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The Coupling Method of Natural Boundary Element and
Mixed Finite Element for Stationary Navier-Stokes

Equation in Unbounded Domains

Dongjie Liu1 and Dehao Yu2

Abstract: The coupling method of natural boundary element and mixed finite
element is applied to analyze the stationary Navier-Stokes equation in 2-D un-
bounded domains. After an artificial smooth boundary is introduced, the original
nonlinear problem is reduced into an equivalent problem defined in bounded com-
putational domain. The well-posedness of the reduced problem is proved. The
finite element approximation of this problem is given, and numerical example is
provided to show the feasibility and efficiency of the method.
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1 Introduction

Let Ω0 be a bounded and simple connected domain in R2 with sufficiently smooth
boundary Γ1. Consider the stationary Navier-Stokes equations in the exterior do-
main Ω := R2/Ω0 (M denotes the closure of a set M ⊂ R2), under Dirichlet bound-
ary conditions:
⎧⎪⎪⎨
⎪⎪⎩

−μΔ�u+(�u ·�)�u+�p = �f , in Ω
div �u = 0, in Ω
�u = 0, on Γ1

�u →�u∞, when r → +∞

(1)

where �u = (u1,u2)T is the velocity vector of the fluid, p the kinematic static pres-
sure, �f = ( f1, f2) the density of outer volume force, μ > 0 is kinematic viscosity.
�u∞ is non-zero vector field which we choose without restriction of generality to be
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parallel to the x-axis, i.e., �u∞ = (u∞,0) and u∞ > 0. x = (x1,x2)T is the coordinate,

r =
√

x2
1 +x2

2. We assume �f has compact support, i.e. supp{�f} ⊂ B, B is a disk
with radius R (R > 0 is a constant).

Let εi j(�u) and σi j(�u, p) denote the rate of strain and the stress tensors, respectively,

εi j(�u) =
1
2
(

∂ui

∂x j
+

∂u j

∂xi
), (i, j = 1,2)

σi j(�u, p) = −pδi j +2μεi j(�u), (i, j = 1,2)

where δi j is the Kronecker Delta whose properties are

δi j =
{

1, i = j,
0, i �= j.

Moreover let�t = (t1, t2)T denote the normal stress,

ti =
2

∑
j=1

σi j(�u, p)n j, (i = 1,2)

�n = (n1,n2) denote the unit normal on Γ1 defined almost everywhere pointing from
Ω0 into Ω.
This problem has been investigated in a number of works. A detailed treatment can
be found, e.g., in [Galdi (1994); Galdi (1999)].

There are several methods to solve boundary value problems in unbounded do-
mains. One of the most popular methods is natural boundary reduction method
and its coupling with finite element method, which is suggested and developed
first by Feng and Yu in early 1980s [Feng and Yu (1983);Yu (1983); Yu (1985)].
In this reduction, the problem over unbounded domain is reduced into a bound-
ary value problem in a bounded computational domain with a hyper-singular inte-
gral equation on the artificial boundary by using a Green function. This method
is also known as the exact artificial boundary condition (DtN) method [Han and
Wu (1985); Keller and Givoli (1989)]. In the last two decades, many authors
have worked on this subject for various problems by different techniques, see [
Givoli(1992); Yu (1993); Li and He (1993); Bao (2000); Yu (2002); B önisch,
Heuveline, and Wittwer (2005)]and the references therein. For hyper-singular inte-
gral equation, also can see [Aliabadi (2002); Chen and Hong (1999); Hong and
Chen (1988)]. As to BEM and FEM, there are many application contexts can
be found, e.g., in [Marin, Liviu, Power, Henry(2008); Fedelinski, P.and Gorski,
R.(2006); Frangi, Ghezzi, and Faure-Ragani(2006); Springhetti, Novati, and Marg-
onari(2006); Albuquerque, E. L.and Aliabadi, M. H.(2008)].
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Figure 1: Domain of the model problem

In this article we consider the coupling method of natural boundary element and
mixed finite element. We show here that this approach can be adapted to analyze
the stationary Navier-Stokes equation in 2-D unbounded domains.

The rest of this paper is organized as follows. In section 2, we introduce an artifi-
cial boundary and approximate Navier-Stokes equations by linear Oseen equations
via suitable transmission conditions. Then, we present a new version of the mixed
FEM-BEM formulation, and prove a well-posed result of the reduced mixed vari-
ational problem. In section 3, finite element approximation of coupling method
is given. In section 4, the approximate problem is solved by numerical imple-
mentation. Section 5 is to construct numerical example to test the performance of
designed method.

