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A Numerical Meshfree Technique for the Solution of the
MEW Equation

Sirajul Haq1, Siraj-ul-Islam2 and Arshed Ali3

Abstract: In this paper we propose a meshfree technique for the numerical so-
lution of the modified equal width wave (MEW) equation. Combination of col-
location method using the radial basis functions (RBFs) with first order accurate
forward difference approximation is employed for obtaining meshfree solution of
the problem. Different types of RBFs are used for this purpose. Performance of the
proposed method is successfully tested in terms of various error norms. In the case
of non-availability of exact solution, performance of the new method is compared
with the results obtained from the existing methods. Propagation of a solitary wave,
interaction of two solitary waves, a train of solitary waves, conservative properties
in terms of mass, momentum and energy are investigated. The elementary stability
analysis of the method is discussed both theoretically and numerically.

Keywords: Generalized equal width wave (GEW) equation, Modified equal width
wave (MEW) equation, Radial basis functions (RBFs), Solitary wave, Stability
analysis.

1 Introduction

The regularized long wave equation (RLW) is an important nonlinear equation,
which describes a large number of physical phenomena [Abdulloev, Bogolubsky
and Makhankov (1976)] and [Peregrine (1966)] and has the following form,

Ut +Ux + εUUx−µUxxt = 0, (1.1)
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where the parameters ε and µ are related to small amplitude and long-wavelength
[see Siraj-ul-Islam, Sirajul Haq and Arshed Ali (2008)]. The subscripts t and x
given in Eq. (1.1) represent differentiation with respect to t and x.

The EW equation derived by [Morrison, Meiss and Carey (1984)], is a special form
of RLW equation (1.1) and is given by,

Ut + ε UUx−µ Uxxt = 0. (1.2)

The EW equation (1.2) is a special case of generalized equal width wave (GEW)
equation [Evans and Raslan (2005)], which is of the form,

Ut + ε UmUx−µ Uxxt = 0, (1.3)

where m is a positive integer.

The exact solitary wave solution of GEW equation (1.3) is obtained by [Hamdi,
Enright, Schiesser and Gottlieb (2003)]. [Evans and Raslan (2005)] gave various
solitary wave solutions of the GEW equation using a quadratic B-splines finite
element method.

Another particular case of GEW equation (1.3) is known as modified equal width
wave (MEW) equation, which has the form

Ut + ε U2Ux−µ Uxxt = 0. (1.4)

The MEW equation contains a cubic nonlinearity and exhibits pulse-like solitary
wave having the same width with both positive and negative amplitudes [Wazwaz
(2006)]. Several numerical methods have been introduced in the literature for the
solution the MEW equation [Zaki (2000)], [Esen (2006)], [Wazwaz (2006)], [Saka
(2007)] and [Esen and Kutluay (2008)].

In this paper, we develop a meshfree collocation method with different types of
RBFs for the numerical solution of the MEW equation. Conservative properties
of the MEW equation related to mass, momentum and energy are also investi-
gated. The meshfree technique uses RBFs which are one of the primary tools for
interpolating multi-dimensional data. This approach has been extensively used to
find numerical solutions of various types of partial differential equations (PDEs).
A key feature of the meshfree method is its ability to handle arbitrary scattered
data, and its extension to several space dimensions. Moreover, it avoids mesh-
generation, which is the major problem in the finite-difference, finite element and
spectral methods. [Kansa (1990)] has pioneered this technique by applying RBFs,
particularly the multiquadric (MQ), to a scattered data with applications to compu-
tational fluid-dynamics, which was modified by [Fasshauer (1996)] to the Hermite
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type collocation method for the invertibility of the collocation matrix. Convergence
order estimates of meshfree collocation methods using radial basis functions are
discussed by [Franke and Schaback (1998)]. Due to simple applicability, Kansa’s
method is recently extended to solve various types ordinary and partial differential
equations including [Franke and Schaback (1998)], heat transfer [Hon and Mao
(1998)], shallow water equation for tide and current simulations [Hon, Cheung,
Mao and Kansa (1999)], the free boundary-value problems [Wu and Hon (2003)],
1-D nonlinear Burgers’ equation with the shock wave [Li, Chen and Pepper (2003)],
transport equation [Lorentz, Narcowich and Ward (2003)], MLPG “Mixed” Ap-
proach [Atluri, Han, Rajendran (2004)], a class of KdV equations [Khattak and
Siraj-ul-Islam (2007)], RLW equation [Siraj-ul-Islam, Sirajul Haq and Arshed Ali
(2008)], a system of nonlinear PDEs [Siraj-ul-Islam, Sirajul Haq and Marjan Ud-
din (2008)], Lid-driven cavity flow problem [Chantasiriwan (2006)] and recently,
Darcy flow [Kosec and Sarler (2008)] and see the references therein.

