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A New Mathematical Modeling of Maxwell Equations:
Complex Linear Operator and Complex Field

Chein-Shan Liu!

Abstract: In this paper a complex matrix operator and a complex field are used
to express the Maxwell equations, of which the complex field embraces all field
variables and the matrix operator embraces the time and space differential opera-
tors. By left applying the operator on the complex field one can get all the four
Maxwell equations, which are usually expressed by the vector form. The new for-
mulation matches the Lorenz gauge condition, and its mathematical advantage is
that it can incorporate the Maxwell equations into a single equation. The intro-
duction of four-potential is possible only under the Lorenz gauge. In terms of the
Y-ring, we found that the Maxwell equations bear certain similarity with the Dirac
equation. However, we also point out their differences.

Keywords: Maxwell equations, Lorenz gauge condition, Wave equations, Jordan
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1 Introduction

The modern mathematical formulation of Maxwell equations is due to Oliver Heav-
iside and Willard Gibbs, who formulated Maxwell’s equations using the vector cal-
culus:

JB
V.-B=0, VxE=-—— 1
, Vx S0 1)
JE 4
V.E—d4np, VxB= 4"y 2)
ax’ ¢
In above, x° := ct, V- is the divergence of, V x is the curl of, E is the electric field,

B is the magnetic field, p is the electric charge density, J is the electric vector
current density, and c is the speed of light in vacuum. The vector form produces a
symmetric mathematical representation that reinforced the perception of physical
symmetries between electric and magnetic fields. In fact, it turns out to be an
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important clue as to the mathematical structure of Maxwell’s equations [Kato and
Singleton (2002)].

The electric and magnetic fields can be represented by a scalar potential ¢ and a
vector potential A through the following relations:

JA
E:—ﬁ—wb, 3)
B=V xA. 4)

In order to obtain the uncoupled equations:

%0

s~V 0= 4P v
J’A ) 4w
apo VAT ©

one needs to impose the Lorenz gauge condition [Jackson and Okun (2001); Jack-
son (2002)]:

9¢

—+V-A=0. 7
50 (N
Eqgs. (5) and (6) are wave equations for the scalar potential ¢ and the vector potential
A in the Lorenz family of gauges.

There are several representations of the Maxwell equations, which emphasize the
algebraic aspect of the formulations: the complex quaternion form [Majernik (1999)],
the bivector form [Hestenes (1966)], the biparavector form [Misner, Thorne and
Wheeler (1973); Jackson (1998); Baylis (1998)], the biquaternion form [Gsponer
and Hurni (2001); Gsponer (2002)], the differential form [Castillo, Koning, Rieben
and White (2004)], and the real Jordan algebra and Lie algebra [Liu (2004)], etc.

Maxwell equations is a prototype of many classical field theories. The different rep-
resentations of the Maxwell equations are mathematically isomorphic. However,
each specific form may bring out a further understanding of the Maxwell equa-
tions. In the computational electromagnetism [Reitich and Tamma (2004); Young,
Chen and Wong (2005)] directly solving the Maxwell equations by the vector form
is still the main stream. In this paper we are going to develop a new mathemati-
cal modeling of the Maxwell equations. The Maxwell equations are indispensible
in the behavior study of material under electric and magnetic fields [Liu and Ku
(2005); Kakimoto and Liu (2006); Ma and Walker (2006); Seiller (2007); John-
son and Owen (2007)]. However, the application of the present formulation of the
Maxwell equations to the computation will not be discussed here.
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This paper formulates the Maxwell equations in terms of a complex Lie operator
and a complex field, which is organized as follows. In Section 2 we introduce
a real Jordan algebra and a complex Jordan algebra. In Section 3 we transform
the complex Jordan algebra to a Lie algebra of 4 x 4 complex matrix and use this
algebraic system to construct an {m -y} ring as a geometric algebra, where m is
a three-dimensional real vector and 7y is a 4 X 4 matrix realization of the famous
Pauli matrices. In Section 4 we use the complex Lie algebra system to express the
Maxwell equations into a single equation, derive easily the wave equations, and
compare the y-matrices representation of the Maxwell equations with the Dirac
equation. In Section 5 we draw some conclusions.

