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A New Mathematical Modeling of Maxwell Equations:
Complex Linear Operator and Complex Field

Chein-Shan Liu1

Abstract: In this paper a complex matrix operator and a complex field are used
to express the Maxwell equations, of which the complex field embraces all field
variables and the matrix operator embraces the time and space differential opera-
tors. By left applying the operator on the complex field one can get all the four
Maxwell equations, which are usually expressed by the vector form. The new for-
mulation matches the Lorenz gauge condition, and its mathematical advantage is
that it can incorporate the Maxwell equations into a single equation. The intro-
duction of four-potential is possible only under the Lorenz gauge. In terms of the
γ-ring, we found that the Maxwell equations bear certain similarity with the Dirac
equation. However, we also point out their differences.
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1 Introduction

The modern mathematical formulation of Maxwell equations is due to Oliver Heav-
iside and Willard Gibbs, who formulated Maxwell’s equations using the vector cal-
culus:

∇ ·B = 0, ∇×E =− ∂B
∂x0 , (1)

∇ ·E = 4πρ, ∇×B =
∂E
∂x0 +

4π

c
J. (2)

In above, x0 := ct, ∇· is the divergence of, ∇× is the curl of, E is the electric field,
B is the magnetic field, ρ is the electric charge density, J is the electric vector
current density, and c is the speed of light in vacuum. The vector form produces a
symmetric mathematical representation that reinforced the perception of physical
symmetries between electric and magnetic fields. In fact, it turns out to be an
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important clue as to the mathematical structure of Maxwell’s equations [Kato and
Singleton (2002)].

The electric and magnetic fields can be represented by a scalar potential φ and a
vector potential A through the following relations:

E =− ∂A
∂x0 −∇φ , (3)

B = ∇×A. (4)

In order to obtain the uncoupled equations:

∂ 2φ

∂ (x0)2 −∇
2
φ = 4πρ, (5)

∂ 2A
∂ (x0)2 −∇

2A =
4π

c
J, (6)

one needs to impose the Lorenz gauge condition [Jackson and Okun (2001); Jack-
son (2002)]:

∂φ

∂x0 +∇ ·A = 0. (7)

Eqs. (5) and (6) are wave equations for the scalar potential φ and the vector potential
A in the Lorenz family of gauges.

There are several representations of the Maxwell equations, which emphasize the
algebraic aspect of the formulations: the complex quaternion form [Majernik (1999)],
the bivector form [Hestenes (1966)], the biparavector form [Misner, Thorne and
Wheeler (1973); Jackson (1998); Baylis (1998)], the biquaternion form [Gsponer
and Hurni (2001); Gsponer (2002)], the differential form [Castillo, Koning, Rieben
and White (2004)], and the real Jordan algebra and Lie algebra [Liu (2004)], etc.

Maxwell equations is a prototype of many classical field theories. The different rep-
resentations of the Maxwell equations are mathematically isomorphic. However,
each specific form may bring out a further understanding of the Maxwell equa-
tions. In the computational electromagnetism [Reitich and Tamma (2004); Young,
Chen and Wong (2005)] directly solving the Maxwell equations by the vector form
is still the main stream. In this paper we are going to develop a new mathemati-
cal modeling of the Maxwell equations. The Maxwell equations are indispensible
in the behavior study of material under electric and magnetic fields [Liu and Ku
(2005); Kakimoto and Liu (2006); Ma and Walker (2006); Seiller (2007); John-
son and Owen (2007)]. However, the application of the present formulation of the
Maxwell equations to the computation will not be discussed here.
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This paper formulates the Maxwell equations in terms of a complex Lie operator
and a complex field, which is organized as follows. In Section 2 we introduce
a real Jordan algebra and a complex Jordan algebra. In Section 3 we transform
the complex Jordan algebra to a Lie algebra of 4× 4 complex matrix and use this
algebraic system to construct an {m · γ} ring as a geometric algebra, where m is
a three-dimensional real vector and γ is a 4× 4 matrix realization of the famous
Pauli matrices. In Section 4 we use the complex Lie algebra system to express the
Maxwell equations into a single equation, derive easily the wave equations, and
compare the γ-matrices representation of the Maxwell equations with the Dirac
equation. In Section 5 we draw some conclusions.