The rest of the paper is organized as follows. In Section 2, we develop algorithm
for the numerical solution of the MEW equation. Section 3, is devoted to stability
analysis of the method. In Section 4, we present numerical analysis related to
different types of the MEW equations. In Section 5, we summarize the results.

2 Construction of the proposed method

We consider the MEW equation (1.4) subject to the Dirichlet boundary conditions,

U(a, t) = α1(t), U(b, t) = α2(t) (2.1)

and initial condition,

U(x,0) = f (x), x ∈ [a, b]⊂ R. (2.2)

where f (x) is a localized disturbance inside the interval [a,b] and U → 0 as x→
±∞. The time derivative present in the MEW equation is approximated by a first
order accurate forward difference formula and the spatial derivative are approxi-
mated by a suitable RBF after applying the θ−weighted, (0 ≤ θ ≤ 1) scheme at
two successive time levels n and n+1 like given below:(

U (n+1)−U (n)
)

∆t
+θ

(
ε(U2)(n+1)U (n+1)

x

)
+(1−θ)

(
ε(U2)(n)U (n)

x

)
− µ

(
U (n+1)

xx −U (n)
xx

)
∆t

= 0 (2.3)

where U (n) = U(x, t(n)), t(n) = t(n−1) +∆t and ∆t is time step size.
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Eq. (2.3) is linearised by approximating the nonlinear term (U2)(n+1)U (n+1)
x , using

the following formula [Rubin and Graves (1975)]:

(U2)(n+1)U (n+1)
x ≈ (U (n))2U (n+1)

x +2U (n)U (n)
x U (n+1)−2(U (n))2U (n)

x (2.4)

From Eqs. (2.3) and (2.4) we obtain

U (n+1) +∆tθ
[
ε

{
(U (n))2U (n+1)

x +2U (n)U (n)
x U (n+1)

}]
−µU (n+1)

xx

= U (n) +∆t
[
ε (3θ −1)(U (n))2U (n)

x

]
−µU (n)

xx . (2.5)

Let xi, i = 1, 2, ..., N be the collocation points in the interval [a, b] such that x1 = a
and xN = b. The solution of Eq. (1.4) can be approximated by

U (n)(x) =
N

∑
j=1

λ
(n)
j ψ(r j), (2.6)

where ψ is a radial basis function and r j (x) =
√

(x− x j)2 represents the Euclidean
distance between x and x j, where x j’s are known as centers. The unknown param-
eters λ j in Eq. (2.6) are to be determined by the collocation method. Therefore for
each collocation point xi, Eq. (2.6) can be written as

U (n) (xi) =
N

∑
j=1

λ
(n)
j ψ (ri j), i = 1, 2, ..., N, (2.7)

where ri j =
√

(xi− x j)2.

Eq. (2.7) can be expressed in a matrix form as

U (n) = Aλ
(n), (2.8)

where A = [ψ(ri j) : 1≤ i≤ N, 1≤ j ≤ N ] and λ (n) = [λ (n)
1 , λ

(n)
2 , ..., λ

(n)
N ]T .

The matrix A can be split into two matrices Ad andAb corresponding to N−2 inte-
rior points and two boundary points in the following form:

A = Ad +Ab, (2.9)

where Ad = [ψ(ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere],

Ab = [ψ(ri j) : i = 1, N, 1≤ j ≤ N and 0 elsewhere].

The following radial basis functions will be used for numerical approximation of
the problem:
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Multiquadric (MQ) ψ(r j) =
√

r2
j + c2

Gaussian (GA) ψ(r j) = e−c r2
j

Thin Plate Spline (TPS) ψ(r j) = r2m
j log(r j), where m = 2 in our case.

The constant c is known as the shape parameter of the radial basis functions and its
value is a key factor for accuracy of the solution. Optimal value of c is to be found
numerically for each radial basis function and for each problem separately.

Using Eq. (2.8) in Eqs. (2.5) and (2.1), we get the following matrix form:[
A−µ C + θ∆t

{
ε

((
U (n)

)2
∗B+2

(
U (n) ◦U (n)

x

)
∗Ad

)}]
λ

(n+1)

=
[

A−µ C +∆t
{

ε (3θ −1)
(

U (n)
)2
∗B
}]

λ
(n) +E(n+1), (2.10)

where B and C are N×N matrices such that

B =
[
ψ
′ (ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere

]
,

C =
[
ψ
′′ (ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere

]
,

ψ
′ (ri j) =

d
dx

ψ

(√
(x− x j)2

)
|x=xi ,

ψ
′′ (ri j) =

d2

dx2 ψ

(√
(x− x j)2

)
|x=xi ,

U (n)
x = Bλ

(n)and E(n+1) = [α1(t(n+1)), 0, 0, ..., 0, α2(t(n+1))]T .