2 Complex Jordan algebra

Liu (2000, 2002) has considered an algebraic system of four real numbers with the
following product rule:
Xy = (x0 +XS)(yO + yS) = xOyO +x .ys _}_xOys +yOX.v X x ys' (8)

Here, x =" +x°, y =y +y* € M := R®R3. The algebra with the above product
rule is non-commutative as well as non-associative, but it still preserves the Jacobi
identity [Schafer (1995)] and other properties:

1
[x.¥] = Z (xy —yx) =x" <y’ #0, )
1
[x,y,z] = 5{(xy)z—x(yz)} =x'y'z' - 7' - y'’x* £0, (10)
x*,y,x] = 0. (11)
In terms of
0 e
=] 1 0 —x' |, (12)
—xr X 0

we can express Eq. (8) as
Xy = xOyO +x*. ys +x0ys —I—yOXS _{_ﬁsys' (13)

It has been noted by Liu (2002) that the above algebra does not have a similar set of
bases as that of the real quaternions. However, if we allow the imaginary number i
to enter this algebraic system, then we have a set of bases {1,0, 07,03} with the
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following relations:

oi=03=03=1, (14
6162:—6261:i63, 6263:—6362:i61, 6361:—6163:i02, (15)
010,203 :iGo. (16)

A famous algebra of this sort is the Pauli spin matrices:

1 0 0 1 0 —i 1 O

where o denotes the unit element 1.

The four-vector x is of the form x° + x' 1 + x26, + x> 03, where xO, ..., x> are real

numbers. When two four-vectors are multiplied together using the normal algebraic
multiplication rule with the relations (14)-(16), the product is given as follows:

xy =20 +x° -y + 20y 0% +ix’ x y’, (18)

where as before x° = x'6| +x20, + x*03 and y' = ylol +y262 +y363 denote
respectively the spatial parts of x and y. This algebra has been named the com-
plex four-vector algebra. More frequently, it is called the Pauli algebra, the three-
dimensional Clifford algebra or geometric algebra by Hestenes (2003). However,
in order to stress its algebraic behavior we name it the complex Jordan algebra.
The above right-hand side includes three different objects: x°y? +x* - y* is a scalar,
2%y + 3% is a vector, and ix® x y°® is a bi-vector. It deserves to note that even
the product rule in Eq. (18) bears certain similarity to the product rule in Eq. (13),
ix* X y*® is a complex bi-vector in Eq. (18), but x* x y* is a real vector in Eq. (13).

3 Complex Lie algebra

Upon employing the following isomorphisms:

yHT,;:HO}, (19)
PO 4% x*
X — M, := { T ] (20)

then the product rule in Eq. (18) can be neatly expressed as

0 oS s s 0¢s 0¢S oS s
I +ix* x y Xy +y° x4 ix’ Xy
M,¥, = { (x)T 20 ] [ 30 ] = [ X0 4 xSy (21)
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It can be proved that for all x € R* the corresponding M, € C*** forms a complex
Lie algebra.

In terms of the following y matrices:

1 00O 00 0 1
0100 00 —i O
P=loo10["" " |oi o o0l (22)
| 0 0 0 1 10 0 O
[0 0 i O 0 —i 00
0 0 0 1 i 0 00
=1 000" o o0 01| 23)
| 0 1 .00 0 0 10
where ¥, denotes the unit element, M, can be expressed by
M, ="y +x'y + 2+ =Xy (24)

The y matrices are Hermitian, and are the 4 x 4 complex matrices realization of the
2 x 2 Pauli matrices, satisfying the following relations as that for the Pauli matrices:

N=%=7="% (25)
NY2=—""Y1=3 =YY=, V3V =YY= (26)
717273 = Y- (27)

Compare them with Egs. (14)-(16) for the Pauli matrices 6¢, 01,02, 03.

For the three-dimensional real vectors m and F we can construct a four-vector that
is invariant under space reversal:

im m F imxF
S EHHEE]

where m is defined by Eq. (12). This operation combines the usual inner product
and cross product of three-dimensional vectors into a single formula. The i before
m X F is used to stress that m x F is an axial vector (bi-vector) as that done in
Eq. (18), which together with m - F are both invariant under space reversal, i.e.,
invariant under m — —m and F — —F.

From the following identities:

T

mm! — m?

=m-ml;, 29)

mm=0, mm=0", (30)
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we can prove that

¥ ¥, =m-mF-F, (31)
where T denotes the complex conjugate and transpose of the complex four-vector.
For every unit vector m with ||m|| = 1, the four-vector ¥,,r has a magnitude of
IF].

