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Topological Shape Optimization of Electromagnetic
Problems using Level Set Method and Radial Basis

Function
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Abstract: This paper presents a topological shape optimization technique for
electromagnetic problems using a level set method and radial basis functions. The
proposed technique is a level set (LS) based optimization dealing with geometri-
cal shape derivatives and topological design. The shape derivative is computed by
an adjoint variable method to avoid numerous sensitivity evaluations. A level set
model embedded into the scalar function of higher dimensions is propagated to rep-
resent the design boundary of a domain. The level set function interpolated into a
fixed initial domain is evolved by using the Hamilton-Jacobi equation. The moving
free boundaries (dynamic interfaces) represented in the level set model determine
the optimal shape via the topological changes. In order to improve efficiency of the
level set evolution, a radial basis function (RBF) is introduced. The RBF allows
the algorithm to create new holes inside the material domain, which lead to an ap-
proximately global optimum point. The optimization technique is illustrated using
2D examples captured from 3D level set configuration and the resulting optimum
shape is compared with the conventional topology optimization. This work high-
lights that the derived shape sensitivity is verified using the finite difference method
(FDM) through an example, and the level set method is validated as a promising
optimization tool in a practical electromagnetic problem. Also, the level set based
optimization shows a clear void-solid pattern without gray areas that the topology
optimization yields.
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1 Introduction

In shape optimization, the design variables directly control the exterior and interior
boundary shapes of the structures. Shape optimizations allow more explicit rep-
resentations of any features that should be incorporated in the design. However,
such a boundary representation often has severe limitations: computational cost
due to mesh re-generation, tendency of convergence to local minima, and incon-
venient compatibility for complex geometrical problems. Furthermore, the shape
optimization [Sokolowski and Zolesio (1992)] can not create new holes, which
aims at improving the existent designs.

However, topology optimization, which was introduced a few decades ago by Bend-
soe and Kikuchi [Bendsoe and Kikuchi (1988)], focuses on obtaining an initial
conceptual design. The topology optimization technique [Bendsoe and Sigmund
(2003)] can help an engineer who wishes to or needs to design something from
inception. It does not require a sophisticated initial design, but rather only requires
enough geometric information to define boundary conditions. Seeing the final pat-
tern from the topology optimization, engineers can obtain much information to pre-
pare the design. The topology optimization technique is now sufficiently mature
and can be extended to various physical systems [Sigmund (2001); Bendsoe and
Sigmund (2003); Yoon and Kim (2005); Cisilino (2006); Zhou and Wang (2006);
Shim, Moon, and Wang (2006); Shim, Wang, and Hameyer (2007); Juan, Shuyao,
Yuanbo, and Guangyao (2008); Li and Atluri (2008a, 2008b); Shim, Moon, Wang,
and Hameyer (2008)]. The topology optimization has typical difficulties, such as
gray areas and checkerboard patterns. Optimized topologies with those problems
are hard to be manufactured in industry. The checkerboard pattern refers to the for-
mation of regions alternating solid and void elements ordered in a checkerboard-
like pattern [Bendsoe (1995); Bendsoe and Sigmund (2003)]. The checkerboards
are eliminated if a length scale (by perimeter control or filters) is introduced into
the optimization [Sigmund and Petersson (1998); Wang, Lim, Khoo, and Wang
(2008)].

In order to overcome the problems that occur in conventional shape and topol-
ogy optimizations, the level set (LS) based optimization [Sethian and Wiegmann
(2000); Wang, Lim, Khoo, and Wang (2007a, 2007b, 2007c); Luo, Wang, Wang,
and Wei (2008); Xia and Wang (2008)] has become an attractive tool for opti-
mization techniques in mechanical structure designs. However, it has yet to be
introduced in electromagnetic field. The level set method first suggested by Osher
and Sethian [Osher and Sethian (1988)] in 1988 has been attractive for computer
science. Over the years, the level set method has been effective and successfully
applied to structural optimal designs. Sethian et al. [Sethian and Wiegmann (2000)]
investigated a new implementation of the level set method for shape optimization.
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In their paper, the explicit jump immersed interface method was employed to com-
pute a 2D linear elastostatic equation, and the design model was updated via a
material removal-addition scheme without mesh regeneration. This article was the
first attempt to apply the level set method of Osher et al. to structural optimiza-
tion. Allaire et al. [Allaire, Jouve, and Toader (2002); Allaire, Jouve, and Toader
(2004)] proposed an implementation of the level set method for structural optimiza-
tion by employing an adjoint variable method. The shape derivative [Sokolowski
and Zolesio (1992)] was used to define the normal velocity (front velocity) of the
moving free boundary (dynamic interface). The front propagation was performed
by solving the Hamilton-Jacobi equation. The algorithm created no holes inside
the domain and converged to a local minimum that depends strongly on the ini-
tial estimate [Allaire, Jouve, and Toader (2004); Burger, Hackl and Ring (2004)].
Wang et al. [Wang, Wang, and Guo (2003)] developed a numerical procedure for
topology optimization using the level set model by implicitly embedding the struc-
tural boundary into a higher order (one dimension higher) scalar function. Xia et
al. [Xia and Wang (2008)] extended this method to thermoelastic structural prob-
lem. Wang et al. [Wang and Wang (2006a); Wang, Lim, Khoo, and Wang (2007c,
2007d)] applied radial basis functions to the level set based structural topology op-
timization. The unconstrained optimization problem using a presumed Lagrange
multiplier was performed to show possibility. Furthermore, the radial basis func-
tions were applied to geometry projection method [Norato, Haber, Tortorelli, and
Bendsoe (2004)] for optimizing photonic nanostructures [Frei, Tortorelli, and John-
son (2007)]. However, most researches have not shown sensitivity validation, even
in simple examples.

