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Inverse Sensitivity Analysis of Singular Solutions of FRF
matrix in Structural System Identification

S. Venkatesha1, R. Rajender2 and C. S. Manohar3

Abstract: The problem of structural damage detection based on measured fre-
quency response functions of the structure in its damaged and undamaged states
is considered. A novel procedure that is based on inverse sensitivity of the sin-
gular solutions of the system FRF matrix is proposed. The treatment of possibly
ill-conditioned set of equations via regularization scheme and questions on spatial
incompleteness of measurements are considered. The application of the method in
dealing with systems with repeated natural frequencies and (or) packets of closely
spaced modes is demonstrated. The relationship between the proposed method and
the methods based on inverse sensitivity of eigensolutions and frequency response
functions is noted. The numerical examples on a 5-degree of freedom system, a
one span free-free beam and a spatially periodic multi-span beam demonstrate the
efficacy of the proposed method and its superior performance vis-a-vis methods
based on inverse eigensensitivity.

Keyword: Structural system identification; singular value decomposition; regu-
larization; closely spaced modes; near periodic structures

1 Introduction

Structural characteristics, such as, spatial distribution of mass density, elastic prop-
erties, damping characteristics, boundary conditions and strength characteristics of-
ten undergo changes during the service life of a structure. These changes could be
due to continued exposure of structures to hostile environments or due to episodic
overloading conditions caused due to rare events such as strong motion earth-
quakes, passage of heavy vehicle on a bridge or cyclonic winds. These changes
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to the structural properties could be termed as “damage”. From the point of view
of monitoring the health of the structure, it is of vital importance to detect such
changes to the structural properties either, as and when they occur, or, by deliberate
inspection in the aftermath of overload conditions. One of the means to achieve
this objective has been to analyze the vibration data emanating from the damaged
structure with a view to detect, locate and quantify the structural damages.

Frequency response functions (FRF-s) constitute important descriptors of linear,
time invariant dynamical systems. Among many of their attributes which render
them important, especially in the context of structural system identification (SSI)
and health monitoring (SHM), the main ones are as follows: (a) FRF-s are the pri-
mary quantities that are measured and the procedures for their measurement are
widely studied and standardized (Ewins 2000, McConnel 1995), (b) they encapsu-
late information on system natural frequencies, mode shapes and damping charac-
teristics and procedures for extracting this information from measured FRF-s are
widely available (Maia and Silva 1997), (c) FRF-s are typically obtained by av-
eraging across an ensemble of sample measurements and consequently, the effect
of measurement noise is mitigated to a large extent (Bendat and Piersol 1982), (d)
based on singular value decomposition of the FRF matrix, it is possible to delineate
closely spaced and repeated natural frequencies (Shih et al. 1988, Allemang and
Brown 1998), and (e) FRF-s permit computational prediction of structural perfor-
mance to a wide range of loads that may be difficult to simulate in a laboratory
condition (Meirovich 1984). These virtues make them particularly suited for SSI
and structural damage detection (SDD) based on vibration data. The present study
considers questions related to this area of research. Specifically, we consider the
application of sensitivity of singular solutions of FRF-matrix in problems of SSI
and SDD in systems with closely spaced modes. To highlight the relevance of
this proposition, we briefly review the related literature. A detailed review of the
relevant literature is available in the thesis by Venkatesha (2007).