The symbol ‘*’ means that the ith component of the vector U (n) is multiplied to
every element of the ith row of the matrix B and the symbol ‘◦’ means that ith
component of the vector U (n) is multiplied to ith component of vector U (n)

x . Eq.
(2.10) can be rewritten as

λ
(n+1) = M−1Nλ

(n) +M−1E(n+1), (2.11)

where M =
[
A−µ C +θ∆t

{
ε

((
U (n)

)2 ∗B+2
(

U (n) ◦U (n)
x

)
∗Ad

)}]
and

N =
[

A−µ C +∆t
{

ε (3θ −1)
(

U (n)
)2
∗B
}]

.

From Eqs. (2.11) and (2.8), we can write

U (n+1) = AM−1NA−1U (n) +AM−1E(n+1). (2.12)
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[Hon and Schaback (2001)] have shown that the non-singularity of the matrix M
can not be proved in general, therefore, it is not possible to show that the scheme is
well-posed in all such cases. However, singularities in practical problems are rare.

Eq. (2.10) represents a system of N linear equations in N unknown parameters
λ j. This system can be solved by the Gaussian elimination method. The colloca-
tion matrix corresponding to the TPS becomes highly ill-conditioned because of
a singularity at rii where the sets of centers and collocation points coincide. This
problem does not occur in rest of the two RBFs. However, in the case of TPS we
use the limiting value limr→0 r4 log(r) = 0, to obtain a solvable system. In this
case, the Gauss elimination method with partial pivoting is used to solve the sys-
tem of linear equations. The approximate solution can be found from Eq. (2.6) at
any point in the interval [a, b] after finding the values of the unknown parameters
λ j, j = 1,2, ...,N at each time level. The results of this section can be summarized
in the following algorithm.

2.1 Algorithm

The algorithm works in the following manner:

1. Choose N collocation points from the domain set [a, b].

2. Choose the parameters ∆t and θ such that (0≤ θ ≤ 1).

3. Calculate the initial solution U (0) from Eq. (2.2) and then use Eq. (2.8) to
find λ (n) = A−1U (n).

4. The parametersλ
(n+1)
j are calculated from Eq. (2.10).

5. The approximate solution U (n+1)at the successive time levels is obtained
from step 4 and Eq. (2.8)

3 Stability Analysis

In this section, we present the stability of the RBF approximation (2.10) using the
matrix method. Eq. (1.4) can be linearized by assuming the quantity U2 in the
nonlinear term U2Ux as locally constant. The error e(n) at the nth time level is given
by

e(n) = U (n)
exact −U (n)

app, (3.1)

where U (n)
exact , U (n)

app are the exact and the numerical solutions at the nth time level.
The error equation for the linearized MEW equation can be written as;

[R+θ∆tS]e(n+1) = [R−∆t(1−θ)S]e(n), (3.2)
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where R = [A−µ C]A−1 and S = ε

((
U (n)

)2 ∗B
)

A−1.

Eq. (3.2) can be rewritten as

e(n+1) = Te(n). (3.3)

where T = [I + θ∆tH]−1[I−∆t(1− θ)H] and H = R−1S. The numerical scheme
is stable if ‖T‖2 ≤ 1, which is equivalent to ρ(T ) ≤ 1, where ρ(T ) denotes the
spectral radius of the matrix T . From the definition of the matrix T in Eq. (3.3),
the stability is satisfied automatically in the following manner∣∣∣∣1−∆t(1−θ)λH

1+∆tθλH

∣∣∣∣≤ 1, (3.4)

where λH ≥ 0 is the eigenvalues of the matrix H. This fact is also verified from
Tab. 3(a) and Figure 2, where minimum eigenvalues are calculated versus different
values of shape parameter c.

When θ = 0.5, the inequality (3.4) becomes∣∣∣∣1−0.5∆tλH

1+0.5∆tλH

∣∣∣∣≤ 1. (3.5)

For θ = 0, the inequality (3.4) becomes

|1−∆tλH | ≤ 1, (3.6)

i.e., ∆t ≤ 2
λH

and λH ≥ 0. Thus for θ = 0, the scheme is conditionally stable.

The stability of the scheme (2.10) also depends on the condition number of the ma-
trix T , the weight parameter θ , the minimum distance between any two collocation
points h in the domain set [a, b], and the local shape parameter c. [Cheng, Golberg,
Kansa and Zammito (2003)] showed that when c is very large then the RBFs system
convergence is of exponential order but the solution breaks down when c is greater
than the limiting value. The condition number of the matrix T versus different val-
ues of the shape parameter c is shown in Tab. 3(b) and Figure 3 corresponding to
problem 4.1 for MQ case only. In Figure 4, we have plotted error for different val-
ues of the shape parameter c. Critical values of the shape parameter c in this case
are 0.1 and 1.1 and the condition numbers of the matrix T corresponding to these
values are given by 1.0037×100 and 5.5482×1014 respectively. It is clear from
Figures 2-4 and Tabs. 3(a)-3(b), that if the value of the shape parameter c is chosen
below or beyond the critical values, then the solution breaks down and hence the
method becomes unstable. The interval of stability for the shape parameter c in this
case is (0.1, 1.1). In case of the parameter free RBFs such as TPS, the stability and
conditioning depend on the weight parameter θ , eigenvalue λH .
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4 Numerical Tests and Results