In this paper, a level set (LS) based optimization is presented for electromagnetic
problems and compared with the conventional topology optimization based on the
solid isotropic microstructure with penalization (SIMP). A mathematical model
for electromagnetic system is formulated for a general optimization problem with
one objective function subject to specified constraint (volume fraction). In order
to calculate the normal velocity, the shape sensitivity is derived by employing the
adjoint variable method, which reduces numerous sensitivity evaluations regardless
of the number of design variables. The derived sensitivity formula is validated
using the finite difference method. Two examples are investigated to demonstrate
the strength of the topological shape optimization.
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2 Introduction of Electromagnetic Field

When the displacement currents are neglected, electromagnetic fields can be de-
scribed using the set of Maxwell’s equations:

∇×Hmag = JT (1)

Bmag = μHmag, (μ = μrμ0) (2)

∇ ·Bmag = 0 (3)

where Hmag, JT , Bmag, μ , μr, and μ0 are the magnetic field intensity, total current
density, magnetic flux density, permeability of the material, relative permeability
of the material, and permeability of the air [4π ×10−7], respectively.

In the electromagnetic field, all parts of the total current density vector JT , are
considered as:

JT = Js +σv×Bmag (4)

where Js, σ and ν are the applied source current density vector, electric conductiv-
ity, and velocity of the conductor with respect to the magnetic flux density, respec-
tively.

In this paper, it is assumed that there is no conductor motion. By introducing a
vector potential, A, Bmag is defined as:

∇×A = Bmag (5)

and identically satisfies (3). Through eliminating Hmag in (1) and (2) and substitut-
ing (5), a single equation for the electromagnetic field is consequently simplified
to:

∇× (
1
μ

∇×A) = Js (6)

In order to obtain a unique solution to an electromagnetic problem, either a known
value of A or its normal derivative must be specified at each point on the boundary.
If the potential is specified as constant along the boundary, it becomes an equipo-
tential. Furthermore, the normal derivative of the potential is specified by default
as a result of discarding the surface integral on the boundary [Salon (1998)].

Consider an electromagnetic body occupying an open domain, Ω, bounded by a
closed surface, Γ, as shown in Fig. 1. All material properties are assumed isotropic
in the domain. The boundary conditions are composed of a zero magnetic vector
potential boundary, Γ0, and a magnetic flux boundary, Γ1, as follows:

Γ0 ∪Γ1 = Γ (7)
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The boundary conditions of the magnetic field are imposed on the surface:

A = 0 on Γ0 (Homogeneous Dirichlet condition) (8)

∂A
∂n

= 0 on Γ1 (Natural boundary condition or Neumann condition) (9)

Here, n is an outward unit vector normal to the boundary.

Figure 1: Magnetic field in space

To obtain the variational equation for the magnetic field, multiplying both sides of
(6) with the virtual vector potential, Ā, and integrating it over the domain yields:

∫
Ω

[
∇×

(
1
μ

∇×A

)]
· ĀdΩ =

∫
Ω

[Js] · ĀdΩ for all Ā ∈ Ã (10)

where Ã is the space of the admissible vector potential.

The integrand of the left side of (10) can be expressed as a summation of the domain
integral and boundary integral:

∫
Ω

[
∇×

(
1
μ

∇×A

)]
· ĀdΩ

=
∫

Ω

[
(∇×A)×

(
1
μ

∇× Ā

)]
dΩ−

∫
Γ

[(
1
μ

∇×A

)
×n

]
· ĀdΓ (11)

The boundary integral of (11) becomes zero by imposing the natural boundary con-
dition on Γ1 and the kinematically admissible Ā on Γ0. Then, the final form of the
variational equation is:

∫
Ω

[
(∇×A) ·

(
1
μ

∇× Ā

)]
dΩ =

∫
Ω

[
Js · Ā

]
dΩ for all Ā ∈ Ã (12)
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Therefore, in the electromagnetic field, the energy bilinear form a(•,•) and the
load linear form l(•) can be used to express (12):

a(A, Ā) = �(Ā), A|Γ0
= 0 for all Ā ∈ Ã (13)

where

a(A, Ā) =
∫

Ω

[
(∇×A) · ( 1

μ
∇× Ā)

]
dΩ (14)

l(Ā) =
∫

Ω

[
Js · Ā

]
dΩ (15)

3 Conventional Level Set Method of Implicitly Moving Free Boundaries

3.1 Conventional level set method

The boundaries of n-dimensional structure can be implicitly represented by the
level set of a scalar valued field. Let Γω , shown in Fig. 2, denotes an isosurface of
a level set function, Φ. The structural domain ω is interior to Γω , i.e.

ω = {x : Φ(x) > k} (16)

where k is an arbitrary single value (k becomes zero in the zero level set), and x is
a point in an n-dimensional real space, Rn.

Figure 2: Level set function and variable domain ω embedded in the fixed domain
Ω (dashed lines show level set grid and thin solid lines represent fixed finite element
grid).