The paper by Doebling et al., (1998) provides a comprehensive review of methods
to characterize structural damage based on vibration response and this review has
been updated by Sohn et al., (2003). Hseih et al., (2006) examine experimental ap-
proaches based on ambient vibration, forced vibration and free vibration monitor-
ing. Issues related to experimental methods for the purpose of condition assessment
of existing structures have been discussed by Aktan et al., (1997). Salawu (1997)
has assessed the use of changes in natural frequencies to characterize structural
damage. Peeters and Roeck (2001) review system identification methods based on
vibration data emanating from operational loads, such as, those caused due to wind
and vehicular traffic. The book by Friswell and Mottershead (1996) covers the
principles of finite element model updating using vibration data with emphasis on
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methods that use modal data and frequency domain data. The methods for SDD and
SSI based on vibration data could be grouped into the following broad categories:
direct matrix methods, methods based on real and complex valued eigensolutions,
methods based on frequency response functions, method based on anti-resonance
frequencies, and time domain methods (Venkatesha 2007). In the present study we
focus on the methods based on eigensolutions and FRF-s. One of the early stud-
ies that employed changes in natural frequencies to characterize structural damage
has been by Cawley and Adams (1979) and some of the recent studies on this line
include the works of Hearn and Testa (1991), Farhat and Hemez (1993), Lin et
al., (1995), Lee and Jung (1997a,b), Law et al., (1998), Sanayei et al., (1999),
Ge and Liu (2005), and Alvandi and Cremona (2005). The approach here typi-
cally consists of forming the matrix of first order eigen-derivatives with respect to
system parameters of interest and using this matrix to relate the observed changes
in modal characteristics to the structural damage using matrix pseudoinverse the-
ory. Some of the complicating features that need to be addressed here include: the
complex nature of modal characteristics due to presence of damping, possibility
of repeated and (or) closely spaced modes, and simultaneous use of natural fre-
quencies and mode shapes in parameter identification. As has already been noted,
FRF-s are often the primary response characteristics which are measured first and
eigen-characteristics are to be deduced from the measured FRF-s. The difficulties
associated with modal extraction could be avoided if FRF-s are used directly in the
problems of SSI and SDD. This approach has been investigated by Nobari (1991),
Visser (1992), Wang et al., (1997), Ratcliffe (2000), Lee and Kim (2001), Maia
et al., (2003), Cha and Switkes (2002), Park and Park (2003), and Huynh et al.,
(2005). Forth and Staroselsky (2005) have developed a new hybrid surface-integral-
finite-element numerical scheme to model a three-dimensional crack propagating
through a thin, multi-layered coating and have discussed the mechanical issues of
implementing a structural health monitoring system in an aircraft engine environ-
ment. In a recent paper Reddy and Ganguli (2007) have employed Fourier analysis
of mode shapes and have introduced a damage index in terms of vector of Fourier
coefficients. A related inverse problem of estimating applied time dependent forces
on a beam using an iterative regularization scheme has been investigated by Huang
and Shih (2007). Characterization of degradation in composite beams using a wave
based approach that employs wavelet based spectral finite element scheme has been
developed by Tabrez et al., (2007). A demonstration on the application of natural
neighbour Petrov-Galerkin (NNPG) method in design sensitivity analysis in 2D
elasticity is made in the work reported by Kai Wang, et al., (2008). In this investi-
gation, the calculation of derivatives of shape functions with respect to design vari-
ables is avoided but instead the local weak form of governing equation is directly
differentiated with respect to design variables and discretized with NNPG to obtain
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the sensitivities of structural responds. An inverse vibration problem to simul-
taneously estimate the time-dependent damping and stiffness functions has been
addressed by Chein-Shan Liu (2008) and it is shown that the proposed Lie-group
shooting method can be employed to identify viscoelastic property of time-aging
materials.

One of the problems associated with the use of FRF-s for SDD and SSI is that this
method results in relatively larger number of equations (than those obtained, for in-
stance, in the eigensensitivity method) governing the changes in system parameters
which, subsequently, leads to numerical difficulties in finding the optimal solution.
An alternative approach, which could possibly avoid this difficulty, would be to
employ singular solutions and singular vectors associated with the measured FRF
matrix in the SDD and SSI algorithms. The expectation here is that the singular
solutions afford FRF data reduction and at the same time capture the essential fea-
tures of the FRF-s in a succinct manner. In this context it is of interest to note that
the spectra of singular values of measured FRF matrix have been used in the ex-
isting literature as markers of natural frequencies of the system (Shih et al., 1988,
Allemang and Brown 1998, Necati et al., 2004). The question of utilizing the sen-
sitivity of singular values and singular vectors in SSI and SDD seem to have been
not addressed in the existing literature. Such an approach is expected to provide
useful tools to study systems with closely spaced modes and repeated natural fre-
quencies. As is well known, structures with repeated natural frequencies, typically
arise in systems which display spatial symmetries. Similarly, systems with closely
spaced modes are encountered in the study of large scale flexible structures (such
as, piping in nuclear reactor structure). Moreover, for structures that possess spatial
periodicity, such as turbine blades, stiffened shells, and multi-span beam and plate
structures, the natural frequencies are known to occur in clusters of closely spaced
modes with each of the clusters lying in pass bands of the system (Brillouin 1958,
Sengupta 1980, Mead 1996). Any occurrence of a disorder in such systems results
in localization of normal modes leading to spatial confinement of vibration energy
(Hodges 1982, Manohar and Ibrahim 1999). We propose in this study to address the
problem of SSI and SDD in systems with repeated modes and (or) closely spaced
modes using changes in singular solutions of FRF matrix as the response feature
for anomaly detection.

