.6230 0.6180 0.5950 0.5470
Analytical K2 0.5427 0.5889 0.6171 0.6267 0.6171 0.5889 0.5427

Normalized K2 1.0110 1.0144 1.0055 0.9946 1.0021 1.0106 1.0106

A 20×20 initial mesh is used to refine for 4 times for two crack tips. Table 3 lists
the normalized K1 and K2 of different oblique angle β , together with the analytical
ones. It can be observed that both K1 and K2 are very close to the analytical values.
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6 Conclusions

A new meshfree approach of the proposed MPG is formulated for elasticity and
fracture problems. In the approach, the poly-cell local support replaces the usual
circle support widely used in EFG and MLPG. The trial function is constructed us-
ing the improved MLS by orthonormalized the basis functions to guarantee working
well for general nodal distribution. The Nitsche’s method is introduced to enforce
the essential boundary conditions weakly. Some examples are studied in details in
terms of accuracy and superconvergence for the performance of the present MPG.
From these examples, the following conclusions can be made as below:

(1) In elasticity problems, it is found that MPG can obtain more accurate solutions
compared with FEM using the same nodal distributions. This improvement of
numerical accuracy is mainly due to introducing the poly-cell local support.

(2) The convergence rates for MPG in displacement and energy norms are higher
than those of theoretical values, which present the superconvergent property.

(3) In fracture problems, it is found that the stress intense factors obtained from
the MPG are also more accurate. The relative errors are less than 1%.

(4) When the stress intense factor is evaluated by conservation integral, the present
approach does not have the path-dependent problems.

(5) Gradient fields such the stress fields (σx, σy, and τxy) obtained using the present
MPG are great smoothing even around the crack tip.

(6) MPG works very well for extremely distorted distribution in nodes mainly
thanks to the use of the improved MLS approach and the poly-cell local sup-
port.
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