For our purpose, the variable design region ω is embedded in a fixed finite element
domain Ω, as shown in Fig. 2 and the level set function Φ is discretized by a
rectilinear grid whose the nodes are centered in the fixed finite elements.



Topological Shape Optimization of Electromagnetic Problems 181

A process of topological shape optimization is described by letting the level set
function dynamically change in time, so that the variable domain at an arbitrary
time, τ , is expressed as:

ωτ = {xτ : Φ(xτ ,τ) > k} (17)

By differentiating both sides of the level set equality Φ(xτ ,τ)= k with respect to the
parameter τ and applying the chain rule, the Hamilton-Jacobi equation is obtained:

∂Φ(xτ ,τ)
∂τ

∣∣∣∣
τ=0

+ ∇Φ(xτ ,τ)|τ=0 ·
dxτ

dτ

∣∣∣∣
τ=0

= 0 (18)

This equation governs the motion of the boundary parts on Γωτ . The explicit shape
evolves according to a fictitious time that corresponds to a descent stepping. For
traditional reasons, we define the valued boundary velocity V as:

dxτ

dτ
= lim

τ→0

xτ −x
τ

= V(x,0) = V(x) (19)

Substituting (19) into (18) at a fictitious time results in:

∂Φ(x)
∂τ

+∇Φ(x) ·V(x) = 0 (20)

By introducing a normal velocity, Vn, perpendicular to the boundary, Γω , (20) be-
comes:

∂Φ
∂τ

= Vn |∇Φ| (21)

where

Vn = V ·n = −V(x) · ∇Φ
|∇Φ| , and Vt = 0 (22)

We do not consider the tangential velocity, Vt , since it does not move the boundary.

In the conventional level set method [Wang, Wang, and Guo (2003)], the level
set function, Φ, evolves at each time step with a normal velocity field Vn(x) by
solving the first-order partial differential equation (PDE) of (21). In our level set
application, the velocity field is used to transform ω into the optimal design ω∗. A
highly robust and accurate computational method developed by Osher and Sethian
[Osher and Sethian (1988)], called the “upwind scheme”, is employed for a discrete
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solution of (21) to manage overshooting problem. It is based on the finite difference
approach [Jiang and Peng (2000)].

Φn+1
i j = Φn

i j −Δt[max(Vni j,0)∇+ +min(Vni j,0)∇−] (23)

where

∇+ = [max(D−x
i j ,0)2 +min(D+x

i j ,0)2 +max(D−y
i j ,0)2 +min(D+y

i j ,0)2]1/2 (24)

∇− = [max(D+x
i j ,0)2 +min(D−x

i j ,0)2 +max(D+y
i j ,0)2 +min(D−y

i j ,0)2]1/2 (25)

Here, Δt is a time step, and D±x
i j and D±y

i j are the forward and backward difference
operators in the dimensions of x ∈ R2 , respectively. In addition, the time steps, Δt
must be limited to ensure the stability of the upwind scheme.

3.2 Formulation of topological shape optimization by the conventional level set
method

The objective of a topological shape optimization is to find an optimal layout (re-
gion) to maximize the magnetic energy stored in the system (especially in the air-
gap region of magnetic actuators) under the prescribed electromagnetic loadings.
The magnetic energy density is defined as follows:

∏(A) =
1
2

BmagHmag (26)

As such, the design optimization problem takes the form:

Minimize an objective function J:

J(A;Φ) =
∫

Ω
ξ (A;Φ)dΩ = −

∫
Ω
∏(A)H(Φ)dΩ (27)

Subject to:

a(A, Ā;Φ) = l(Ā;Φ) , A|Γ0 = 0, for all Ā ∈ Ã (28)

in which

a(A, Ā;Φ) =
∫

Ω

[
(∇×A) · ( 1

μ
∇× Ā)H(Φ)

]
dΩ (29)

l(Ā;Φ) =
∫

Ω

[
Js · Ā ·H(Φ)

]
dΩ (30)

g(Φ) = V(Φ)−Vmax ≤ 0, V(Φ) =
∫

Ω
H(Φ)dΩ (31)

where H is the approximate Heaviside step function (see equation (79)), g is a
constraint function, V is the volume, Vmax is the allowable volume, and Φ is the
level set function (see numerical implementation (78)).
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3.3 Adjoint design sensitivity analysis

The aim of this section is to develop the shape derivative of J(A;Φ) in (27). Since
the complex variable geometry, ω is embedded in the fixed domain, Ω, a proxy
analysis problem is formulated on Ω. First of all, taking the Fréchet derivative of
a(A, Ā;Φ) with respect to τ in the direction of the normal velocity yields [Sokolowski
and Zolesio (1992); Haug, Choi, and Komkov (1986)]:

a′ =
d

dτ
aΦ+τδΦ(A(x;Φ+τδΦ), Ā)

∣∣∣∣
τ=0

= a′δΦ(A, Ā;Φ)+aΦ(A′, Ā;Φ)
(32)

where

a′δΦ(A, Ā;Φ) =
∫

Ω
(∇×A) · ( 1

μ
∇× Ā)δ (Φ)dΩ (33)

aΦ(A′, Ā;Φ) = l′δΦ(Ā;Φ)−a′δΦ(A, Ā;Φ) (34)

where δ (Φ) is the Dirac delta function (see equation (80)) with respect to the Φ,
which is obtained by the derivative of H(Φ).