2 Natural boundary reduction and coupling problem

We introduce an artificial interface Γ2 dividing the original domain into two sub-
domains: a bounded interior domain Ω− with ∂Ω−=Γ1 ∪Γ2, in which we consider
the Navier-Stokes equation, and an unbounded domain Ω+ lying outside Γ2 with
Ω+ = Ω+ ∪Γ2 (see Fig.1.). In Ω+ we approximate the nonlinear Navier-Stokes
equation by the linear Oseen system. We use the transmission conditions according
to [ Feistauer and Schwab (2001)], then problem (1) is equivalent to the following
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coupled problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μΔ�u− +(�u− ·�)�u− +�p− = �f , in Ω−

div �u− = 0, in Ω−

�u− = 0, on Γ1

�u− =�u+, on Γ2
�t−|Γ2 =�t+|Γ2+

1
2 [(�u− ·�n)�u−− (�u∞ ·�n)�u+], on Γ2

−μΔ�u+ +(�u∞ ·�)�u+ +�p+ = 0, in Ω+

div �u+ = 0, in Ω+

�u+ →�u∞, when |x| → +∞

(2)

It is well known (see[ Chadwick (1998)]) that in Ω+ the velocity�u and the pressure
p has the following expression

ux =
∂φ
∂x

− 1
2k

∂ χ
∂x

+ χ

uy =
∂φ
∂y

− 1
2k

∂ χ
∂y

p = −u∞
∂φ
∂x

where k = Re
2 (Re is the Reynolds number), φ and χ are two multi-valued functions

satisfying the following equations:

{
Δφ = 0, Ω+

(Δ−2k ∂
∂x)χ = 0, Ω+ (3)

Furthermore, they have the following expansions

φ =
A0

2
logr− B0

2
θ −

+∞

∑
n=1

1
n
(

R
r
)n(An cosnθ +Bn sinnθ )

χ =
C0

2K0(kR)
ekxK0(kr)

+
D0

K0(kR)

∫ −∞

0
ek(x+ξ) ∂

∂y
K0(krξ )dξ

+ ekx
+∞

∑
n=1

Kn(kr)
Kn(kR)

(Cn cosnθ +Dn sinnθ )
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where rξ =
√

(x−ξ )2 +y2, In and Kn denote the first kind and second kind mod-
ified Bessel functions respectively. According to the natural boundary reduction
theory and [Zheng and Han (2002)], we obtain the integral equation on artificial
boundary Γ2(

g1(θ )
g2(θ )

)
=

(
A B
−B A

)(
cosθ
sinθ

)
(4)

or

�g = K(�u|Γ2) (5)

where, �g = (g1,g2)T is stress tensor.

A =
+∞

∑
n=0

δn(an cos(n+1)θ +bn sin(n+1)θ )

−
+∞

∑
n=0

δnΦ1
n cos(n+1)θ +

+∞

∑
n=0

δnΨ2
n sin(n+1)θ

−
+∞

∑
n=0

δnΦ̃1
n cos(n+1)θ +

+∞

∑
n=0

δnΨ̃2
n sin(n+1)θ

+
+∞

∑
n=0

δn(b̃n cos(n+1)θ − ãn sin(n+1)θ )

+
1

kR

+∞

∑
n=0

δn(ndn−an)cosnθ

− 1
kR

+∞

∑
n=1

(cn +nbn) sinnθ

− 1
kR

+∞

∑
n=0

δn(b̃n +nc̃n)cosnθ

+
1

kR

+∞

∑
n=1

(nãn− d̃n) sinnθ

B =
1

kR

+∞

∑
n=0

δn(nan−dn) sinnθ

− 1
kR

+∞

∑
n=0

δn(ncn +bn)cosnθ

−1
2

+∞

∑
n=0

δn(Φ1
n +Ψ1

n) sin(n+1)θ
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+
1
2

+∞

∑
n=0

δn(Φ1
n −Ψ1

n) sin(n−1)θ

−1
2

+∞

∑
n=0

δn(Φ2
n +Ψ2

n)cos(n−1)θ

−1
2

+∞

∑
n=0

δn(Ψ2
n −Φ2

n)cos(n+1)θ

+
1

kR

+∞

∑
n=0

δn(nb̃n + c̃n) sinnθ

+
1

kR

+∞

∑
n=0

δn(ãn −nd̃n)cosnθ

−1
2

+∞

∑
n=0

δn(Φ̃1
n + Ψ̃1

n) sin(n+1)θ

+
1
2

+∞

∑
n=0

δn(Φ̃1
n − Ψ̃1

n) sin(n−1)θ

−1
2

+∞

∑
n=0

δn(Φ̃2
n + Ψ̃2

n)cos(n−1)θ

−1
2

+∞

∑
n=0

δn(Ψ̃2
n − Φ̃2

n)cos(n+1)θ

where

an =
1
π

∫ 2π

0
u1(R,θ )cosnθ cosθdθ ,

bn =
1
π

∫ 2π

0
u1(R,θ )cosnθ sinθdθ ,

cn =
1
π

∫ 2π

0
u1(R,θ ) sinnθ cosθdθ ,

dn =
1
π

∫ 2π

0
u1(R,θ ) sinnθ sinθdθ ,

ãn =
1
π

∫ 2π

0
u2(R,θ )cosnθ cosθdθ ,

b̃n =
1
π

∫ 2π

0
u2(R,θ )cosnθ sinθdθ ,

c̃n =
1
π

∫ 2π

0
u2(R,θ ) sinnθ cosθdθ ,
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d̃n =
1
π