In this section we present the results obtained from the meshfree method (2.10) pro-
posed for the numerical solution of the MEW Eqs. (1.4) and (2.1)-(2.2) for a single
solitary wave, an interaction of two solitary waves and a train of solitary waves
generated from Maxwellian initial condition. The solution produced by the new
method preserve mass, momentum and energy of the waves during propagation.
The accuracy of the scheme is measured by using the following error norms:

L2 = ‖Uexact −Uapp‖2 =

√√√√h
N

∑
j=0

∣∣(Uexact) j− (Uapp) j
∣∣2,

and

L∞ = ‖Uexact −Uapp‖∞
= max

j

∣∣∣(Uexact) j− (Uapp) j

∣∣∣ ,
where Uexact , Uapp represent the exact and approximate solutions respectively and
h (the minimum distance between any two collocation points of the domain set
[a, b]). The value of the weight parameter θ used in the main scheme (2.10) is
taken as 0.5 for each problem.

The MEW equation possesses three conservation properties related to mass, mo-
mentum and energy given by [Evans and Raslan (2005)] in the following manners
respectively:

C1 =
b∫

a

U dx≈ h
N

∑
i=1

U(xi),

C2 =
b∫

a

(
U2 + µ (Ux)

2
)

dx≈ h
N

∑
i=1

[
(U(xi))

2 + µ (Ux(xi))
2
]
,

C3 =
b∫

a

U4 dx≈ h
N

∑
i=1

(U(xi))
4.

4.1 Propagation of Single Solitary Wave

The following analytical solution of Eq. (1.4) is given in [Zaki (2000)],

U (x, t) = Asech [k (x− xo− pt)] . (4.1)
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This equation represents a single solitary wave of amplitude A =
√

6p/ε , where
p is the velocity of the wave and k =

√
1/µ . The initial condition of Eq. (1.4) is

given by

U (x,0) = Asech [k (x− xo)] . (4.2)

The boundary conditions are extracted form the exact solution (4.1). We choose
the parameters values A = 0.25, xo = 30, ε = 3, µ = 1, the number of collocation
points N = 800 and time steps ∆t = 0.2 and 0.05 and the space interval 0≤ x≤ 80
in order to compare our results with those given in [Esen and Kutluay (2008)] and
[Evans and Raslan (2005)]. The numerical tests are performed using the three RBFs
MQ, GA and TPS. The simulation is done up to time t = 20. The error norms L∞, L2
and conservation quantities C1, C2 and C3 are computed, which are shown in the
Tabs. 1(a)-1(b) along with the results of the previous methods [Esen and Kutluay
(2008)] and [Evans and Raslan (2005)] for comparison. From the numerical results
given in Tab. 1(a) it is observed that throughout the simulation, the error norms L∞

remains less than 1.008×10−6 and L2 remains less than 1.61×10−6 for each of MQ
and GA, while the upper bound for these error norms in the case of TPS are 5.414×
10−6 and 6.269× 10−6 respectively, for ∆t = 0.2. Single solitary wave solutions
at initial and different time levels are shown in Figure 1. During simulation it is
observed form Tab. 1(a) that the error in the invariant quantities C1, C2 and C3
approaches zero for both MQ and GA, however for TPS the error in the C1 quantity
approaches zero and maximum absolute error in the invariant quantities C2 and C3
remains less than 2.0× 10−6 and 1.0× 10−7 respectively. It can also be observed
Tab. 1(b) that throughout the simulation, the upper bounds for the error norms
L∞, L2 are 6.7× 10−8 and 1.14× 10−7 for MQ and GA respectively, while the
maximum values of these error norms for TPS are 5.284×10−6 and 5.451×10−6

for ∆t = 0.05.

In Tabs. 1(c), we have taken different values of A = 0.25, 0.5, 0.75 and 1.0 and
keeping other parameters same in order to compare our results with those given in
[Esen and Kutluay (2008)]. The algorithm is examined for A = 0.25, 0.5, 0.75 and 1.0
and the simulation is done up to t = 20 for each MQ, GA and TPS. The error
norms L∞, L2 and conservation quantities C1, C2 and C3 are computed, which are
shown in the Tab. 1(c) along with the results of the previous methods [Esen and
Kutluay (2008)] for comparison. It is clear from Tab. 1(c) that the error norms
L∞ and L2 are small enough and the numerical values are in close proximity of
the exact values during the run time of the proposed algorithm for each of the
RBFs. It is also clear from Tab. 1(c) that the accuracy in terms of error norms
L∞ and L2 increases as A decreases. For example, at t = 20 the error norms
are L∞ = 4.61685× 10−5 and L2 = 6.97953× 10−5 for A = 1, whereas these are
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Table 1(a): Comparisons of invariants and error norms for the single solitary wave
with results from [Esen and Kutluay (2008)] and [Evans and Raslan (2005)], A =
0.25, N = 800, ∆t = 0.2, 0≤ x≤ 80.