The Fréchet derivative of l(Ā;Φ) with respect to τ in the direction is expressed as:

l′ =
d

dτ
lΦ+τδΦ(Ā)

∣∣∣∣
τ=0

= l′δΦ(Ā;Φ) =
∫

Ω
JsĀδ (Φ)dΩ (35)

The Fréchet derivative of J(A;Φ) is written as:

J′ =
d

dτ
JΦ(A(x;Φ+τδΦ))

∣∣∣∣
τ=0

=
∫

Ω

[
ξ ′

δΦ(A;Φ)+ξΦ(A′;Φ)
]

dΩ +
∫

Γ
ξ (A;Φ)VndΓ

(36)

where the first two terms of the right side of (36) are given as:∫
Ω

ξ ′
δΦ(A;Φ)dΩ = −

∫
Ω

Π(A)δ (Φ)dΩ (37)

∫
Ω

ξΦ(A′;Φ)dΩ = −
∫

Ω
Π(A′)H(Φ)dΩ

= −aΦ(A′,λ ;Φ)
(38)

Since there is an implicit dependence term in the design variable, an adjoint mag-
netic response λ is introduced to simplify the derivative of J(A;Φ) [Haug, Choi,
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and Komkov (1986); Shim, Moon, and Wang (2006)]. The adjoint magnetic system
is formulated as:

a(λ , λ̄ ;Φ) =
∫

Ω
H(Φ)Jsλ̄ dΩ for all λ̄ ∈ Ã (39)

Since A′ ∈ Ã, (39) can be rewritten as:

a(λ ,A′;Φ) =
∫

Ω
H(Φ)JsδAdΩ for all A ∈ Ã (40)

Then, using the adjoint response, (34) can be expressed as:

a(A′,λ ;Φ) = l′δΦ(λ ;Φ)−a′δΦ(A,λ ;Φ) (41)

Since a(•,•) is a symmetric operator, (40) and (41) are equal. By substituting (41)
into (38), (36) becomes:

dJ
dτ

=
∫

Ω
[−Π(A)δ (Φ)]dΩ− l′δΦ(λ ;Φ)+a′δΦ(A,λ ;Φ)+

∫
Γ

ξ (A;Φ)VndΓ

=
∫

Ω

[
−Π(A)−Jsλ +(∇×A)

(
1
μ

∇×λ
)]

δ (Φ)dΩ+
∫

Γ
ξ (A;Φ)VndΓ

=
∫

Ω
Θ(A,λ )δ (Φ)dΩ−

∫
Γ

Π(A)H(Φ)VndΓ

(42)

Since the geometry in the fixed domain has no movement, the normal velocity on
the boundary, Γ, becomes zero. Then (42) is rewritten as:

dJ
dτ

=
∫

Ω
Θ(A;λ )δ (Φ)dΩ (43)

3.4 Formula of optimization problem

The Lagrange multiplier method can be applied to solve constrained problems
[Arora (1989)]. To transform a constrained problem into an unconstrained opti-
mization formula, a Lagrangian function, Λ, with a positive Lagrange multiplier,
lv, can be given by:

Λ(Φ, lv, s) = J(A;Φ)+ lv
(
g(Φ)+ s2)

= −
∫

Ω
∏(A)H(Φ)dΩ + lv

(∫
Ω

H(Φ)dΩ−Vmax + s2
)

(44)

where s is a slack variable which is introduced to convert an inequality constraint
to an equality constraint.
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According to the Kuhn-Tucker condition of the Lagrange theorem, the necessary
condition for a minimizer gives:

dΛ
dτ

=
dJ(A;Φ)

dτ
+ lv

dg(Φ)
dτ

=
∫

Ω
δ (Φ)Θ(A,λ )dΩ+

∫
Ω

lvδ (Φ)dΩ = 0
(45)

dΛ
dlv

=
∫

Ω
H(Φ)dΩ−Vmax + s2 = 0 (46)

dΛ
ds

= 2lv · s = 0 (47)

All derivatives are evaluated at each level set grid. The gradient of the Lagrangian
function with respect to τ is the most important term that yields propagation in-
formation for the optimization problem. The first term of the right side in (45)
is a shape derivative obtained from the adjoint variable method explained in the
previous section. The resulting equation of (45) is rewritten as:∫

Ω
δ (Φ) · (Θ(A,λ )+ lv)dΩ = 0 (48)

Accordingly, the optimal necessary conditions are summarized and the velocity
field is obtained for the boundary variation in the descent direction of the sensitivity
as:

Vn(x) = −{Θ(A,λ )+ lv} (49)

The Lagrange multiplier, lv becomes zero if either the used volume is less than
the allowable volume (called an inactive state of optimization), or is equal to the
allowable volume, i.e. an active constraint. The evaluation of s allows the optimizer
to check the feasibility of the candidate points with respect to the volume constraint.
In order to determine the non-zero positive Lagrange multiplier, i.e. the violated
volume constraint, it is assumed that the used volume is identical to the allowable
volume. With (21) and (22), it leads to:∫

Ω
δ (Φ) |∇Φ|Vn(x)dΩ = −

∫
Ω

δ (Φ) |∇Φ| (Θ(A,λ )+ lv)dΩ = 0 (50)