∫ 2π

0
u2(R,θ ) sinnθ sinθdθ ,

Φ1
n =

+∞

∑
m=1

Θ1
nm(am +dm), Φ2

n =
+∞

∑
m=1

Θ2
nm(cm −bm),

Ψ1
n =

+∞

∑
m=1

ϒ1
nm(am +dm), Ψ2

n =
+∞

∑
m=1

ϒ2
nm(cm −bm),

Φ̃1
n =

+∞

∑
m=1

Θ1
nm(b̃m − c̃m), Φ̃2

n =
+∞

∑
m=1

Θ2
nm(ãm + d̃m),

Ψ̃1
n =

+∞

∑
m=1

ϒ1
nm(b̃m − c̃m), Ψ̃2

n =
+∞

∑
m=1

ϒ2
nm(ãm + d̃m),

Θ1
nm =

+∞

∑
k=0

Φ1
nkΞ

1
km, Θ2

nm =
+∞

∑
k=0

Φ2
nkΞ2

km,

ϒ1
nm =

+∞

∑
k=0

Ψ1
nkΞ1

km, ϒ2
nm =

+∞

∑
k=0

Ψ2
nkΞ2

km

Here,

Φ1
mn =

1
2
(I

′
m+n + I

′
m−n −

K
′
n

Kn
(Im+n + Im−n)),

(m ≥ 0,n ≥ 0)

Φ2
mn =

1
2
(I

′
m−n− I

′
m+n −

K
′
n

Kn
(Im−n− Im+n)),

(m ≥ 0,n > 0)

Φ2
mn =

Im−1 − Im+1

2
, m ≥ 0,n = 0

Ψ1
mn =

1
2kR

δn((2n−m)Im−n− (2n+m)Im+n),

(m ≥ 0,n ≥ 0)

Ψ2
mn = − 1

2kR
((2n−m)Im−n +(2n+m)Im+n),

(m ≥ 0,n > 0)

Ψ2
mn = I

′
m +

K
′
0

K0
Im, m ≥ 0,n = 0

Ξ1
km and Ξ2

km denote the corresponding inverse operators (if exist) of infinite matrix
(Φ1

mn−Ψ1
mn) and (Φ2

mn +Ψ2
mn).
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Hence problem (2) is equivalent to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μΔ�u− +(�u− ·�)�u− +�p− = �f , in Ω−

div �u− = 0, in Ω−

�u− = 0, on Γ1

�u− =�u+, on Γ2
�t−|Γ2 =�t+|Γ2+

1
2 [(�u− ·�n)�u−− (�u∞ ·�n)�u+], on Γ2

�t+ =�g, on Γ2

(6)

Let

W = {�v ∈ H1(Ω−)2,�v|Γ1 = 0}

W0 = {�v ∈W,div�v = 0}
with norm

‖�v‖W = (
∫

Ω−
(v2

1 +v2
2)dx)1/2

Q = {q ∈ L2(Ω−),
∫

Ω−
qdx = 0}

a(�u,�v) = μ(grad �u,grad �v)

a1(�u,�u,�v) =
∫

Ω−
(�u ·�)�u ·�vdx

a2(�u,�u,�v) = −1
2

∫
Γ2

[(�u−�u∞) ·�n](�u ·�v)dx

b(�u, p) = −
∫

Ω−
p div �udx ∀�u ∈W, p ∈ Q

(�f ,�v) =
2

∑
i, j=1

∫
Ω−

fividx

<�v,�t >Γ2=
2

∑
i, j=1

< vi, ti >Γ2

where < ·, ·>Γ2 denote the duality pairing between the space H1/2(Γ2) and H−1/2(Γ2).
For ∀ �v ∈W , applying Green formula in Ω−:

a(�u,�v)+a1(�u;�u,�v)− <�t,�v >Γ2 +b(�v, p) = (�f ,�v)
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We know that the direction of outward normal on Γ2 is opposite for Ω− and Ω+,
using the transmission conditions on Γ+ and natural integral equation (5), we have

a(�u,�v)+a1(�u;�u,�v)+a2(�u;�u,�v)+ < K�u,�v >Γ2

+b(�v, p) = (�f ,�v), ∀�v ∈W

for ∀�w,�u,�v ∈ W , we define

A0(�w;�u,�v) = a(�u,�v)+a1(�w;�u,�v)+a2(�w;�u,�v)

B(�u,�v) =< K�u,�v >Γ2=
∫

Γ2

(g1v1 +g2v2)ds (7)

then boundary value problem (6) is equivalent to the variational problem on bounded
domain Ω− as follows:
⎧⎪⎪⎨
⎪⎪⎩

f ind (�u, p) ∈ W ×Q, such that
A0(�u;�u,�v)+B(�u,�v)+b(�v, p)
= (�f ,�v), ∀�v ∈W
b(�u,q) = 0, ∀ q ∈ Q

(8)

or{
f ind �u ∈W0, such that
A0(�u;�u,�v)+B(�u,�v) = (�f ,�v), ∀�v ∈W0

(9)

Lemma 1. The bilinear form a(�u,�v) is symmetric, bounded and coercive on W ×W ,
further, a1(�u,�u,�v) and a2(�u,�u,�v) are continuous trilinear forms on W .
Lemma 2. The bilinear forms B(�u,�v) is bounded on (H1/2(Γ2)/R)2×(H1/2(Γ2)/R)2,
i.e., there exists a constant C > 0, such that