2 Complex Jordan algebra

Liu (2000, 2002) has considered an algebraic system of four real numbers with the
following product rule:

xy = (x0 +xs)(y0 +ys) := x0y0 +xs ·ys + x0ys + y0xs +xs×ys. (8)

Here, x = x0 +xs, y = y0 +ys ∈M := R⊕R3. The algebra with the above product
rule is non-commutative as well as non-associative, but it still preserves the Jacobi
identity [Schafer (1995)] and other properties:

[x,y] =
1
2
(xy−yx) = xs×ys 6= 0, (9)

[x,y,z] =
1
2
{(xy)z−x(yz)}= xs ·yszs− zs ·ysxs 6= 0, (10)

[x2,y,x] = 0. (11)

In terms of

x̂s :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (12)

we can express Eq. (8) as

xy = x0y0 +xs ·ys + x0ys + y0xs + x̂sys. (13)

It has been noted by Liu (2002) that the above algebra does not have a similar set of
bases as that of the real quaternions. However, if we allow the imaginary number i
to enter this algebraic system, then we have a set of bases {1,σ1,σ2,σ3} with the
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following relations:

σ
2
1 = σ

2
2 = σ

2
3 = 1, (14)

σ1σ2 =−σ2σ1 = iσ3, σ2σ3 =−σ3σ2 = iσ1, σ3σ1 =−σ1σ3 = iσ2, (15)

σ1σ2σ3 = iσ0. (16)

A famous algebra of this sort is the Pauli spin matrices:

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (17)

where σ0 denotes the unit element 1.

The four-vector x is of the form x0 + x1σ1 + x2σ2 + x3σ3, where x0, . . . ,x3 are real
numbers. When two four-vectors are multiplied together using the normal algebraic
multiplication rule with the relations (14)-(16), the product is given as follows:

xy = x0y0 +xs ·ys + x0ys + y0xs + ixs×ys, (18)

where as before xs = x1σ1 + x2σ2 + x3σ3 and ys = y1σ1 + y2σ2 + y3σ3 denote
respectively the spatial parts of x and y. This algebra has been named the com-
plex four-vector algebra. More frequently, it is called the Pauli algebra, the three-
dimensional Clifford algebra or geometric algebra by Hestenes (2003). However,
in order to stress its algebraic behavior we name it the complex Jordan algebra.
The above right-hand side includes three different objects: x0y0 +xs ·ys is a scalar,
x0ys + y0xs is a vector, and ixs× ys is a bi-vector. It deserves to note that even
the product rule in Eq. (18) bears certain similarity to the product rule in Eq. (13),
ixs×ys is a complex bi-vector in Eq. (18), but xs×ys is a real vector in Eq. (13).

3 Complex Lie algebra

Upon employing the following isomorphisms:

y 7→ΨΨΨy :=
[

ys

y0

]
, (19)

x 7→Mx :=
[

x0I3 + ix̂s xs

(xs)T x0

]
, (20)

then the product rule in Eq. (18) can be neatly expressed as

MxΨΨΨy =
[

x0I3 + ix̂s xs

(xs)T x0

][
ys

y0

]
=
[

x0ys + y0xs + ixs×ys

x0y0 +xs ·ys

]
. (21)
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It can be proved that for all x ∈ R4 the corresponding Mx ∈ C4×4 forms a complex
Lie algebra.

In terms of the following γ matrices:

γ0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , γ1 =


0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

 , (22)

γ2 =


0 0 i 0
0 0 0 1
−i 0 0 0
0 1 0 0

 , γ3 =


0 −i 0 0
i 0 0 0
0 0 0 1
0 0 1 0

 , (23)

where γ0 denotes the unit element, Mx can be expressed by

Mx = x0
γ0 + x1

γ1 + x2
γ2 + x3

γ3 = x · γ. (24)

The γ matrices are Hermitian, and are the 4×4 complex matrices realization of the
2×2 Pauli matrices, satisfying the following relations as that for the Pauli matrices:

γ
2
1 = γ

2
2 = γ

2
3 = γ0, (25)

γ1γ2 =−γ2γ1 = iγ3, γ2γ3 =−γ3γ2 = iγ1, γ3γ1 =−γ1γ3 = iγ2, (26)

γ1γ2γ3 = iγ0. (27)

Compare them with Eqs. (14)-(16) for the Pauli matrices σ0,σ1,σ2,σ3.