2 Singular solutions of FRF matrix and their derivatives

The equilibrium equations governing the dynamics of a N degrees-of-freedom (dof)
linear time invariant system, in time and frequency domains, are respectively given
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by

Mẍ+Cẋ +Kx = f (t);x(0) = x0; ẋ(0) = ẋ0

[D(ω)]X (ω) = F (ω)
(1)

Here M,K, and C are respectively the N×N mass, stiffness and damping matrices;
D(ω) = [−ω2M + iωC + K] is the N ×N complex valued dynamic stiffness ma-
trix, x(t) = N ×1 displacement vector, f (t) = N ×1 force vector, X(ω)= Fourier
transform of x(t), F(ω)= Fourier transform of f (t), t = time, ω = frequency, i =
imaginary number and a dot over head represents derivative with respect to time t.
Taking into account the assembling procedure followed in finite element formula-
tion (Petyt 1998), the structural matrices can be represented in the form

M =
Ne

∑
s=1

[A]ts [M]es [A]s K =
Ne

∑
s=1

[A]ts [K]es [A]s C =
Ne

∑
s=1

[A]ts [C]es [A]s (2)

Here the superscript e denotes the element, Ne is the number of finite elements
and [A]s is the nodal connectivity matrix of size NDOF × N where NDOF is the
number of dofs in the sth element. We assume that the measured FRF matrix is a
Nr ×Ns (Nr ≥ Ns,Nr,Ns ≤ N) matrix and this could denote the system receptance,
mobility or accelerance. However, for the purpose of illustration, we assume that
the measured FRF matrix corresponds to the Nr ×Ns receptance matrix α (ω). We
introduce two matrices B and Q as

B(ω) = α (ω)αT (ω) Q(ω) = αT (ω)α (ω) (3)

Here, the superscript T represents the conjugate transpose. Clearly, B and Q are
respectively of sizes Nr ×Nr and Ns × Ns. Furthermore, these matrices are real
valued, symmetric in nature and the two matrices possess identical nonzero eigen-
values. Denoting by U (ω) and V (ω) the Nr ×Nr and Ns ×Ns eigenvector matrices
of B and Q respectively, the matrix α (ω) can be decomposed as

α (ω) = U (ω)Σ(ω)V T (ω) (4)

Here Σ(ω) is a Nr ×Ns matrix that has the following structure

Σ(ω) =
[

[Λ]Ns×Ns

[0](Nr−Ns)×Ns

]
Nr×Ns

(5)

where Λ is the diagonal matrix that carries the non-zero eigenvalues of matrices B
and Q. Equation 4 together with 5 constitute the singular value decomposition of



118 Copyright © 2008 Tech Science Press CMES, vol.37, no.2, pp.113-147, 2008

the FRF matrix α (ω). The notion of a complex mode indicator function (CMIF)
was introduced by Shih et al., (1988) as

CMIF (ω)Ns×Ns
= [Σ(ω)]TNs×Nr

[Σ(ω)]Nr×Ns
(6)

This function serves as a means for identification of model order and also for lo-
cating the natural frequencies. In using this indicator, the CMIF-s are plotted as a
function of frequency ω with natural frequencies indicated by large values of the
first CMIF and double or multiple modes by simultaneously large values of two
or more CMIF values (Ewins 2000). The singular vectors, that is, the columns of
matrices, U (ω) and V (ω), admit physical interpretation as follows: the left singu-
lar vector U1 (ωr) evaluated at the r-th natural frequency ωr, approximates the r-th
mode shape; and, the right singular vector V1 (ωr) represents the approximate force
pattern necessary to generate a response only in the r-th mode. Here it is assumed
that ωr does not repeat. If this assumption is not valid, there will be as many left
vectors and right vectors which correspond to the number of repeated modes. Ap-
pendix A provides a numerical example on a seven dof system in which one of the
natural frequencies repeats six times and demonstrates the use of singular solutions
of FRF matrix in detecting the repetition of the natural frequencies.