Thus, the Lagrange multiplier is calculated by:

lv = −
∫

Ω δ (Φ) |∇Φ|Θ(A,λ )dΩ∫
Ω δ (Φ) |∇Φ|dΩ

(51)

Equation (51) implies that the Lagrange multiplier is the average of the sensitivity
along the entire design boundary.
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4 Advanced Level Set Method using Radial Basis Function

4.1 Radial basis function applied in the level set method

The level set function Φ(x) was parameterized using a number of radial basis func-
tions (RBFs). Each RBF, ϕi, is a radially symmetric function centered at a knot
identified by its position vector xi. A single function ϕ is used to form a family
of RBFs. The multiquadric spline, found to be one of the best splines for RBF
interpolations [Franke (1982)], is used here with the RBFs. It is written as:

ϕi(x) = ϕ(‖x−xi‖) =
√

(x−xi)2 +c2
i (52)

where ||.|| denotes the Euclidean norm [Cheng, Golberg, Kansa and Zammito
(2003)], and ci is the free shape parameter that is commonly assumed to be a con-
stant for all knots i.

Using the RBF parameterization, the level set function is expressed as:

Φ(x) =
N

∑
i=1

Cα
i ϕi(x)+ p(x) (53)

where Cα
i is the expansion coefficient of the corresponding RBF at the ith knot. p(x)

is a first-degree polynomial which, in the 2D problem, can be written as p(x) =
p0 + p1x + p2y. To ensure a unique parameterization to the RBF interpolation, the
expansion coefficients are subject to the constraint:

N

∑
i=1

Cα
i =

N

∑
i=1

Cα
i xi =

N

∑
i=1

Cα
i yi =0 (54)

The total linear matrix system is summarized as:

Uααα = f, where U =
[

Z ρρρ
ρρρT 0

]
(55)

ααα = [Cα p j] =
[
Cα

1 · · · Cα
N p0 p1 p2

]T
(56)

fff =
[
Φ(x) 0

]
=

[
Φ(x1) · · · Φ(xN) 0 0 0

]
(57)

and Zi j = ϕ j(xi) for ( i, j = 1, · · · ,N), ρρρ = [ρρρ1 ρρρ2 ρρρ3]∈RN×3, where ρρρ1 = [1 · · · 1]T ,
ρρρ2 = [x1 · · · xN ]T , and ρρρ3 = [y1 · · · yN ]T . p j is the basis for the polynomial.

After calculating the generalized expansion coefficient ααα in (55), the level set func-
tion with the RBF, i.e. (53), is rewritten as:

ΦΦΦ(x) = ΨΨΨ(x)Tααα , (58)
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where ΨΨΨ(x) = [ϕ1(x) · · · ϕN(x) 1 x y]T .

The explicit boundary Γω is achieved by propagating the level set, Φ(x) > k along
its normal directions at each time step.

Unlike the conventional level set method, the space and time in the original Hamilton-
Jacobi PDE are completely separable in an advanced level set method.

Φ = Φ(x,τ) = ΨΨΨ(x)Tααα(τ) (59)

Substituting (59) into the Hamilton-Jacobi equation (20) yields a dynamic level set
model:

ΨΨΨ(x)T dααα(τ)
dτ

+Vn

∣∣(∇ΨΨΨ(x)Tααα
)∣∣ = 0 (60)

in which the normal velocity field is given as:

Vn = − ΨΨΨ(x)T

|(∇ΨΨΨ)Tααα(τ)| ·
dααα(τ)

dτ
(61)

The original time dependent problem is now discretized by the generalized expan-
sion coefficients.

Substituting (55) into (60) yields:

U
dααα
dτ

+B(ααα) = 0 (62)

where

B(ααα) =
[
Vn(x1) ·

∣∣(∇ΨΨΨT (x1))ααα
∣∣ . . . Vn(xN) · ∣∣(∇ΨΨΨT (xN))ααα

∣∣ 0 0 0
]T

(63)

The solution is obtained by updating the following equation with the time step Δt:

ααα(τn+1) = ααα(τn)−Δt ·U−1B(ααα(τn)) (64)

This equation follows from the first order forward Euler’s method, which is the
simplest solution algorithm with good accuracy for ordinary differential equations
[Wang and Wang (2006a); Wang, Lim, Khoo, and Wang (2007c)].

It is noted that the time step size should be small enough to achieve numerical
stability due to the Courant-Friedrichs-Lewy (CFL) condition [Allaire, Jouve, and
Toader (2004)].
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4.2 Formula of topological shape optimization using adjoint design sensitivity
in the advanced level set method

In advanced level set method, the fundamental basis is to parameterize the level set
function Φ using the radial basis function ϕ . For the purpose of the topological
shape optimization, we define the objective function Jrb f using (59) as:

Jrb f (A;ΨT α) = −
∫

Ω
∏(A)H(ΨT α)dΩ (65)

An optimization problem is to maximize the magnetic energy, i.e. (26) generated
in the air-gap region as described in section 3.2.