For the three-dimensional real vectors m and F we can construct a four-vector that
is invariant under space reversal:

ΨΨΨmF =
[

im̂ m
mT 0

][
F
0

]
=
[

im×F
m ·F

]
, (28)

where m̂ is defined by Eq. (12). This operation combines the usual inner product
and cross product of three-dimensional vectors into a single formula. The i before
m×F is used to stress that m×F is an axial vector (bi-vector) as that done in
Eq. (18), which together with m ·F are both invariant under space reversal, i.e.,
invariant under m 7→ −m and F 7→ −F.

From the following identities:

mmT− m̂2 = m ·mI3, (29)

m̂m = 0, mTm̂ = 0T, (30)
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we can prove that

ΨΨΨ
†
mFΨΨΨmF = m ·mF ·F, (31)

where † denotes the complex conjugate and transpose of the complex four-vector.
For every unit vector m with ‖m‖ = 1, the four-vector ΨΨΨmF has a magnitude of
‖F‖.
The given vector m together with ΨΨΨmF provide a coordinate-free description of F.
Since the temporal components of both m and F are zeros, Eq. (28), by Eq. (24),
can also be written as

ΨΨΨmF = MmΨΨΨF = m · γΨΨΨF , (32)

where ΨΨΨF itself as defined by Eq. (19) can be expressed by

ΨΨΨF = (F · γ)ΨΨΨ0 =
[

iF̂ F
FT 0

][
0
1

]
=
[

F
0

]
(33)

with ΨΨΨ0 = (0,0,0,1)T a unit four-vector. Inserting the above equation for ΨΨΨF into
Eq. (32) we get

ΨΨΨmF = (m · γ)(F · γ)ΨΨΨ0 =
[

im×F
m ·F

]
. (34)

From Eqs. (25)-(27) it follows that

(m · γ)(F · γ) = ΨΨΨmF · γ = m ·Fγ0 + i(m×F) · γ. (35)

The set of three-dimensional real vectors R3 := {m = (m1,m2,m3)T,mi ∈ R, i =
1,2,3}with the representation {m ·γ} forms a ring under the operations of addition
and the above multiplication rule in Eq. (35). That is,

m1 · γ +m2 · γ = m2 · γ +m1 · γ, (36)

m1 · γ +(m2 · γ +m3 · γ) = (m1 · γ +m2 · γ)+m3 · γ, (37)

0 · γ +m · γ = m · γ +0 · γ = m · γ, (38)

m · γ +(−m · γ) = 0 · γ, (39)

m1 · γ(m2 · γm3 · γ) = (m1 · γm2 · γ)m3 · γ, (40)

m1 · γ(m2 · γ +m3 · γ) = m1 · γm2 · γ +m1 · γm3 · γ, (41)

(m1 · γ +m2 · γ)m3 · γ = m1 · γm3 · γ +m2 · γm3 · γ. (42)

This ring structure is first proved here for the γ matrices.



A New Mathematical Modeling of Maxwell Equations 31

4 A new formulation

4.1 The Maxwell Equations

Let us consider the following complex matrix linear differential operator:

Lc = {L}+ i[L] =

 I3
∂

∂x0 + i∇̂ ∇

∇
T ∂

∂x0

 (43)

with

{L}=

 I3
∂

∂x0 ∇

∇
T ∂

∂x0

 , (44)

[L] =

[
∇̂ 0

0 0

]
(45)

being symmetric and skew-symmetric operators. Upon comparing Eqs. (43) and
(20), it is obvious that Lc is an operatorization of Mx.

In order to derive the Maxwell equations, let us write

−F? =−E+ iB = LcA =

 ∇φ + ∂A
∂x0 + i∇×A

∂φ

∂x0 +∇ ·A

 , (46)

where F? denotes the complex conjugate of the following complex electromagnetic
field:

F = E+ iB =
[

E
E0

]
+ i
[

B
0

]
, (47)

and

A :=
[

A
φ

]
(48)

is a four-potential.