B(�u,�v)| ≤ C‖�u‖H1/2(Γ2)/R‖�v‖H1/2(Γ2)/R, ∀�u,�v ∈W

furthermore,

a2(�v;�v,�v)+B(�v,�v) ≥ 0

Proof:
(i) Let

ān =
1
π

∫ 2π

0
v1(R,θ )cosnθ cosθdθ ,

ã′n =
1
π

∫ 2π

0
v2(R,θ )cosnθ cosθdθ ,
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b̄n =
1
π

∫ 2π

0
v1(R,θ )cosnθ sinθdθ ,

b̃′n =
1
π

∫ 2π

0
v2(R,θ )cosnθ sinθdθ ,

c̄n =
1
π

∫ 2π

0
v1(R,θ ) sinnθ cosθdθ ,

c̃′n =
1
π

∫ 2π

0
v2(R,θ ) sinnθ cosθdθ ,

d̄n =
1
π

∫ 2π

0
v1(R,θ ) sinnθ sinθdθ ,

d̃′
n =

1
π

∫ 2π

0
v2(R,θ ) sinnθ sinθdθ ,

By Hölder inequality and trace theorem, we know that there exists constant c1,c2,
such that

[
+∞

∑
n=1

n(a2
n +b2

n +c2
n +d2

n + ã2
n + b̃2

n + c̃2
n + d̃2

n )]1/2 ≤ c1‖�u‖W

[
+∞

∑
n=1

n(ā2
n + b̄2

n + c̄2
n + d̄2

n + ã′2n + b̃′2n + c̃′2n + d̃′2
n )]1/2 ≤ c2‖�v‖W

substituting all these into (7), we deduce that

|B(u,v)| ≤ C
+∞

∑
n=1

n[|anān +bnb̄n +cnc̄n +dnd̄n|

+|āndn + d̄nan + b̄ncn + c̄nbn|
+|ãnc̄n + c̃nān + b̃nd̄n + d̃nb̄n|
+|ānb̃n + b̄nãn + d̄nc̃n + c̄nd̃n|
+|ãnã′n + b̃nb̃′n + c̃nc̃′n + d̃nd̃′

n|
+|anc̃′n +cnã′n +bnd̃′

n +dnb̃′n|
+|anb̃′n +cnd̃′

n +dnc̃′n +bnã′n|
+|c̃nb̃′n + ãnd̃′

n + b̃nc̃′n + d̃nã′n|]

≤ C[
+∞

∑
n=1

n(a2
n +b2

n +c2
n +d2

n

+ã2
n + b̃2

n + c̃2
n + d̃2

n )]1/2

·[
+∞

∑
n=1

n(ā2
n + b̄2

n + c̄2
n + d̄2

n
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+ã′2n + b̃′2n + c̃′2n + d̃′2
n )]1/2

≤ C‖�u‖W · ‖�v‖W

(ii) After some computation, we have

B(v,v) =
π
kR

+∞

∑
n=0

δn{−[(ãn−bn)2 +(b̃n +an)2

+(c̃n −dn)2 +(d̃n +cn)2]−2n[(c̃n−dn) ·

(an + b̃n)+(d̃n +cn)(bn− ãn)]}+
+∞

∑
n=0

δn ·

{(an + b̃n)
∫ 2π

0
cos(n+1)θ (v1 cosθ +v2 sinθ )dθ

+(bn − ãn)
∫ 2π

0
sin(n+1)θ (v1 cosθ +v2 sinθ )dθ

−(Φ1
n + Φ̃1

n)
∫ 2π

0
cos(n+1)θ (v1 cosθ +v2 sinθ )dθ

+(Ψ2
n + Ψ̃2

n)
∫ 2π

0
sin(n+1)θ (v1 cosθ +v2 sinθ )dθ}

+
1
2

+∞

∑
n=0

δn(Φ1
n +Ψ1

n + Φ̃1
n + Ψ̃1

n) ·
∫ 2π

0
sin(n+1)θ (v2 cosθ −v1 sinθ )dθ

−1
2

+∞

∑
n=0

δn(Φ1
n−Ψ1

n + Φ̃1
n − Ψ̃1

n) ·
∫ 2π

0
sin(n−1)θ (v2 cosθ −v1 sinθ )dθ

+
1
2

+∞

∑
n=0

δn(Φ2
n +Ψ2

n + Φ̃2
n + Ψ̃2

n) ·
∫ 2π

0
cos(n−1)θ (v2 cosθ −v1 sinθ )dθ

+
1
2

+∞

∑
n=0

δn(Ψ2
n−Φ2

n + Ψ̃2
n − Φ̃2

n) ·
∫ 2π

0
cos(n+1)θ (v2 cosθ −v1 sinθ )dθ

= I + II + III
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by Hölder inequality, we obtain

I ≥−2π
kR

+∞

∑
n=0

δn(1+n)
∫ 2π

0
|�v|2dθ

We easily deduce from�n = (−cosθ ,−sinθ ) and
∫

Γ2
�v ·nds = 0 that II ≥ 0.