Equation (65) is subject to:

a(A, Ā;ΨT α) = l(Ā;ΨT α), A|Γ0 = 0, for all Ā ∈ Ã (66)

in which

a(A, Ā;ΨT α) =
∫

Ω

[
(∇×A) · ( 1

μ
∇× Ā)H(ΨT α)

]
dΩ (67)

l(Ā;ΨT α) =
∫

Ω

[
Js · Ā ·H(ΨT α)

]
dΩ (68)

grb f (ΨT α) = V (ΨT α)−Vmax ≤ 0, V(ΨT α) =
∫

Ω
H(ΨT α)dΩ (69)

Here, it is noted that the level set function Φ is replaced by ΨT α . The deriva-
tion procedure for the adjoint design sensitivity analysis in the advanced level set
method is same to that of the conventional level set method. The differential term
with respect to time is the generalized expansion coefficients. In this way, the space
dependence exists in the RBF and the temporal term evolves in the expansion co-
efficients, since all knots are fixed in the space of the design domain.

In the advance level set method, (58) leads (43) to:

dJrb f

dτ
=

∫
Ω

Θ(A;λ )δ (ΨTα)ΨT Iα dΩ (70)

in which

δ (ΨT α)ΨT Iα = H ′(ΨT α) (71)

Here, Iα is the unit vector.

For formula of the optimization problem using the positive Lagrange multiplier,
lrb f
v , a Lagrangian function Λrb f
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based on the RBF is defined as:

Λrb f (Ψ,α , lrb f
v , s) = Jrb f (A;ΨT α)+ lrb f

v (grb f (ΨT α)+ s2) (72)

The Kuhn-Tucker condition yields the necessary condition for (72) whose deriva-
tive with respect to τ is:

dΛrb f

dτ
=

dJrb f

dτ
+ lrb f

v
dgrb f

dτ
=

∫
Ω

δ (ΨT α)
[
Θ(A,λ )+ lrb f

v

]
ΨT Iα dΩ = 0

(73)

In the advanced level set method, the velocity field is calculated via the same pro-
cedure to deriving (49). The velocity field is obtained by:

V rb f
n (x) = −{Θ(A,λ )+ lrb f

v } (74)

The prescribed assumption that the used volume is identical to the allowable vol-
ume is held for the advanced level set method. Using (74), this yields:∫

Ω
δ (ΨT α)

∣∣∇ΨT α
∣∣V rb f

n (x)dΩ =−
∫

Ω
δ (ΨT α)

∣∣∇ΨT α
∣∣(Θ(A,λ )+ lrb f

v

)
dΩ = 0

(75)

Consequently, the Lagrange multiplier for the advanced level set method is obtained
by:

lrb f
v = −

∫
Ω δ (ΨT α)

∣∣∇ΨT α
∣∣Θ(A,λ )dΩ∫

Ω δ (ΨT α) |∇ΨT α|dΩ
(76)

In general, the velocity is obtained from the sensitivity analysis of the prescribed
objective function, and the descent direction of the objective is determined by the
steepest descent method.

5 Numerical Implementation

The optimization principle is to move the free boundaries represented in a three-
dimensional level set configuration according to their sensitivities with respect to an
objective function. The moving free boundaries are moved, merged or eliminated in
the level set method where the velocity function is derived from a shape sensitivity
analysis. By introducing an RBF, the nucleation of new holes for the moving free
boundaries is allowed in the given material domain [Wang, Lim, Khoo, and Wang
(2007d)]. A scalar level set function, Φ, which is defined over the design domain
Ω, represents the dynamic interfaces for the set where Φ(X ,τ) = 0. Here, the level
set method is described in six steps:
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Step 1: Select the design domain, Ω, and initial shapes, ω on the domain.

Step 2: Initialize the scalar level set function, Φ(X ,0), at τ = 0 corresponding to
an initial estimate, ω0.

Step 3: Solve the equilibrium equation (13) to obtain the magnetic vector potential
A.

Step 4: Find the adjoint response, λ , of the corresponding adjoint equation (39)
and calculate the normal velocity, Vn, at each position x to propagate of all
level sets embedded in the function, Φ(X ,τ).

Step 5: Compute the velocity (49) and solve the evolving equation (21) (Hamilton-
Jacobi equation [Osher and Sethian (1988)]) to update the scalar level set
function in the conventional level set method. In order to allow new hole gen-
eration in the design domain during the optimization, an interpolation equa-
tion of the radial basis function is applied in the advanced level set method,
as explained in Section 4. Solution of (64) on the velocity of (74) updates the
advanced level set function.

Step 6: Check the convergence using the criteria:

Jτ+Δt −Jτ ≤ ε (77)

where ε is a small positive value for convergence.

Equation (13) is solved based on a finite element method. Here, the level set func-
tion Φ is designed as:

Φ(Xτ ,τ) =

⎧⎪⎨
⎪⎩

+d(Xτ ,Γω
τ ) Xτ ∈ ωτ

0 Xτ ∈ Γω
τ

−d(Xτ ,Γω
τ ) Xτ ∈ Ωτ\ωτ

(78)

Here, d(Xτ ,Γω
τ ) is the distance from point X to the boundary Γω , for all X ∈ Rn.

The Rn denotes an n-dimensional real space. Γω
τ , ωτ , and Ωτ are the moving bound-

ary, the corresponding domain, and the fixed reference domain at time τ , respec-
tively. Φ(Xτ,τ) is used to define the inside and outside regions of the interface in
the domain, Ωτ .