As has been already noted, we propose in this study to employ the singular solu-
tions of measured FRF-s to develop algorithms for SSI and SDD. To achieve this,
we first need to obtain the derivatives of the singular solutions with respect to the
system parameters of interest. We consider the eigenvalue problem Qy = λ y and,
corresponding to the i-th eigenpair (λi,yi), we obtain the equation Fiyi = 0 with
Fi = Q−λiI where I is the identity matrix. Let {pi}n

i=1 denote the system param-
eters of interest. From the equation Fiyi = 0 it follows that yT

i (p)Fi (p)yi (p) = 0.
Differentiating this function with respect to p j we get

∂yT
i

∂ p j
Fiyi +yT

i
∂Fi

∂ p j
yi +yT

i Fi
∂yi

∂ p j
= 0 (7)

By noting that Fiyi = 0, it follows that yT
i FT

i = yT
i Fi = 0, leading to

yT
i

∂Fi

∂ p j
yi = 0 (8)

Similarly, by noting that Fi = Q−λiI, we get

yT
i

[
∂Q
∂ p j

− ∂λi

∂ p j
I

]
yi = 0 (9)
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Simplifying this expression we further obtain

∂λi

∂ p j
= yT

i

[
∂Q
∂ p j

]
yi (10)

To obtain derivative of the eigenvectors with respect to p we consider two modes yi

and ys and note that

yT
i ys = δis (11a)

yT
i Qys = λiδis (11b)

where δis is the Kronecker delta function. Differentiating equation (11 a), with
respect to p j, we get

∂yT
i

∂ p j
ys +yT

i
∂ys

∂ p j
= 0. (12)

Since ∂yT
i

∂ p j
ys and yT

i
∂ys
∂ p j

are scalars, we can write

yT
s

∂yi

∂ p j
+yT

i
∂ys

∂ p j
= 0. (13)

Similarly, by differentiating equation (11 b), with respect to p j we get

yT
s Q

∂yi

∂ p j
+yT

i Q
∂ys

∂ p j
=

∂λi

∂ p j
δis −yT

i
∂Q
∂ p j

ys. (14)

Furthermore, by using the conditionsFiyi = 0, we get additional equations

Fi
∂yi

∂ p j
= − ∂Fi

∂ p j
yi

Fs
∂ys

∂ p j
= −∂Fs

∂ p j
ys

(15)

Thus, equations (13-15) can be combined to get

⎡
⎢⎢⎣

Fi 0
0 Fs

yT
s yT

i
yT

s Q yT
i Q

⎤
⎥⎥⎦

{ ∂yi
∂δ j
∂yS
∂δ j

}
=

⎡
⎢⎢⎢⎢⎣

− ∂Fi
∂δ j

yi

−∂Fs
∂δ j

ys

0
∂λi
∂δ j

δis −yT
i

∂Q
∂δ j

ys

⎤
⎥⎥⎥⎥⎦ (16)
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In deriving the above equation we have considered only the eigenpairs (λi,yi) and
(λs,ys). We could develop equations similar to equation (16) by considering more
than two eigenpairs. Thus, for the case of 3 eigenpairs (λi,yi), (λr,yr) and (λs,ys),
the following equation for eigenvector sensitivity can be derived.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi 0 0
0 Fr 0
0 0 Fs

yT
r yT

i 0
yT

r Q yT
i Q 0

yT
s 0 yT

i
yT

s Q 0 yT
i Q

0 yT
s yT

r
0 yT

s Q yT
r Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂yi
∂ p j
∂yr
∂ p j
∂ys
∂ p j

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂Fi
∂ p j

yi

− ∂Fr
∂ p j

yr

− ∂Fs
∂ p j

ys

0
∂λi
∂δ j

δir −yT
i

∂Q
∂δ j

yr

0
∂λi
∂δ j

δis −yT
i

∂Q
∂δ j

ys

0
∂λi
∂δ j

δrs −yT
r

∂Q
∂δ j

ys

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Similarly, for four eigenpairs with indices i, r, s,k one gets,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fi 0 0 0
0 Fr 0 0
0 0 Fs 0
0 0 0 Fk

yT
r yT

i 0 0
yT

r Q yT
i Q 0 0

yT
s 0 yT

i 0
yT

s Q 0 yT
i Q 0

yT
k 0 0 yT

i
yT

k Q 0 0 yT
i Q

0 yT
s yT

r 0
0 yT

s Q yT
r Q 0

0 yT
k 0 yT

r
0 yT

k Q 0 yT
r Q

0 0 yT
k yT

s
0 0 yT

k Q yT
s Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂yi
∂ p j
∂yr
∂ p j
∂ys
∂ p j
∂yk
∂ p j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂Fi
∂ p j