Applying the property of In and Kn

x > 0,
K′

n

Kn
< 0

and

I′m+n +
m+n

kR
Im+n = Im+n−1

I′m−n +
m−n

kR
Im−n = Im−n−1

we arrive at the following inequlity:

III ≥
+∞

∑
n=0

δn

+∞

∑
m=1

n+m
kR

∫ 2π

0
|�v|2dθ

From the result of I, II and III we deduce that

a2(�v;�v,�v)+B(v,v)≥ 0

and the result follows.
Lemma 3. Let

b(�v,q) = −(q,div�v)

Then there exists a constant β > 0, such that

sup
�v∈W\{0}

b(�v,q)
‖�v‖W

≥ β‖q‖Q, ∀q ∈ Q

For the proof can see [Gunzburger and Peterson (1983)].
We now consider the existence and uniqueness result for variational formulation
(8). Let W ′ be the dual space of W ,

N = sup
�w,�u,�v∈W \{0}

a1(�w;�u,�v)
|�w|1,Ω−|�u|1,Ω−|�v|1,Ω−
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‖�f‖W ′ = |�f |∗ = sup
�v∈W \{0}

< �f ,�v >

|�v|1,Ω−

M = {�w ∈ W0; |�w|1,Ω− ≤ 2
μ
|�f |∗} ⊂W

Theorem 1. The variational problem (8) has at least one solution�u, p ∈W ×Q.
Proof: see [Feistauer and Schwab (2001)].
Theorem 2. Let Ω− be a bounded domain of R2 with a Lipschitz-continuous
boundary. Given �f ∈ H−1(Ω−)2, and suppose

6N
μ2 |�f |∗ < 1 (10)

then problem (8) has a unique solution�u, p ∈W ×Q.
Proof: For any given �σ ∈ M, we consider the following auxiliary problem :
for ∀ �v ∈W0,⎧⎨
⎩

f ind �w ∈W0, such that
a(�w,�v)+a2(�w;�w,�v)+B(�w,�v)
= (�f ,�v)−a1(�σ ;�σ ,�v)

(11)

[i]. (11) is equivalent to the operator equation.

�w = E�σ

In view of lemma 1, lemma 2 and trace theorem,

a(�v,�v)+a2(�v;�v,�v)+B(�v,�v) ≥ μ |�v|21,Ω1

|a(�w,�v)+a2(�w;�w,�v)+B(�w,�v)|
≤ μ‖�w‖1‖�v‖1 +c1‖�w‖H1/2(Γ2)/R‖�v‖H1/2(Γ2)/R

≤ μ‖�w‖1‖�v‖1 +c2‖�w‖1‖�v‖1

≤C‖�w‖1‖�v‖1

According to the Lax-Milgram theorem, there exists a unique solution�w ∈W0, (11)
defines a mapping E : M → W0, and the problem (11) is equivalent to the operator
equation

�w = E�σ

[ii]. The mapping E : M → M.
Let �σ ∈ M, then �w = E�σ satisfies (11), taking�v = �w, that is

a(�w,�w)+a2(�w;�w,�w)+B(�w,�w) = (�f ,�w)−a1(�σ ;�σ ,�w)
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We easily deduce from lemma 1 and lemma 2 that

μ |�w|21 ≤ a(�w,�w)+a2(�w;�w,�w)+B(�w,�w)
≤ |�f |∗|w|1 +N|σ |21|w|1

By (10), we obtain

4N
μ2

|�f |∗ <
2
3

|�w|1,Ω1 ≤
5

3μ
|�f |∗ ≤ 2

μ
|�f |∗

therefor, �w ∈ M, namely, E is a mapping of M into M.
[iii]. The mapping E is a contraction mapping in M.
for ∀�σ1, �σ2 ∈ M, we have �w1 = E�σ1 ∈ M, �w2 = E �σ2 ∈ M,

a(�w1,�v)+a2(�w1;�w1,�v)+B(�w1,�v)
= (�f ,�v)−a1(�σ1;�σ1,�v)
a(�w2,�v)+a2(�w2;�w2,�v)+B(�w2,�v)
= (�f ,�v)−a1(�σ2;�σ2,�v)

a(�w1− �w2,�v)+a2(�w1;�w1,�v)−a2(�w2;�w2,�v)
+B(�w1 − �w2,�v) = a1(�σ2; �σ2,�v)−a1(�σ1; �σ1,�v)

(12)

In fact, by Green formula [Girault and Raviart (1986), I. 2. 17],

a2(�u;�u,�v) = −1
2

a1(�u;�u,�v)+
1
2

a1(�u∞;�u,�v)

Hence,

a2(�w1;�w1,�v)−a2(�w2;�w2,�v)

= −1
2
(a1(�w1;�w1,�v)−a1(�w2;�w2,�v))

+
1
2

a1(�u∞;�w1 −�w2,�v)

= −1
2

a1(�w1 −�w2;�w1 −�w2,�v)+
1
2

a1(�u∞;�w1 −�w2,�v)

−1
2
(a1(�w1 −�w2;�w2,�v)+a1(�w2;�w1 −�w2,�v))