Method Time L∞×104 L2×104 C1 C2 C3

MQ 0 0.0 0.0 0.785398 0.166667 0.0052083
5 0.00244 0.00403 0.785398 0.166667 0.0052083
10 0.00494 0.00806 0.785398 0.166667 0.0052083
15 0.00748 0.01208 0.785398 0.166667 0.0052083
20 0.01008 0.01610 0.785398 0.166667 0.0052083

GA 0 0.0 0.0 0.785398 0.166667 0.0052083
5 0.00244 0.00403 0.785398 0.166667 0.0052083
10 0.00494 0.00806 0.785398 0.166667 0.0052083
15 0.00748 0.01208 0.785398 0.166667 0.0052083
20 0.01008 0.01610 0.785398 0.166667 0.0052083

TPS 0 0.0 0.0 0.785398 0.166667 0.0052083
5 0.03955 0.03605 0.785398 0.166665 0.0052082
10 0.04375 0.04283 0.785398 0.166665 0.0052082
15 0.04905 0.05213 0.785398 0.166665 0.0052082
20 0.05414 0.06269 0.785398 0.166665 0.0052082

[Esen (2008)] 20 2.57638 2.70165 0.785398 0.166474 0.0052083
[Evans (2005)] 20 1.56954 2.02148 0.785286 0.166582 0.0052061
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Fig. 1: Single solitary wave solutions, N = 800, ∆t = 0.2

0.2 0.4 0.6 0.8 1.0 1.2

0.0

5.0x10103

1.0x10104

1.5x10104

2.0x10104

2.5x10104

c

λmin(Η)

Fig. 2: Minimum eigenvalue of matrix H versus shape parameter c

 

L∞ = 2.5× 10−9 and L2 = 4.0× 10−9 for A = 0.25. The most accurate results are
obtained when the values of the shape parameter c = 0.9 and 6.5 are used for the
MQ and GA respectively. From the numerical given in Tabs. 1(a)-1(c), it is clear
that the performance of the proposed meshfree method is better than the existing
methods [Esen and Kutluay (2008)] and [Evans and Raslan (2005)].

The pointwise rates of convergence in space and time are calculated by using the
following formulae:

log10
(
‖Uexact −Uhi‖/

∥∥Uexact −Uhi+1

∥∥)
log10(hi/hi+1)
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Table 1(b): Comparisons of invariants and error norms for the single solitary wave
with results from [Esen and Kutluay (2008)] and [Evans and Raslan (2005)], A =
0.25, N = 800, ∆t = 0.05, 0≤ x≤ 80.

Method Time L∞×104 L2×104 C1 C2 C3

MQ 0 0.0 0.0 0.785398 0.166667 0.0052083
10 0.00031 0.00050 0.785398 0.166667 0.0052083
20 0.00063 0.00101 0.785398 0.166667 0.0052083

GA 10 0.00031 0.00050 0.785398 0.166667 0.0052083
20 0.00067 0.00114 0.785398 0.166667 0.0052083

TPS 10 0.04364 0.04003 0.785398 0.166665 0.0052082
20 0.05284 0.05451 0.785398 0.166665 0.0052082

[Esen (2008)] 20 2.56997 2.69281 0.785398 0.166474 0.0052083
[Evans (2005)] 20 2.49892 2.90517 0.784954 0.166476 0.0051995

and

log10
(
‖Uexact −Uhi‖/

∥∥Uexact −Uhi+1

∥∥)
log10(∆ti/∆ti+1)

.

The term Uexact is the exact solution, whereas Uhiand U∆ti are the numerical so-
lutions with spatial step size and time step size ∆ti respectively. Computations
are carried out with the different spatial and time step sizes to examine the point
rates of convergence in space and time for each of the MQ, GA and TPS. In Tab.
2(a), the time step is kept fixed at ∆t = 0.05 and the number of collocation points
N = 100, 200, 400, 600, 800 is varied to calculate the spatial rate of convergence
for each of the RBFs approximations. It can be concluded from the Tab. 2(a) that
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Table 1(c): Invariants and error norms for the single solitary wave, ∆t = 0.01, N =
800, 0≤ x≤ 80.