yi

− ∂Fr
∂ p j

yr

− ∂Fs
∂ p j

ys

− ∂Fk
∂ p j

yk

0
∂λi
∂δ j

δir −yT
i

∂Q
∂δ j

yr

0
∂λi
∂δ j

δis −yT
i

∂Q
∂δ j

ys

0
∂λi
∂δ j

δik −yT
i

∂Q
∂δ j

yk

0
∂λi
∂δ j

δrs −yT
r

∂Q
∂δ j

ys

0
∂λi
∂δ j

δrk −yT
r

∂Q
∂δ j

yk

0
∂λi
∂δ j

δsk −yT
s

∂Q
∂δ j

yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The sensitivity of eigensolutions of the matrix B can also be derived on similar
lines.
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3 Inverse sensitivity analysis

The derivatives of singular solutions developed in the preceding section are now
used in developing a SDD algorithm. Let Γk(p1, p2, · · · , pn), k = 1,2, · · · ,Nk, de-
note a generic set of dynamic characteristics of the system. This set includes a se-
lection of singular values and elements of singular vectors at a chosen set of driving
frequency points. It is assumed that Γk(p1, p2, · · · , pn), k = 1,2, · · · ,Nk are differ-
entiable with respect to {pi}n

i=1 to a desired level. Furthermore, let pu = {pui}n
i=1

represent the system characteristics in its undamaged state. We write pdi = pui +Δi

where Δi is the change in the ith system parameter due to the occurrence of damage.
Based on these notations and using Taylor’s expansion, we can write,

Γk [pu1 +Δ1, pu2 +Δ2, · · · , pun +Δn] = Γk[pu1, pu2, · · · , pun]+
n

∑
i=1

∂Γk

∂ pui

∣∣∣∣
p=pu

Δi

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2Γk

∂ pui∂ pu j

∣∣∣∣
p=pu

ΔiΔ j + · · ·

(19)

The quantity ΔΓk = Γk{pd1, pd2, · · · , pdn} − Γk{pu1, pu2, · · · , pun} represents the
change in the character Γk due to occurrence of damage and this quantity is ex-
pected to be measured based on experiments conducted on the structure in its dam-
aged and undamaged states. The essence of first order damage detection methods
consist of writing equation (19) as

ΔΓk =
n

∑
i=1

∂Γk

∂ pui

∣∣∣∣
p=pu

Δi; k = 1,2, · · · ,Nk (20)

This can be re-written as

{ΔΓ}Nk×1 = [S]Nk×n{Δ}n×1 (21)

It is emphasized that the matrix [S] is evaluated for the structure in its undamaged
state. Consequently, the damage vector {Δ} is obtained as

{Δ}= [S]+ {ΔΓ} (22)

where + denotes the matrix pseudo-inverse. It may be noted that this determina-
tion of Δ crucially depends upon the matrix [S] being well conditioned. Often,
this requirement may not be met in applications due to, for example, presence
of measurement noise, and it would become necessary to employ regularization



122 Copyright © 2008 Tech Science Press CMES, vol.37, no.2, pp.113-147, 2008

techniques to obtain acceptable solutions. To apply the scheme, equation 22 is re-
written as [StS +ξ I]{Δ}= StΔΓ. Here ξ is called the regularization parameter and
it is selected such that the matrix [StS +ξ I] is not ill-conditioned. Thus, Δ is now
determined using {Δ} = [StS +ξ I]−1 StΔΓ. This solution can be shown as being
equivalent to finding Δ such that ||SΔ−ΔΓ||+ξ ||Δ|| is minimized (Hansen 1994).
The first term here represents the error norm and the second term the smoothness
of the solution. It is clear that ξ cannot be made arbitrarily large, in which case,
the physical characteristic of the original problem would be distorted; on the other
hand, if ξ=0, the solution to the problem is not satisfactory, if not impossible. Thus
in the selection of ξ , a trade-off is involved, and, in implementing the regularization
scheme a ‘L’-curve that represents ||SΔ−ΔΓ||versus ||Δ||is constructed for differ-
ent values of ξ . The value of ξ that corresponds to the knee of this curve is taken as
being optimal. It may also be noted that in equation 20, the Taylor expansion has
been carried out around {pu}, the system parameters in the undamaged state, and
the S matrix in equation 21 is evaluated at this initial guess. The reference value
around which the Taylor expansion is done can be updated once an estimate of Δ
is obtained using equation 22. This leads to an iterative strategy to solve for Δ as
follows: {Δ}k̄+1 = [S]+k̄ +{ΔΓ}k̄; k̄ = 1,2, · · · ,NT . This iteration could be stopped
based on a suitable convergence criterion based on difference in norms of initial
guess and predicted value of Δ.