The given vector m together with ¥, provide a coordinate-free description of F.
Since the temporal components of both m and F are zeros, Eq. (28), by Eq. (24),
can also be written as

‘PmF = MmlPF =m- WF? (32)

where Wr itself as defined by Eq. (19) can be expressed by
iF F|[0 F

with ¥ = (0,0,0, l)T a unit four-vector. Inserting the above equation for ¥ into
Eq. (32) we get

j F
W, = (m7)(F ) = [ g ] (34)
From Eqgs. (25)-(27) it follows that
(m-y)(F-y) =¥ur-y=m-Fy,+i(mxF)-y. (35)

The set of three-dimensional real vectors R3 := {m = (my,m,m3)",m; € R,i =
1,2,3} with the representation {m -y} forms a ring under the operations of addition
and the above multiplication rule in Eq. (35). That is,

m -y+my-y=my-y+m;-Y, (36)
m;-y+(my-y+m3-y) = (my-y+my-y)+m;-Y, 37)
0-y+m-y=m-y+0-y=m-%, (38)
m-y+(-m-y)=0-y, (39)
m; - y(m; - ym3 - y) = (m; - ymy - y)ms - 7, (40)
m;-y(my-y+mz-y) =m;-ymy-y+m;-ym;-7, (41)
(mg-y+my-y)mz-y=m; - ymz-y+my-ym;-y. (42)

This ring structure is first proved here for the y matrices.
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4 A new formulation

4.1 The Maxwell Equations

Let us consider the following complex matrix linear differential operator:

13%4-1.@ \Y%

Le = {L} +[L] = 43)
vT 9
ax0
with
[ L2V
L} = N (44)
LV e
[L] V0 (45)
oo

being symmetric and skew-symmetric operators. Upon comparing Eqgs. (43) and
(20), it is obvious that I, is an operatorization of M.

In order to derive the Maxwell equations, let us write
Vo+ 94 +iVxA
~F*=-E+iB=LA= : (46)
9 4V-A

where F* denotes the complex conjugate of the following complex electromagnetic
field:

F:EHIB%:[;)]H[IH, 47)
and
A
A= 48
[q)] %)

is a four-potential.
By equating the real and imaginary parts in Eq. (46) we obtain Egs. (3) and (4), as
well as

9¢

0
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Then, under the Lorenz gauge condition (7), i.e., E 0—0,
L.F=L.(E+iB) =4n] (50)

represents the Maxwell Egs. (1) and (2), where

_ =J
-[7] -
p
is the conjugate of the four-current density J = (J/c,p)T.

Eq. (50) is indeed a single representation of the Maxwell equations. This achieve-
ment requires us to consider a complex linear differential operator and a complex
field in the formulation. It may be convenient for us to find the field solutions with

F=4gl ']
e N e R eI T (52)
=4m ({L}+ [LHL} L) — L} L} + [L{L} L) ) I
Hence, by Eq. (47) we have
E = 4x({L} + [L{L} ' [L) '], (53)
B = —4n{L}~ L)({L} + [L{L} L)~ (54)

How to obtain the inverse operators {IL.} ! and ({IL} + [L]{LL} '[LL])~! is a task in
the near future. A further studing on the above formulation may provide us a useful
method to solve the Maxwell equations.

4.2 Wave Equations

There are two ways to derive the wave equation. For self-content we first prove in
the Appendix that the two operators {IL} and [LL| are commutative as made by Liu
(2004), which leads to L, and L} commutative and L IL; = ILIL,. a real operator.

Substituting Eq. (43) for IL. and its complex conjugate for L} into L. we obtain

Ly = ({IL} i) ({1} —d[L]) 55)
= {L}? + [L]? +i([L{L} — {L}[L]) = {L}* + L]

The imaginary part is zero due to Eq. (A.11) derived in the Appendix. By the same
token we have

LiLe = ({L} — L) ({L} +i[L]) = {L}* + [L]*. (56)

Therefore, we have proved that L. and L} are commutative and that L. L} = L},
is a real operator.
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Next, we applying the operator L to Eq. (46) and taking the complex conjugate of
Eq. (50) to obtain

LA = —LF* = —4x], (57)

where J* = J since J is a real four-vector. Inserting Eq. (56) into the above equation
we thus have a wave equation for A:

({LY? + [L]>)A = —4x]. (58)

Finally, when applying the operator L% on Eq. (50), reminding that 7L, is a real
operator, and equating the real and imaginary parts on both the sides, we obtain the
wave equations for £ and B:

({L}Y + [L))E = 4n{L}], (59)
({L}Y? +[L>)B = —4x[L]]. (60)
When comparing the derivations revealed in Liu (2004), it is obvious that the cur-

rent approaches are more straightforward. Taking the inverses of the above two
equations we get formal solutions of £ and B:

E=4x({L}* + L)~ {L}J, 61
B = —4x({L}*+ [L)*) "' [IL)J. (62)
Another approach to the wave equation is given below. The nabla operator V acting
on the usual three-dimensional field which depending on x* can be extended to

include a time-like part to form a four-dimensional gradient operator ¥, which is
acting on the four-dimensional field with a dependency on x:

\%

v [ v ] | (63)
90

Comparing with Eq. (19), it can be seen that V¥ is an operatorization of ¥,. Ac-

cording to the notation used in Eq. (24) and the identification specified in Eq. (19)
we can recast Egs. (46) and (50) into the following forms:

(y-V)¥p = 4n]. (65)

Taking the complex conjugate of Eq. (64) and substituting it for ¥ into Eq. (65),
we obtain

(y-)(y"-¥)A = —4n]. (66)

This equation is a compact form of the wave equation for A.
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4.3 Comparing with the Dirac equation
Eq. (65) is superficially similar to the Dirac equation on its left-hand side:

(- v ="

¥, (67)

where the Dirac matrices are given by

i 00 0
_Jioco 0 ] _ |0 i 0 O
"0_[0 —ico]_ 00 —i 0| (68)
(00 0 —i|
[0 0 0 i]
[0 ioy | 0 0 i 0
1 _ 1 _
"=l-icy 0 7|0 —io0o0] (69)
| —i 0 0 0
[0 0 0 1
[ 0 o] |0 0 —-10
"2__—102 0 | [0 -1 0 0] (70)
1 0 0 0
[0 0 i O
[ 0 ios] | 0 00 —i
"3*_—1'03 0] |-i00 O 71
L0 i 0 0

However, for the Maxwell equations we have (}/0)2 =1 and also y,Y, = ¥, Yo, =
1,2,3, such that the y in Eq. (65) as given in Egs. (22) and (23) fails to satisfy
the conditions ()2 = —1 and Y’y* = —y*y",n = 1,2,3, which are essential for
the Dirac Eq. (67). From Egs. (68)-(71) we observe that (Y°)" = —y° and (") =
y*,n=1,2,3. The above properties are also different from (y,)" =y,,n=0,1,2,3,
for the y-matrices of the Maxwell equations.

5 Conclusions

We have transformed the complex Jordan algebra to a complex Lie algebra, and in
terms of it we can derive the Maxwell equations and the wave equations through a
symmetric linear differential operator {IL} and a skew-symmetric linear differential
operator [L]. Then, in terms of a complex electromagnetic field we were able to put
the four Maxwell equations into a single one. It is superficially similar to the Dirac
equation. However, we point out the differences.



A New Mathematical Modeling of Maxwell Equations 35

Acknowledgement: The financial support provided by the National Science Coun-
cil under the Grant NSC 93-2212-E-019-006 is gratefully acknowledged.

References

Baylis, W. E. (1998): Electrodynamics, a Modern Geometric Approach. Birkhauser,
Boston.

Castillo, P.; Koning, J.; Rieben, R.; White, D. (2004): A discrete differential
forms framework for computational electromagnetism. CMES: Computer Model-
ing in Engineering & Sciences, vol. 5, pp. 331-345.

Gsponer, A.; Hurni, J. P. (2001): Comment on formulating and generalizing
Dirac’s, Proca’s, and Maxwell’s equations with biquaternions or Clifford numbers.
Found. Phys. Lett., vol. 14, pp. 77-85.

Gsponer, A. (2002): On the ‘equivalence’ of the Maxwell and Dirac equations. Int.
J. Theor. Phys., vol. 41, pp. 689-694.

Ghosh, D. P.; Gopalakrishnan, S. (2004): Role of coupling terms in constitutive
relationships of magnetostrictive materials. CMC: Computers, Materials & Con-
tinua, vol. 1, pp. 213-228.

Hestenes, D. (1966): Space-Time Algebra. Gordon and Breach, New York.

Hestenes, D. (2003): Spacetime Physics with Geometric Algebra. Am. J. Phys.,
vol. 71, pp. 691-714.

Jackson, J. D. (1998): Classical Electrodynamics. 3rd ed., Wiley, New York.

Jackson, J. D.; Okun, L. B. (2001): Historical roots of gauge invariance. Rev.
Modern Phys., vol. 73, pp. 663-680.