The approximate functions for the Heaviside and the Dirac delta functions are used:

H(x) =

⎧⎪⎪⎨
⎪⎪⎩

κ ifx < −Δ
3(1−κ)

4

(
x
3 − x3

3Δ3

)
+ 1+κ

2 if −Δ < x < Δ

1 ifx ≥ Δ

(79)
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δ (x) =

{
3(1−κ)

4Δ

(
1− x2

Δ2

)
if |x| ≤ Δ

0 if |x| > Δ
(80)

where κ is a small positive number that avoids numerical singularity, and H(Φ),
δ (Φ) is a presumed bandwidth of the Heaviside and Dirac delta functions (as shown
in Fig. 3), respectively.

(a) Heaviside function        (b) Dirac delta function 

Figure 3: Approximation of functions.

6 Numerical Examples

In order to prove that the LS based optimization converges to an optimum without
gray areas, a simple structural problem with a ferromagnetic material and a practi-
cal application used in industry are studied. In the former, a plate panel is excited
by an external circuit current embedded in the domain. The sensitivity derived in
this paper is validated using an approximate numerical approach. In this context,
the optimal shapes using the level set methods are compared to the optimal pattern
obtained from the conventional topology optimization (solid isotropic microstruc-
ture with penalization (SIMP) method). In the latter study, as a practical example,
gray area patterns in two models using different mesh sizes are discussed through
comparisons.

6.1 Verification of design sensitivity

In order to verify the accuracy of the derived sensitivity formulation, the example
illustrated in Fig. 4(a) is investigated. The model has two current sources that gen-
erate a symmetric magnetic field on the domain: (+) indicates the current coming
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out from the domain and (-) is the current going into the domain. The outer nodes
are occupied by the homogeneous Dirichlet condition in (8). For approximate sen-
sitivity using the finite difference method (FDM), the boundary is perturbed by 1%
of the distance between a level set grid and the nearest grid. The five arbitrary
points shown in Fig. 4(b) are tested for sensitivity verification. Table I shows that
the adjoint variable method (AVM) is in good agreement with the FDM.

(a)                                               (b) 

Figure 4: Design domain, electric loads, and boundary conditions (a); five knots
for sensitivity validation (b).

Table 1: Sensitivity Comparison between FDM and AVM

FDM∗ AVM FDM/AVM [%]
a 5.1410E-02 5.1302E-02 100.21
b 1.9111E-01 1.9047E-01 100.34
c 5.0106E-02 4.9981E-02 100.25
d 6.5155E-02 6.5038E-02 100.18
e 5.4972E-02 5.4813E-02 100.29
* ΔJ = J(Φ+ΔΦ)−J(Φ)

ΔΦ , forward FDM with 1% per-
turbation

6.2 Example 1: Plate penal with current

In this section, the same finite element model for the sensitivity validation is used to
design a plate panel. It is assumed that no magnetic vector potential leaks outward
due to a homogeneous Dirichlet condition, and there is no material saturation of
the material due to the fact that the linear material behavior (μr = 1000) is used for
the optimization process. This means that the design variable is considered to be
independent of the magnetic flux density. Fig. 5 shows the magnetic flux contour
line when the currents (positive and negative) are applied to the domain.
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The ferromagnetic material is optimized to maximize the magnetic energy gener-
ated in the domain under a constraint; the allowable volume fraction is 50% of
the original domain. The two methods - the conventional level set method and the
advanced level set method using the RBF – are examined to compare the conver-
gence and optimum pattern. Fig. 6 illustrates the history of the implicit boundaries
evolved using the former method with initial guess holes. Fig. 7 explains the
boundary history using the latter method using the RBF with the same initial holes.
Fig. 8 and Fig. 9 show the optimization history of the objective function and the
volume fraction for the former and the latter method, respectively. The volume
fraction specified as the constraint converges at 26 iterations in the former method
and at 9 iterations in the latter method. The objective function in the latter method
is smoother than that of the former method during the optimization convergence.
It transpires that the faster evolution occurs in the latter approach even though the
resulting shapes are identical. The optimal pattern obtained from the established
SIMP method [Shim, Moon, and Wang (2006)] is compared with the shape based
on the advanced level set method using the RBF in Fig. 10. The SIMP method with
a penalization factor of 3 yields the optimal material distribution at 18 iterations.
Even though the same finite element model is used in these optimization methods,
the level set method is much slower than the SIMP method because the process of
merging or splitting holes requires many steps. However, it is noted that a smoother
shape is obtained from the level set method.

Another initial guess that has two half holes in the upper and lower boundaries
and four quarter holes in the corners are applied to the level set method. Fig. 11
illustrates the initial design and the final shapes obtained from the conventional
level set method and the advanced level set method. It is found that the shapes are
identical to those using the first initial guess, i.e. Fig. 6(a).

Figure 5: Magnetic flux contour plot
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(a) Initial     (b) Step 20     (c) Step 30     (d) Step 40   (e) Step 60 

(f) Step 80    (g) Step 100   (h) Step 180    (i) Step 300   (j) Step 390 

Figure 6: History of shape evolution using conventional level set method

(a) Initial    (b) Step 10     (c) Step 20    (d) Step 25  (e) Step 30 

 (f) Step 40    (g) Step 50   (h) Step 60    (i) Step 110    (j) Step 154 

Figure 7: History of shape evolution using advanced level set method

Figure 8: Optimization history of conventional level set method

6.3 Example 2: Core design used for magnetic levitation systems

The magnetic levitation (Maglev) transportation system that has evolved from lin-
ear motion development is a very promising system for the present and future. This
is due to the fact that a non-contact mechanical system, through the absence of
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Figure 9: Optimization history of advanced level set method