4 Illustrative examples

The SDD method outlined in the preceding section is now illustrated using a 5-dof
discrete system, a one span free-free beam and a spatially periodic four span contin-
uous beam. The example on free-free beam includes data from experimental stud-
ies. The range of issues covered include effect of damage on systems with repeated
natural frequencies, effect of spatial incompleteness of measurements, damages in
periodic structures in which natural frequencies occur in clusters and occurrence
of damage herein could lead to normal mode localization. In all the numerical ex-
amples considered, the governing equations for the damage indicator factors have
been solved by incorporating regularization scheme.

4.1 A five degrees-of freedom system

In this example, we consider the 5-dof system shown in figure 1. By adjusting the
parameters of this model we create following three scenarios:

a. the structure in its undamaged state has one of its natural frequencies repeating
twice and the damaged structure possess five distinct natural frequencies,
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b. the structure in its damaged as well as undamaged states has two of its natural
frequencies repeating twice, and

c. the structure in its undamaged state has five distinct natural frequencies while
the damaged structure has one of its natural frequencies repeating twice.

Figure 1: Five-dof system considered in section 5.1.

The SDD algorithm used in this section to tackle these problems employs only the
information on sensitivity of singular values. The system parameters in damaged
state are taken to be related to the corresponding parameters in undamaged state
through the relation mdi = αimui; i = 1,2, · · ·5 and kdi = βikui; i = 1,2, · · ·15. For
the purpose of illustration it is assumed that damping is classical with the damping
parameter for all modes being constant. The occurrence of the damage is taken not
to affect the damping. In each of the examples, a frequency range of 0-30 rad/s
with Δω=0.1 rad/s is considered. The spectra of singular values are extracted from
the 5× 5 receptance matrix and all the five singular values are used in SDD. To
facilitate the comparison of the performance of the proposed method (Method I)
we also analyze the problem using inverse sensitivity of system natural frequencies
and mode shapes (Method II) the details of which are available in existing literature
(see, for example, the thesis by Venkatesha 2007).

Case (a): Table 1 summarizes the system parameters in its undamaged state. Here
ω3 = ω4=16.33 rad/s –a fact that could also be ascertained from the spectra of
singular values shown in figure 2. The system is taken to have a modal damping of
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5% in all the modes. The structure in its damaged state is considered with

α1 = 0.91, α2 = 0.91, α3 = 0.91, α4 = 0.91, α5 = 0.91, β1 = 0.95,

β2 = 0.96, β3 = 0.95, β4 = 0.95, β5 = 0.94, β6 = 0.95, β7 = 0.95,

β8 = 0.95, β9 = 0.95, β10 = 0.95, β11 = 0.95, β12 = 0.95, β13 = 0.95,

β14 = 0.95, and β15 = 0.95.

The undamped system natural frequencies and mode shapes now get modified as

ωn =
(
10.2250 15.6729 16.6850 16.7070 23.5337

)
rad/s

Φ =

[0.0280 −0.0192 0.0428 0.0245 −0.0087
0.0279 −0.0186 −0.0000 −0.0496 −0.0088
0.0280 −0.0192 −0.0428 0.0245 −0.0087
0.0281 0.0439 −0.0000 0.0003 −0.0056
0.0281 −0.0050 −0.0000 −0.0002 0.1009].

It may be noted that in the damaged system all the natural frequencies are dis-
tinct. The results of damage detection using inverse sensitivity on singular values
(Method I) are shown in figures 3 and 4. It may be observed that the SDD algorithm
leads to satisfactory estimate of damaged system parameters. The solution to same
problem by using inverse sensitivity of natural frequencies and mode shapes was
also attempted. The algorithm in this case however, did not function satisfactorily:
figure 5 shows a selection of these results which show unacceptable fluctuations
in vales of mass parameters as iterations proceeds. This example provides an in-
stance where the proposed SDD algorithm in this paper performs better than inverse
eigensensitivity method that is available in the existing literature.