Time L∞×104 L2×104 C1 C2 C3

A = 0.25 0 0.0 0.0 0.785398 0.166667 0.0052083
MQ 20 0.000025 0.000040 0.785398 0.166667 0.0052083
GA 20 0.000025 0.000040 0.785398 0.166667 0.0052083
TPS 20 0.052774 0.054110 0.785398 0.166665 0.0052082

[Esen (2008)] 20 2.569562 2.692249 – – –
A = 0.5 0 0.0 0.0 1.570796 0.666667 0.0833333

MQ 20 0.003404 0.005176 1.570796 0.666667 0.0833333
GA 20 0.003340 0.005176 1.570796 0.666667 0.0833333
TPS 20 0.003340 0.005176 1.570796 0.666667 0.0833333

[Esen (2008)] 20 14.57568 18.26059 – – –
A = 0.75 0 0.0 0.0 2.356194 1.500000 0.4218750

MQ 20 0.057780 0.091244 2.356194 1.500000 0.4218750
GA 20 0.057780 0.091244 2.356194 1.500000 0.4218750
TPS 20 0.592772 0.825156 2.356194 1.499983 0.4218656

[Esen (2008)] 20 30.91793 43.95711 – – –
A = 1.0 0 0.0 0.0 3.141593 2.666667 1.3333333

MQ 20 0.461685 0.697953 3.141593 2.666666 1.3333333
GA 20 0.436168 0.697981 3.141594 2.666666 1.3333331
TPS 20 1.502736 2.253715 3.141592 2.666637 1.3333035

[Esen (2008)] 20 56.82131 82.85314 – – –

the convergence rate decreases with the smaller spatial step size. Both the error
norms L∞ and L2 decreases slightly by increasing the number of collocation points
N for each case of the given RBFs. In the Tab. 2(b), the number of the collocation
points is kept fixed at N = 800 and the time step size ∆ti = 1, 0.5, 0.2, 0.1, 0.05
is varied to compute the time rate of convergence for each of the RBFs approxima-
tion. It can be noted from the Tab. 2(b), that the rate of convergence increases with
the smaller time step size for MQ and GA, while the rate of convergence decreases
for TPS.

4.2 Interaction of two solitary waves

Interaction of the two positive solitary waves is studied by using the initial condition

U (x,0) = A1 sech [k (x− x1)]+A2 sech [k (x− x2)] , (4.3)

where k =
√

1/µ .
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Table 2(a): Space rate of convergence at t = 20, ∆t = 0.05, A = 0.25, 0≤ x≤ 80.

MQ N L∞×105 Order L2×105 Order
100 106.34388 — 136.55155 —
200 0.09462 10.13427 0.09984 10.41747
400 0.00626 3.91686 0.01006 3.31092
600 0.00630 -0.01307 0.01006 0.00000
800 0.00630 0.00061 0.01006 0.00000

GA
100 106.28949 — 136.35656 —
200 0.08786 10.24054 0.09275 10.52181
400 0.00626 3.80986 0.01006 3.20451
600 0.00630 -0.01307 0.01006 0.00000
800 0.00630 0.00061 0.01006 0.00000

TPS
100 430.00635 — 519.66539 —
200 39.62500 3.43988 41.67800 3.64022
400 4.38030 3.17731 4.50080 3.21103
600 1.24020 3.09300 1.28910 3.06472
800 0.52836 2.99198 0.54506 3.01847

We choose the parameters α1 = 0, α2 = 0, A1 = 1, A2 = 0.5, µ = 1, ε = 3, x1 = 15,
x2 = 30 and the space interval 0 ≤ x ≤ 80 to compare our results with those in
the literature [Esen and Kutluay (2008)]. The initial condition (4.3) with these pa-
rameters gives solitary waves with the amplitudes 1 and 0.5 occurring at x = 15
and x = 30 respectively. Computations are carried out up to time t = 80, time step
∆t = 0.2 and the number of collocation points N = 800. In the process of interac-
tion, the larger and the smaller waves interact and separate while preserving their
original shapes and velocities. Shapes of both the waves during the interaction at
time t = 30, 35, 40 and after interaction at time t = 55 and 80 are shown in Fig-
ures 5-10 for each case of the RBFs. At t = 80, the smaller solitary wave with
the amplitude 0.49878 and peak position located at x = 37.7, larger solitary wave
with the amplitude 0.99931 and peak position located at x = 56.8 are obtained. It
is found that the absolute difference between amplitudes of the larger solitary wave
at t = 0 and t = 80 is 6.9× 10−4and that for the smaller wave is 1.22× 10−3 for
each MQ, GA and TPS. The invariant quantities C1, C2 and C3 at various times
are documented in the Tabs. 4-5 for MQ, GA and TPS. During simulation it is
observed that the upper bounds for the maximum absolute errors of the invariant
quantities C1, C2 and C3 remain less than 1.0× 10−6, 4.0× 10−3 and 4.0× 10−3
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Table 2(b): Time rate of convergence at t = 20, N = 800, A = 0.25, 0≤ x≤ 80.