= a2(�w1 −�w2;�w1 −�w2,�v)− 1
2
(a1(�w1 −�w2;�w2,�v)
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+a1(�w2;�w1 −�w2,�v))

taking�v = �w1 − �w2 in (12) and using (10), we have

μ |�w1 − �w2|21
≤ |a1(�σ2 −�σ1; �σ2, �w1 − �w2)|

+|a1(�σ1;�σ2 −�σ1, �w1 − �w2)|
+

1
2
|a1(�w1 −�w2;�w2,�w1 −�w2)|

+
1
2
|a1(�w2;�w1 −�w2,�w1 −�w2)|

≤ N|�σ2|1,Ω1|�σ1 − �σ2|1,Ω1|�w1 − �w2|1,Ω1

+N|�σ1|1,Ω1|�σ2 −�σ1|1,Ω1|�w1 − �w2|1,Ω1

+N|�w2|1,Ω1|�w1 − �w2|21,Ω1

≤ 4N
μ

|�f |∗|�σ1 − �σ2|1,Ω1|�w1 − �w2|1,Ω1

+
2N
μ

|�f |∗|�w1 −�w2|21,Ω1

that is

|�w1 − �w2|1,Ω1 ≤
4N|�f |∗

μ2

1− 2N|�f |∗
μ2

|�σ1 − �σ2|1,Ω1 ≤ |�σ1 − �σ2|1,Ω1

therefore, the mapping is a contraction mapping.
An application of Brouwer fixed-point theorem shows that there exists a unique
fixed point �σ ∈ M, such that �σ = E�σ = �w, problem (11) has a unique solution
�w ∈W0. Then we obtain the well-posed property of problem (8) by the equivalence
of (8) and (9).

3 Finite element approximation of coupling method

Let ξh be a regular partition of the domain Ω−. Suppose Wh and Qh are two finite
-dimensional spaces such that

Wh ∈ H1(Ω−)2,Qh ∈ L2(Ω−)

Xh = Wh∩H1
0 (Ω−) = {�vh ∈Wh;�vh|Γ1 = 0} ⊂W

Mh = Qh ∩L2
0(Ω−) = {qh ∈ Qh;

∫
Ω1

qhdx = 0} ⊂ Q
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W0h = {�vh ∈ Xh; (qh,div�vh) = 0,∀qh ∈ Qh} � W0

Furthermore, we also assume that they are the compatible, i.e.,Xh and Qh should
satisfy the following conditions:
Hypothesis H1 (Approximation of property of Xh). There exist an operator rh ∈
L(H2(Ω1)2;Wh)∩L(H2(Ω−)∩H1

0 (Ω−)2;Xh) and a integer l, such that:

(q,div(�v− rh�v)) = 0, ∀q ∈ Qh,�v ∈ H2(Ω−)2

‖�v− rh�v‖1,Ω− ≤ Chm‖�v‖m+1,Ω−,∀�v ∈ Hm+1(Ω−)2

(1 ≤ m ≤ l)

Hypothesis H2 (Approximation of property of Qh). There exists an orthogonal
projection operator sh ∈ L(L2(Ω−)2;Qh), such that:

‖q− shq‖0,Ω− ≤ Chm‖q‖m,Ω−, ∀q ∈ Hm(Ω−)
(0 ≤ m ≤ l)

Hypothesis H3 (Approximation of property of Γ2h). There exists an orthogonal
projection operator Πh : L2(Γ2) �→ Γ2h, such that:

‖�w−Πh�w‖s,Γ2 ≤ Chk+1−s|�w|k+1,Γ2, ∀�w ∈ Hk+1(Γ2)
(s = 0,1)

Hypothesis H4 (Uniform inf-sup condition). There exists a constant β ′ > 0, such
that :

sup
�v∈Wh\{0}

b(�v,qh)
‖�v‖1,Ω−

≥ β ′‖qh‖0,Ω−, ∀qh ∈ Qh

Then the approximation problem of (8) and (9) is
⎧⎪⎪⎨
⎪⎪⎩

f ind (�uh, ph) ∈ Xh ×Mh, such that
A0(�uh;�uh,�vh)+B(�uh,�vh)+b(�vh, ph)
= (�f ,�vh), ∀ �vh ∈ Xh

(qh,div�uh) = 0, ∀ qh ∈ Mh

(13)

and⎧⎨
⎩

f ind (�uh, ph) ∈W0h×Mh, such that
A0(�uh;�uh,�vh)+B(�uh,�vh)
= (�f ,�vh), ∀ �vh ∈ W0h

(14)
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Theorem 3. Let Ω− be a bounded domain of R2 with a Lipschitz-continuous
boundary. Under Hypotheses (H1), (H2), (H3),(H4), and given �f ∈ H−1(Ω−)2,
satisfying

6N
μ2 |�f |∗ < 1 (15)

then problem (13) has a unique solution (�uh, ph) ∈ Xh ×Mh. Moreover, there exists
a constant C > 0, such that

‖�u−�uh‖1,Ω− +‖�u−�uh‖H1/2(Γ2)/R +‖p− ph‖0,Ω−

≤C(‖�u‖m+1,‖p‖m)hm

Proof: We can get this error estimate by a standard technique of mixed finite ele-
ment method [Girault and Raviart (1986)].