Case (b): The undamaged system as in Table 1 and the damaged system is simu-
lated with

α1 = 0.92, α2 = 0.92, α3 = 0.92, α4 = 0.92, α5 = 0.92, β1 = 0.9,

β2 = 0.9, β3 = 0.9, β4 = 0.9, β5 = 0.9, β6 = 0.9, β7 = 0.9,

β8 = 0.9, β9 = 0.9, β10 = 0.9, β11 = 0.9, β12 = 0.9, β13 = 0.9,

β14 = 0.9, and β15 = 0.9.

The undamped eigensolutions for the damaged structure are as follows:

ωn =
(
9.8907 15.1685 16.1515 16.1515 22.8017

)
rad/s
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Figure 2: Example 5.1, Case (a); spectra of singular values of the structure in
undamaged state

Table 1: Model parameters for the system considered in section 5.1 (figure 1).

Mass parameters M
(kg)

m = 100, m1 = m2 = m3 = 3m, m4 = 4m, m5 = m

Stiffness parameters K
(N/m)

k = 10000, k1 = k2 = 3k, k3 = k, k4 = 4k, k5 = k, k6 =
k7 = k8 = k9 = k10 = k11 = k12 = k13 = k14 = k15 = k

Damping parameters
Cd = [2ηnωn] (Ns/m)

Cd1= 2.0000, Cd2= 3.0672, Cd3=3.2660, Cd4=
3.2660, Cd5= 4.6107

Undamped natural fre-
quency ωn (rad/s)

ω1=10.0000, ω2=15.3361, ω3=16.3299,
ω4=16.3299, ω5=23.0536

Mass normalized un-
damped modal matrix
Φ

[0.0267 −0.0181 0.0408 −0.0236 −0.0083
0.0267 −0.0181 −0.0408 −0.0236 −0.0083
0.0267 −0.0181 −0.0000 0.0471 −0.0083
0.0267 0.0419 0.0000 −0.0000 −0.0054
0.0267 −0.0047 −0.0000 0.0000 0.0962]
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Figure 3: Example 5.1, Case (a); results from Method I; detection of changes to
mass parameters; reference values of the parameters are shown in parenthesis.

Φ =

[0.0279 −0.0189 0.0032 0.0490 −0.0087
0.0279 −0.0189 −0.0441 −0.0218 −0.0087
0.0279 −0.0189 0.0409 −0.0273 −0.0087
0.0279 0.0437 0.0000 0.0000 −0.0056
0.0279 −0.0049 −0.0000 0.0000 0.1003].

Here it may be noted that both the damaged and undamaged structures have one of
their natural frequencies repeating twice. Here again it was observed that Method
I performed better than Method II. Figure 6 shows the SDD iterations on the mass
parameter using Method I. Interestingly, results from Method II showed convergent
behavior (Figure 7) but the values to which the SDD algorithm converged to were
unsatisfactory.

Case (c): The undamaged system is now taken to have the properties

m1 = 282,m2 = 282,m3 = 282,m4 = 376,m5 = 94 (kg) and
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Figure 4: Example 5.1, Case (a); results from Method I; detection of changes to
stiffness parameters; reference values of the parameters are shown in parenthesis.

k1g = 28500, k2g = 28800, k3g = 28500, k4g = 38000, k5g = 9400,

k12 = 9500, k13 = 9500, k14 = 9500, k15 = 9500, k23 = 9500,

k24 = 9500, k25 = 9500, k34 = 9500, k35 = 9500, k45 = 9500 (N/m)

The natural frequencies and mode shapes of this system are obtained as

ωn =
(
10.0605 15.4207 16.4166 16.4382 23.1551

)
rad/s

Φ =

[0.0276 −0.0189 0.0421 0.0241 −0.0086
0.0274 −0.0183 −0.0000 −0.0488 −0.0086
0.0276 −0.0189 −0.0421 0.0241 −0.0086
0.0276 0.0432 0.0000 0.0003 −0.0056
0.0276 −0.0049 −0.0000 −0.0002 0.0992].
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Figure 5: Example 5.1, Case (a); results from Method II; detection of changes to
mass parameters; reference values of the parameters are shown in parenthesis.