MQ ∆ti L∞×105 Order L2×105 Order
1 2.51860 — 4.02510 —

0.5 0.62978 1.99970 1.00630 1.99996
0.2 0.10076 2.00005 0.16099 2.00012
0.1 0.02519 2.00006 0.04024 2.00012

0.05 0.00630 2.00003 0.01006 2.00000
GA

1 2.51860 — 4.02510 —
0.5 0.62978 1.99970 1.00630 1.99996
0.2 0.10076 2.00005 0.16099 2.00012
0.1 0.02519 2.00006 0.04024 2.00012

0.05 0.00630 2.00003 0.01006 2.00000
TPS

1 2.48890 — 4.28330 —
0.5 0.93173 1.41752 1.33170 1.68545
0.2 0.54140 0.59248 0.62692 0.82222
0.1 0.53089 0.02828 0.55902 0.16538

0.05 0.52836 0.00689 0.54506 0.03648

Table 3(a): Minimum eigenvalues of the matrix H versus shape parameter c at
t = 20, N = 800, A = 0.25, ∆t = 0.2, 0≤ x≤ 80.

c λmin(H) L∞−error L2−error
0.10 4.0727E-28 1.5082 E-03 1.7779 E-03
0.20 1.7745 E-30 4.8175 E-06 6.1960 E-06
0.30 2.9156 E-28 1.0135 E-06 1.6188 E-06
0.40 4.0920 E-26 1.0076 E-06 1.6099 E-06
0.50 3.8133 E-22 1.0076 E-06 1.6099 E-06
0.60 -3.3065 E-19 1.0076 E-06 1.6099 E-06
0.70 -1.9630 E-14 1.0076 E-06 1.6099 E-06
0.80 -1.2648 E-12 1.0076 E-06 1.6099 E-06
0.90 1.4355 E-11 1.0076 E-06 1.6099 E-06
0.95 8.5037 E-06 1.0076 E-06 1.6099 E-06
1.00 -4.9828 E-04 1.0076 E-06 1.6099 E-06
1.10 1.1138 E-06 1.0076 E-06 1.6099 E-06
1.15 2.1696 E104 1.5232 E+54 3.0458 E+53
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Table 3(b): Condition number versus shape parameter c at t = 20, N = 800, ∆t =
0.2, A = 0.25, 0≤ x≤ 80.

c Condition number L∞−error c Condition number L∞−error
of the matrix T of the matrix T

0.10 1.0037 E00 1.5082 E-03 0.70 8.5042 E08 1.0076 E-06
0.20 1.0038 E00 4.8175 E-06 0.80 1.6792 E13 1.0076 E-06
0.30 1.0038 E00 1.0135 E-06 0.90 7.5709 E11 1.0076 E-06
0.40 1.0044 E00 1.0076 E-06 1.00 1.1586 E14 1.0076 E-06
0.50 1.2797 E00 1.0076 E-06 1.10 5.5482 E14 1.0076 E-06
0.60 2.9853 E03 1.0076 E-06 1.20 9.2212 E25 7.6486 E+58

respectively, for each MQ, GA and TPS. The values of shape parameter for the
parameter dependent RBFs MQ and GA are c = 0.9 and 6.5 respectively.

Table 4: Invariant quantities for interaction of two solitary waves

Our method (MQ) [Esen (2008)]
Time C1 C2 C3 C1 C2 C3

0 4.712388 3.333336 1.416670 4.712388 3.329462 1.416669
20 4.712389 3.332190 1.415525 4.712387 3.328361 1.415523
40 4.712389 3.330941 1.414054 4.712385 3.327112 1.414050
55 4.712389 3.330700 1.414073 4.712386 3.326393 1.414062
60 4.712389 3.330416 1.413787 4.712388 3.326228 1.413785
80 4.712389 3.330236 1.412675 4.712389 3.325434 1.412671

Table 5: Invariant quantities for interaction of two solitary waves.

Our method (GA) Our method (TPS)
Time C1 C2 C3 C1 C2 C3

0 4.712388 3.333336 1.416670 4.712388 3.333336 1.416670
20 4.712389 3.332190 1.415525 4.712389 3.332190 1.415525
40 4.712389 3.330941 1.414054 4.712389 3.330941 1.414054
55 4.712389 3.330700 1.414073 4.712389 3.330700 1.414073
60 4.712389 3.330416 1.413787 4.712389 3.330416 1.413787
80 4.712389 3.330236 1.412675 4.712389 3.330236 1.412675
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4.3 The Maxwellian initial condition

The third numerical experiment of the proposed scheme is concerned with the
generation of a number of solitary waves from Maxwellian initial condition. The
Maxwellian initial condition is given by