By equating the real and imaginary parts in Eq. (46) we obtain Eqs. (3) and (4), as
well as

E0 =− ∂φ

∂x0 −∇ ·A. (49)



32 Copyright © 2008 Tech Science Press CMES, vol.38, no.1, pp.25-38, 2008

Then, under the Lorenz gauge condition (7), i.e., E0 = 0,

LcF = Lc(E+ iB) = 4π J̄ (50)

represents the Maxwell Eqs. (1) and (2), where

J̄ =
[ −J

c
ρ

]
(51)

is the conjugate of the four-current density J = (J/c,ρ)T.

Eq. (50) is indeed a single representation of the Maxwell equations. This achieve-
ment requires us to consider a complex linear differential operator and a complex
field in the formulation. It may be convenient for us to find the field solutions with

F = 4πL−1
c J̄

= 4π
(
({L}+[L]{L}−1[L])−1− i{L}−1[L]({L}+[L]{L}−1[L])−1) J̄.

(52)

Hence, by Eq. (47) we have

E = 4π({L}+[L]{L}−1[L])−1J̄, (53)

B =−4π{L}−1[L]({L}+[L]{L}−1[L])−1J̄. (54)

How to obtain the inverse operators {L}−1 and ({L}+[L]{L}−1[L])−1 is a task in
the near future. A further studing on the above formulation may provide us a useful
method to solve the Maxwell equations.

4.2 Wave Equations

There are two ways to derive the wave equation. For self-content we first prove in
the Appendix that the two operators {L} and [L] are commutative as made by Liu
(2004), which leads to Lc and L?

c commutative and LcL?
c = L?

cLc a real operator.

Substituting Eq. (43) for Lc and its complex conjugate for L?
c into LcL?

c we obtain

LcL?
c = ({L}+ i[L])({L}− i[L])

= {L}2 +[L]2 + i([L]{L}−{L}[L]) = {L}2 +[L]2.
(55)

The imaginary part is zero due to Eq. (A.11) derived in the Appendix. By the same
token we have

L?
cLc = ({L}− i[L])({L}+ i[L]) = {L}2 +[L]2. (56)

Therefore, we have proved that Lc and L?
c are commutative and that LcL?

c = L?
cLc

is a real operator.
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Next, we applying the operator L?
c to Eq. (46) and taking the complex conjugate of

Eq. (50) to obtain

L?
cLcA =−L?

cF? =−4π J̄, (57)

where J̄? = J̄ since J̄ is a real four-vector. Inserting Eq. (56) into the above equation
we thus have a wave equation for A:

({L}2 +[L]2)A =−4π J̄. (58)

Finally, when applying the operator L?
c on Eq. (50), reminding that L?

cLc is a real
operator, and equating the real and imaginary parts on both the sides, we obtain the
wave equations for E and B:

({L}2 +[L]2)E = 4π{L}J̄, (59)

({L}2 +[L]2)B =−4π[L]J̄. (60)

When comparing the derivations revealed in Liu (2004), it is obvious that the cur-
rent approaches are more straightforward. Taking the inverses of the above two
equations we get formal solutions of E and B:

E = 4π({L}2 +[L]2)−1{L}J̄, (61)

B =−4π({L}2 +[L]2)−1[L]J̄. (62)

Another approach to the wave equation is given below. The nabla operator ∇ acting
on the usual three-dimensional field which depending on xs can be extended to
include a time-like part to form a four-dimensional gradient operator H, which is
acting on the four-dimensional field with a dependency on x:

H :=
[

∇

∂

∂x0

]
. (63)

Comparing with Eq. (19), it can be seen that H is an operatorization of ΨΨΨx. Ac-
cording to the notation used in Eq. (24) and the identification specified in Eq. (19)
we can recast Eqs. (46) and (50) into the following forms:

− (γ ·H)A = ΨΨΨ
?
F, (64)

(γ ·H)ΨΨΨF = 4π J̄. (65)

Taking the complex conjugate of Eq. (64) and substituting it for ΨΨΨF into Eq. (65),
we obtain