Jackson, J. D. (2002): From Lorenz to Coulomb and other explicit gauge transfor-
mations. Am. J. Phys., vol. 70, pp. 917-928.

Johnson, J. N.; Owen, J. M. (2007): A meshless local Petrov-Galerkin method
for magnetic diffusion in non-magnetic conductors. CMES: Computer Modeling in
Engineering & Sciences, vol. 22, pp. 165-188.

Kakimoto, K.; Liu, L. (2006): Flow instability of silicon melt in magnetic fields.
FDMP: Fluid Dynamics & Materials Processing, vol. 2, pp. 167-173.

Kato, A.; Singleton, D. (2002): Gauging dual symmetry. Int. J. Theo. Phys., vol.
41, pp. 1563-1572.

Liu, C.-S. (2000): A Jordan algebra and dynamic system with associator as vector
field. Int. J. Non-Linear Mech., vol. 35, pp. 421-429.

Liu, C.-S. (2002): Applications of the Jordan and Lie algebras for some dynamical
systems having internal symmetries. Int. J. Appl. Math., vol. 8, pp. 209-240.



36 Copyright © 2008 Tech Science Press CMES, vol.38, no.1, pp.25-38, 2008

Liu, C.-S. (2004): The g-based Jordan algebra and Lie algebra formulations of the
Maxwell equations. J. Mech., vol. 20, pp. 285-296.

Liu, C.-S.; Ku, Y. L. (2005): A combination of group preserving scheme and
Runge-Kutta method for the integration of Landau-Lifshitz equation. CMES: Com-
puter Modeling in Engineering & Sciences, vol. 9, pp. 151-178.

Ma, N.; Walker, J. S. (2006): Electromagnetic stirring in crystal growth processes.
FDMP: Fluid Dynamics & Materials Processing, vol. 2, pp. 119-126.

Majernik, V. (1999): Quaternionic formulation of the classical fields. Adv. Appl.
Clifford Alg., vol. 9, pp. 119-130.

Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973): Gravitation. W. H. Freeman
and Company, San Francisco.

Reitich, F.; Tamma, K. K. (2004): State-of-the-art, trends, and directions in com-
putational electromagnetics. CMES: Computer Modeling in Engineering & Sci-
ences, vol. 5, pp. 287-294.

Schafer, R. D. (1995): An Introduction to Nonassociative Algebra. Dover, New
York.

Sellier, A. (2007): Slow viscous migration of a conducting solid particle under the
action of uniform ambient electric and magnetic fields. CMES: Computer Modeling
in Engineering & Sciences, vol. 21, pp. 105-132.

Young, D. L.; Chen, C. S.; Wong, T. K. (2005): Solution of Maxwell’s equations
using the MQ method. CMC: Computers, Materials, & Continua, vol. 2, pp. 267-
276.

Appendix

Define the operators

13%—1—6 \%
L={L}+[L]= . 5 , (A.1)
v 90
. L2 -V Vv
L*={L}-[L]= . . (A.2)
\V/ )
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Applying them to any differentiable four potential, say the A in Eq. (48), we obtain
Vo —l— —I— VXA

LA = y 7 (A.3)
SH5+V-A
Vo+ 94—V xA
LTA = . (A4)
2 V-A

Left multiplying Eq. (A.3) by LT and applying the operational rule in Eq. (A.4), we
obtain

L'LA =
v( +VA) 2 <V¢+ +V><A> (v¢+ +V><A)
25 (55 +V-A)+V- (Vo + 24 +VxA)
(A.5)

Similarly, left multiplying Eq. (A.4) by L. and applying the operational rule in
Eq. (A.3), we obtain

LLTA =
V(35+V-A)+ 2 (Vo+ 2 —VxA)+Vx (Vo+ 24 -VxA)
25 (35+V-A)+V- (Vo + 24 -vxa)
(A.6)
Due to
V. (VxA) =0, (A7)
V x (V) =0, (A8)

we can prove that
LTLA =LL"A. (A.9)
Substituting Egs. (A.1) and (A.2) for L and LT into the above identity, leads to
(L™L - LLT)A =({L} - [L))({L} + [L])A — ({L} + [L)({L} — [L])A
={LHL}A+{L}[LJA - [L{L}A - [L][L]A
— {LHL}A+{L}HLJA - [LI{L}A + [L][L]A

=2{L}[L]A —2[L{L}A
—0. (A.10)
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Accordingly, we can prove that {IL} and [L] are commutative:
{L}[L] = [L]{L}, (A.11)

since A is an arbitrary four-potential.