4 Numerical implementation of coupling method

We take the following finite element spaces:
⎧⎪⎪⎨
⎪⎪⎩

Xh = {wh ∈C0(Ω̄−),wh|k ∈ P2,∀k ∈ ξh}
Sh = {μh ∈C0(Γ2),μh|si

∈ P1,1 ≤ i ≤ N}
Qh = {qh ∈ C0(Ω̄1),qh|k ∈ P1,∀k ∈ ξh}
Mh = Qh ∩L2

0(Ω−)

(16)

where, for any integer l ≥ 0, Pl denotes the space at all polynomials in two vari-
ables of degree ≤ l. ξh be a triangulation of Ω̄− made of triangles k with no more
than one side on ∂Ω−. Si(1 ≤ i ≤ N) denotes the finite number of segments of
a line composing the artificial boundary Γ2. For this choice we can check all the
hypotheses of theorem 3 [Sequeira (1983)].
Once the finite element spaces are prescribed, the discrete problem (13) reduces
to solving a system of nonlinear algebraic equations which has a Jacobian that is
large, sparse, and banded. Various iterative methods to solve the nonlinear prob-
lem (13) are analyzed in [Girault and Raviart (1986)] for homogeneous boundary
conditions and [Gunzburger and Peterson (1983)] for inhomogeneous case. For ex-
ample, a standard approach is to use Newton’s method to linearized (13). Here, we
use Newton’s method to deal with the nonlinear term in domain Ω−, and Picard’s
method to linearized the nonlinear term on Γ2.
Given the iterate (�uk, pk), we start by computing the nonlinear residual associated
with the weak formulation (13). This is the pair Rk(�vh), rk(qh) satisfying

Rk = (�f ,�vh)−a1(�uk;�uk,�vh)−a2(�uk;�uk,�vh)
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−a(�uk,�vh)−B(�uk,�vh)−b(�vh, pk)
rk = b(�uk,qh)

with�uh =�uk + δ�uk and ph = pk + δ pk, it is easy to see that the corrections δ�uk ∈
Xh,δ pk ∈ Mh satisfy
⎧⎨
⎩

D1(�uk;δ�uk,�vh)+D2(�uk;δ�uk,�vh)+a(δ�uk,�vh)
+B(δ�uk,�vh)+b(�vh,δ pk) = Rk(�vh), �vh ∈ Xh

−b(δ�uk,qh) = rk(qh), qh ∈ Mh

(17)

where D1(�uk;δ�uk,�vh) and D2(�uk;δ�uk,�vh) are the differences in the nonlinear terms.
Expanding D1(�uk;δ�uk,�vh) and D2(�uk;δ�uk,�vh), dropping some quadratic terms in
the expansions, we get the linear problem: find δ�uk ∈ Xh,δ pk ∈ Mh satisfying:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(δ�uk;�uk,�vh)+a1(�uk,δ�uk,�vh)
+a2(�uk,δ�uk,�vh)+a(δ�uk,�vh)
+B(δ�uk,�vh)+b(�vh,δ pk)
= Rk(�vh), ∀�vh ∈ Xh

−b(δ�uk,qh) = rk(qh), ∀ qh ∈ Mh

(18)

The system of algebra equations of problem (18):
⎛
⎝ P11 +Q11 Wxy +Q12 BT

x
Wyx +Q21 P22 +Q22 BT

y

Bx By 0

⎞
⎠

⎛
⎝ δu1

δu2

δ p

⎞
⎠ =

⎛
⎝ F1

F2

g

⎞
⎠ (19)

Here,

Q =
(

Q11 Q12

Q21 Q22

)

is the matrix generated by the boundary elements. P11 = A + N +Wxx +C, P22 =
A + N + Wyy + C, C is the matrix generated by a2. The matrix A is the vector-
Laplacian matrix and matrix B is the divergence matrix, matrix N is the vector-
convection matrix and matrix W is Newton derivative matrix.
For the actual implementation, we need to do some truncations: First, m should
be truncated to L terms; Second, we truncate k to M terms (M need not to be very
large); In the end, in the expression of the normal stress (4), the series should not
be infinite, this can be overcome by truncating the first N terms. After all this
procedures, we denote the approximate normal stress�g∗ = (�g∗1,�g

∗
2), that is

(
g∗1(θ )
g∗2(θ )

)
=

(
A B
−B A

)(
cosθ
sinθ

)
(20)
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or

�g∗ = K(�u+|Γ2) (21)

where,

A =
L

∑
n=0

δn(an cos(n+1)θ +bn sin(n+1)θ )

−
N

∑
n=0

δnΦ1
n cos(n+1)θ +

N

∑
n=0

δnΨ2
n sin(n+1)θ

−
N

∑
n=0

δnΦ̃1
n cos(n+1)θ +

N

∑
n=0

δnΨ̃2
n sin(n+1)θ

+
L

∑
n=0

δn(b̃n cos(n+1)θ − ãn sin(n+1)θ )