(γ ·H)(γ? ·H)A =−4π J̄. (66)

This equation is a compact form of the wave equation for A.
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4.3 Comparing with the Dirac equation

Eq. (65) is superficially similar to the Dirac equation on its left-hand side:

(γ ·H)ΨΨΨ =
mc
h̄

ΨΨΨ, (67)

where the Dirac matrices are given by

γ
0 =

[
iσ0 0
0 −iσ0

]
=


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 , (68)

γ
1 =

[
0 iσ1
−iσ1 0

]
=


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 , (69)

γ
2 =

[
0 iσ2
−iσ2 0

]
=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , (70)

γ
3 =

[
0 iσ3
−iσ3 0

]
=


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 . (71)

However, for the Maxwell equations we have (γ0)
2 = 1 and also γ0γn = γnγ0,n =

1,2,3, such that the γ in Eq. (65) as given in Eqs. (22) and (23) fails to satisfy
the conditions (γ0)2 = −1 and γ0γn = −γnγ0,n = 1,2,3, which are essential for
the Dirac Eq. (67). From Eqs. (68)-(71) we observe that (γ0)† = −γ0 and (γn)† =
γn,n = 1,2,3. The above properties are also different from (γn)

† = γn,n = 0,1,2,3,
for the γ-matrices of the Maxwell equations.

5 Conclusions

We have transformed the complex Jordan algebra to a complex Lie algebra, and in
terms of it we can derive the Maxwell equations and the wave equations through a
symmetric linear differential operator {L} and a skew-symmetric linear differential
operator [L]. Then, in terms of a complex electromagnetic field we were able to put
the four Maxwell equations into a single one. It is superficially similar to the Dirac
equation. However, we point out the differences.
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Appendix

Define the operators

L = {L}+[L] =

 I3
∂

∂x0 + ∇̂ ∇

∇
T ∂

∂x0

 , (A.1)

LT = {L}− [L] =

 I3
∂

∂x0 − ∇̂ ∇

∇
T ∂

∂x0

 . (A.2)
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Applying them to any differentiable four potential, say the A in Eq. (48), we obtain

LA =

 ∇φ + ∂A
∂x0 +∇×A

∂φ

∂x0 +∇ ·A

 , (A.3)

LTA =

 ∇φ + ∂A
∂x0 −∇×A

∂φ

∂x0 +∇ ·A

 . (A.4)

Left multiplying Eq. (A.3) by LT and applying the operational rule in Eq. (A.4), we
obtain

LTLA = ∇

(
∂φ

∂x0 +∇ ·A
)

+ ∂

∂x0

(
∇φ + ∂A

∂x0 +∇×A
)
−∇×

(
∇φ + ∂A

∂x0 +∇×A
)

∂

∂x0

(
∂φ

∂x0 +∇ ·A
)

+∇ ·
(

∇φ + ∂A
∂x0 +∇×A

)
 .

(A.5)

Similarly, left multiplying Eq. (A.4) by L and applying the operational rule in
Eq. (A.3), we obtain

LLTA = ∇

(
∂φ

∂x0 +∇ ·A
)

+ ∂

∂x0

(
∇φ + ∂A

∂x0 −∇×A
)

+∇×
(

∇φ + ∂A
∂x0 −∇×A

)
∂

∂x0

(
∂φ

∂x0 +∇ ·A
)

+∇ ·
(

∇φ + ∂A
∂x0 −∇×A

)
 .

(A.6)

Due to

∇ · (∇×A) = 0, (A.7)

∇× (∇φ) = 0, (A.8)

we can prove that

LTLA = LLTA. (A.9)

Substituting Eqs. (A.1) and (A.2) for L and LT into the above identity, leads to

(LTL−LLT)A =({L}− [L])({L}+[L])A− ({L}+[L])({L}− [L])A
={L}{L}A+{L}[L]A− [L]{L}A− [L][L]A
−{L}{L}A+{L}[L]A− [L]{L}A+[L][L]A

=2{L}[L]A−2[L]{L}A
=0. (A.10)
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Accordingly, we can prove that {L} and [L] are commutative:

{L}[L] = [L]{L}, (A.11)

since A is an arbitrary four-potential.