U(x,0) = exp(−x2). (4.4)
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Fig. 3: Condition number of the matrix T versus shape parameter c
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The generation of a number of solitary waves from Maxwell initial condition (4.4)
depends on the value of µ . By reducing the value of µ , more solitary waves can
be obtained [see Zaki (2000)] i.e. for µ >> µc, where µc is some critical value,
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the Maxwellian condition does not break into solitons solution but exhibits rapidly
oscillating wave packets. When µ ≈ µc, a mixed type of solution is obtained
which consists of a leading solitons and an oscillating tail. When µ << µc, the
Maxwellian condition breaks up in to a number of solitons according to the value
of µ . Computations are carried out up to time t = 12 with the parameters values
µ = 1, 0.5, 0.1, 0.05, 0.02 and 0.005, ε = 3, ∆t = 0.01, N = 400 and the space
interval−20≤ x≤ 20 to compare our results with those given in [Evans and Raslan
(2005)], [Saka (2007)] and [Zaki (2000)]. For µ = 1 and 0.05, the Maxwellian con-
dition does not generate a clear solitary wave as shown in the Figures 11-12, while
for relatively smaller values of µ = 0.1, 0.05, 0.02 and 0.005 Maxwellian condi-
tion breaks down into a number of solitary waves as shown in the Figures 13-16.
The invariant quantities C1, C2, C3 corresponding to µ = 1, 0.5, 0.1 and 0.05 at
various times are documented in the Tabs. 6-7 using MQ, GA and TPS. It can
be noted from Tabs. 6-7 that the results are in good agreement with those given
in [Evans and Raslan (2005)], [Saka (2007)] and [Zaki (2000)]. High accuracy is
obtained corresponding to c = 0.4 and 10 for MQ and GA respectively.

Table 6: Invariant quantities for generation of solitary waves from Maxwellian
condition

Our method (MQ) [Saka (2007)]
µ Time C1 C2 C3 C1 C2 C3

1 0 1.772454 2.506628 0.886227 1.772454 2.506628 0.886227
6 1.772454 2.506626 0.886227 1.772454 2.506630 0.886227
12 1.772454 2.506624 0.886227 1.772453 2.506630 0.886227

0.5 0 1.772454 1.879971 0.886227 1.772454 1.879971 0.886227
6 1.772454 1.879971 0.886227 1.772454 1.879971 0.886227
12 1.772454 1.879971 0.886227 1.772453 1.879971 0.886227

0.1 0 1.772454 1.378646 0.886227 1.772454 1.378646 0.886227
6 1.772455 1.378659 0.886250 1.772455 1.378627 0.886264
12 1.772456 1.378650 0.886261 1.772456 1.378624 0.886265

0.05 0 1.772454 1.315980 0.886227 1.772454 1.315980 0.886227
6 1.772454 1.315991 0.886417 1.772465 1.315915 0.886452
12 1.772454 1.315997 0.886432 1.772466 1.315916 0.886454

5 Conclusion

A numerical meshfree technique based on the three different types of RBFs, namely
MQ, GA and TPS, has been proposed for the approximate solution of the MEW
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Table 7: Invariant quantities for generation of solitary waves from Maxwellian
condition

Our method (GA) Our method (TPS)
µ Time C1 C2 C3 C1 C2 C3

1 0 1.772454 2.506628 0.886227 1.772454 2.506628 0.886227
6 1.772454 2.506626 0.886227 1.772453 2.506626 0.886226
12 1.772453 2.506624 0.886227 1.772452 2.506623 0.886226

0.5 0 1.772454 1.879971 0.886227 1.772454 1.879971 0.886227
6 1.772454 1.879971 0.886227 1.772454 1.879970 0.886226
12 1.772454 1.879971 0.886227 1.772454 1.879969 0.886225

0.1 0 1.772454 1.378646 0.886227 1.772454 1.378646 0.886227
6 1.772455 1.378659 0.886250 1.772455 1.378656 0.886247
12 1.772456 1.378650 0.886261 1.772455 1.378650 0.886257

0.05 0 1.772454 1.315980 0.886227 1.772454 1.315980 0.886227
6 1.772454 1.315991 0.886417 1.772504 1.315989 0.886376
12 1.772454 1.315997 0.886432 1.772503 1.315995 0.886415

equation. The efficiency of the method is tested on the problems of propaga-
tion of the single solitary wave, interaction of two solitary waves and develop-
ment of a train of solitary waves from Maxwellian initial condition. The accuracy
is examined in terms of the L2, L∞ error norms and the conservation quantities
C1, C2 and C3. Stability analysis is performed by the matrix method. The proposed
method is simple in applicability and provides high accuracy and invariance of the
conserved quantities. The advantage of using TPS is that it is independent of the
shape parameter c. The problems presented in this paper suggest that meshfree ap-
proximation methods should be considered as one of the possible ways of solving
these kinds of nonlinear partial differential equations.
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