(a) Topological SIMP method            (b) Advanced LSM 

Figure 10: Optimal pattern of SIMP method and final shape of advanced level set
method

(a) Initial design   (b) Conventional LSM  (c) Advanced LSM 

Figure 11: Initial design and final shapes with different initial design

wheels, guarantees a no-sliding operation, less noise/vibration, light weight trans-
portation vehicles, a reduction of maintenance costs, and so on. In order to enhance
the light weight structure of the vehicle body, the electromagnet must be optimized
with a smaller volume constraint. The main module of the Maglev is the suspen-
sion of the vehicle body such that the levitation force is maintained equal to the
original force. In this context, an example model for a magnetic levitation system
is investigated using the level set methods and the topological SIMP algorithm. As
shown in Fig. 12, the structure is composed of three components: a C-shaped yoke
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(levitation body yoke), blade (railroad), and coil. The symbol ⊗ indicates a coil
carrying an inflow current and � denotes a coil carrying an outflow current. The
model is symmetric so that analyzing and optimizing the half of the model is suf-
ficient as illustrated in Fig. 12. The magnetic energy is concentrated in the air-gap
because the relative permeability for ferromagnetic materials (yoke and blade) is
much higher than that of air. The energy in the air-gap is the potential energy to
move the structures. Thus, the model is optimized to maximize the energy gen-
erated in the air-gap. Some sections of the C-shaped yoke used for the levitation
vehicle are chosen as a design domain to reduce the volume. In the optimization
problem, one constraint is that the allowable volume fraction is 50% of the origi-
nal domain, which is a critical criterion in maintaining the magnetic field to boost
the vehicle body (C-shaped yoke). Fig. 13 presents the magnetic flux contour plot
when current density (7.5E+5 [A/m2]) is applied on the coil.

Fig. 14 shows the optimal patterns of the coarse model and dense model using
the SIMP method in which a penalization factor of 3 results in convergence at 12
iterations and 16 iterations, respectively. The optimal pattern of the dense model is
smoother, but has a broader gray band area than the coarse model. In the electro-
magnetic examples, the topology optimization using the SIMP method frequently
results in gray areas that occupy a dominant portion of the optimal pattern. Increas-
ing the penalization factor is able to reduce the gray region slightly, but the level of
penalization is dependent on the problem type. The gray area pattern is obscure to
manufacture the optimal design, so it requires post processing to convert the solid-
void pattern with distinct boundaries, i.e. all densities in an optimal pattern are
either 0 or 1. There are two possible approaches for the post processing. The first
is that the designer is able to create an optimal model intuitively from final pattern
with the gray areas. The second approach applies a threshold to separate either
solid or void material. In order to make a solid-void design in this paper, a density
of 0.5 is applied as the threshold. Once the material density (design variable in the
SIMP method) of the design element is greater than 0.5, it is selected as an optimal
domain, i.e. a solid domain. Fig. 15 shows the final shape after the post processing.

Fig. 17 shows the final resulting shapes of the conventional level set method and
the advanced level set method using the initial guesses illustrated in Fig. 16. The
final shape of the former method converges in the local optimal shape, which is
far from the global optimum obtained using the SIMP method. However, the final
shape of the latter method is closer to that of the SIMP method by making the gray
area band free.

The design built after the post processing is re-analyzed to be compared with the
results of the level set method. Table II explains that the re-analysis results of the
topological SIMP method are close to the advanced level set method only. Thus, the
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advanced level set method using the RBF is applicable to practical electromagnetic
problems.

Figure 12: Magnetic levitation system and design domain

Figure 13: Magnetic flux contour plot

(a) Coarse model                              (b) Dense model 

Figure 14: Optimal patterns of SIMP method

7 Conclusions

A topological shape optimization method has been developed for electromagnetic
problems in a steady state using the level set method. Since implicit moving bound-
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(a) Coarse model                      (b) Dense model 

Figure 15: Final shape after post processing

Figure 16: Initial design for level set method

(a) Conventional LSM           (b) Advanced LSM 

Figure 17: Final shape using level set methods

Table 2: Comparison of objective values

Type Objective value [J/m3]
SIMP method – coarse model Optimal pattern: 149.53

Final shape after post processing: 149.42
SIMP method – dense model Optimal pattern: 149.74

Final shape after post processing: 149.73
Conventional level set method Final shape: 143.64
Advanced level set method Final shape: 149.72

aries are used to show the design contours, it is not only easy to represent the shape
variation, but also unnecessary to carry out re-mesh generation after significant
shape changes during the optimization process. The boundary velocity to integrate
the Hamilton-Jacobi equation is obtained from the Kuhn-Tucker optimality condi-
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tion for the Lagrangian function. The design sensitivity equation employing the
adjoint variable method is emphasized by verifying its accuracy compared with the
finite difference method in a simple example. It reduces the numerous gradient
evaluations providing the optimizer with the best direction in the next iteration.

Based on numerical examples, it is shown that the advanced level set method using
the RBF yields a similar optimal shape to the established SIMP approach and con-
verges to the optimum faster and smoother than the conventional level set method.
The removal of the gray areas is achieved in the level set based optimization such
that the additional work (i.e. post processing) is not required. Moreover, the level
set method is able to result in smooth boundaries. However, it is noted that the
computation cost is considerably expensive in comparison with the SIMP method.
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