+
1

kR

L

∑
n=0

δn(ndn−an)cosnθ

− 1
kR

L

∑
n=1

(cn +nbn) sinnθ

− 1
kR

L

∑
n=0

δn(b̃n +nc̃n)cosnθ

+
1

kR

L

∑
n=1

(nãn− d̃n) sinnθ

B =
1

kR

L

∑
n=0

δn(nan−dn) sinnθ

− 1
kR

L

∑
n=0

δn(ncn +bn)cosnθ

−1
2

N

∑
n=0

δn(Φ1
n +Ψ1

n) sin(n+1)θ

+
1
2

N

∑
n=0

δn(Φ1
n −Ψ1

n) sin(n−1)θ

−1
2

N

∑
n=0

δn(Φ2
n +Ψ2

n)cos(n−1)θ
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−1
2

N

∑
n=0

δn(Ψ2
n −Φ2

n)cos(n+1)θ

+
1

kR

L

∑
n=0

δn(nb̃n + c̃n) sinnθ

+
1

kR

L

∑
n=0

δn(ãn −nd̃n)cosnθ

−1
2

N

∑
n=0

δn(Φ̃1
n + Ψ̃1

n) sin(n+1)θ

+
1
2

N

∑
n=0

δn(Φ̃1
n − Ψ̃1

n) sin(n−1)θ

−1
2

N

∑
n=0

δn(Φ̃2
n + Ψ̃2

n)cos(n−1)θ

−1
2

N

∑
n=0

δn(Ψ̃2
n − Φ̃2

n)cos(n+1)θ

5 Numerical results

In this section, we present numerical example to confirm our theoretical analysis
given in the above sections.
Consider the exterior Navier-Stokes flow generated by a circular cylinder of radius
a moving with a constant speed �u∞, �u∞ = (u∞,0). Assume the viscous and incom-
pressible flow is steady. The Reynolds number corresponding to this configuration,

Re =
2au∞

μ

First we introduce a circle artificial boundary Γ2 with radius R. Γ2 divides the
domain Ω into two parts: an interior bounded subdomain Ω− and an exterior un-
bounded subdomain Ω+. Divide Γ1 and Γ2 into M segmental arcs uniformly, re-
spectively. We assume that the nodes on boundaries Γ1 and Γ2 coincide with the
nodes on ∂Ω−. M line segments are obtained by the corresponding nodes on Γ1 and
Γ2. Each of the above line segments is divided into N parts. In boundary element
discretization, we take piecewise linear elements. The finite element discretization
uses a triangular mesh with the Taylor-Hood element, which is known to satisfy
the stability condition. Under the Cartesian co-ordinates frame x = (x1,x2), the
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solution of the problem can be expressed by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1 = u∞(1− a2

r2 cos2θ )
u2 = −u∞

a2

r2 sin2θ ,

p = 0
f1 = 2u2

∞a2 cos3θ
r3 −2u2

∞a4 cosθ
r5

f2 = 2u2
∞a2 sin3θ

r3 −2u2
∞a4 sin θ

r5

(22)

where r ≡
√

x2
1 +x2

2.

Table 1, 2, and 3 show the errors of |�u−�uh| and |p− ph|. Fig. 2. and Fig. 3 plot the
errors of |u1(R,θ )−u1h(R,θ )|∞ and |u2(R,θ )−u2h(R,θ )|∞ for different truncated
numbers L with mesh = 32×8.

Table 1: Re=1.2, L=2, M=30, N=20
M×N ‖u−uh‖0 ‖p− ph‖0 ‖u−uh‖1 ns
8×2 1.2022E-01 2.9965E-02 3.4522E-01 10
16×4 2.7958E-02 1.1986E-02 1.2022E-01 8
32×8 6.0778E-03 3.7456E-03 3.6430E-02 7

Table 2: Re=1.2, L=4, M=30, N=20
M×N ‖u−uh‖0 ‖p− ph‖0 ‖u−uh‖1 ns
8×2 1.0699E-01 2.5470E-02 2.9688E-01 8

16×4 2.2645E-02 8.8696E-03 8.7760E-02 7
32×8 3.9505E-03 2.3724E-03 2.4722E-02 7

Table 3: Re=1.2, L=6, M=30, N=20
M×N ‖u−uh‖0 ‖p− ph‖0 ‖u−uh‖1 ns
8×2 9.9500E-02 2.3177E-02 2.7609E-01 8

16×4 1.8195E-02 8.4261E-03 7.4596E-02 6
32×8 3.7529E-03 2.1588E-03 1.9530E-02 7

From table 1 to table 3, it can be observed that both increasing the order of the
artificial boundary condition and refining the mesh can decrease the error. When
a finer mesh could not present a much more accurate numerical solution, the error
originated from the series truncating is dominating and we should use more series
terms in order to get a higher approximation.
These observations are quite compatible with the following analysis. Since the error
of the numerical solution originates from two sources: one is the approximation of
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Figure 2: |u1(R,θ )−u1h(R,θ )|∞ for different L with mesh = 32×8
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Figure 3: |u2(R,θ )−u2h(R,θ )|∞ for different L with mesh = 32×8
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the variational problem, the other is the employment of the finite-element scheme.
when one is relatively smaller, the other dominates the error. The numerical results
above show that the coupling of NBEM and mixed FEM is very effective.
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