Now we form the damaged system with

m1 = 300, m2 = 300, m3 = 300, m4 = 400, m5 = 100 (kg) and

k1g = 30000, k2g = 30000, k3g = 30000, k4g = 40000, k5g = 10000,

k12 = 10000, k13 = 10000, k14 = 10000, k15 = 10000, k23 = 10000,

k24 = 10000, k25 = 10000, k34 = 10000, k35 = 10000, k45 = 10000 (N/m)

The undamped eigensolutions for this system are obtained as

ωn =
(
10.0000 15.3361 16.3299 16.3299 23.0536

)
rad/s

Φ =

[0.0267 −0.0181 0.0408 −0.0236 −0.0083
0.0267 −0.0181 −0.0408 −0.0236 −0.0083
0.0267 −0.0181 −0.0000 0.0471 −0.0083
0.0267 0.0419 0.0000 −0.0000 −0.0054
0.0267 −0.0047 −0.0000 0.0000 0.0962].
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Figure 6: Example 5.1, Case (b); results from Method I; detection of changes to
mass parameters; reference values of the parameters are shown in parenthesis.

Here it is may be noted that the structure in its undamaged state has five distinct
natural frequencies while the damaged structure has one of its natural frequency re-
peating twice. Here again, it was observed that while Method I performed satisfac-
torily (Figure 8), Method II, on the other hand showed unsatisfactory convergence
behavior (Figure 9).

4.2 A one span free-free beam

A 0.78 m span free-free steel beam as shown in figure 10 is considered in this ex-
ample (figure 10). The beam, in its undamaged state, carries a concentrated mass
M=0.027 kg as shown and the damaged structure is simulated by removing this
mass from the structure. The system FRF-s in this case were simulated syntheti-
cally with (with E=2.0×1011 N/m2, ρ=7528.9 kg/m3) and also measured experi-
mentally in a laboratory using impulse hammer technique. The structure was mod-
eled using 50 numbers of 2-noded Euler-Bernoulli beam elements with 2-dof per
node. For the purpose of damage detection, the beam was divided into five equal
zones with similar elastic and mass properties. The removal of mass, as mentioned
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Figure 7: Example 5.1, Case (b); results from Method II; detection of changes
to mass parameters; the SDD algorithm does not converge to the reference values
shown in parenthesis.

above, results in zone 3 suffering a 6.65% loss of mass. Consequently, the refer-
ence value of the damage indicator factor α3 is 0.9335 and, since no other elements
suffer either loss of mass and/or loss of stiffness, the reference damage indicating
factors for the remaining zones remain as 1.000 for both mass and stiffness pa-
rameters. The size of the FRF matrix used in damage detection in this case was
taken to be 6× 1thereby introducing the issue of spatial incompleteness of mea-
surements into the SDD procedure. In this example, both Methods I and II (as per
the nomenclature of the preceding section) show satisfactory performance. Method
I is implemented using the spectra of one singular value and one left singular vec-
tor. Method II is implemented using sensitivity of first three natural frequencies
and mode shapes. Figure 11 shows a selection of results obtained using Method II
based on synthetic data. The Nyquist plot of one of the FRF of the system before
and after the damage detection using Methods I and II are shown in figure 12. It
may be noted that the damage detection using both Methods I and II are equally
successful and consequently the difference in the predicted FRF-s from the two
methods cannot be delineated in this figure. Damage detection using experimen-
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Figure 8: Example 5.1, Case (c); results from Method I; detection of changes to
stiffness parameters; the reference values of the parameters are shown in the paren-
thesis.

tally measured FRF-s with Method II was possible with about 5% accuracy and
figure 13 shows a comparison of FRF measured on the damaged system with the
corresponding prediction using estimated parameters after damage detection.

4.3 A four span spatially periodic continuous beam

The example structure here is representative of spatially periodic structures and
this class of structures are known to display several unusual dynamic characteristics
(Brillouin 1958, Sengupta 1980, Mead 1996). The dynamic response of these struc-
tures is characterized by alternating sequence of frequency bands which pass or stop
traveling waves. The system natural frequencies here occur in clusters within the
pass bands with the number of natural frequencies within each cluster being equal
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Figure 9: Example 5.1, Case (c); results from Method II; detection of changes to
stiffness parameters; the SDD algorithm does not converge to the reference values
shown in parenthesis.

to the number of repetitive units in the structure. If any of the structural properties
are modified so as to break the spatial periodicity, the resulting disordered sys-
tem displays the phenomena of normal mode localization (Hodges 1982, Manohar
and Ibrahim 1999). Thus, this class of structures offers interesting challenges in
SSI and SDD. To clarify some of these features, we begin by considering a har-
monically driven one span beam unit as shown in figure 14. Using transfer matrix
formalism, the steady state amplitude of the harmonic bending moment and rota-
tion at the right end can be shown to be related to the corresponding quantities at
the left end through the relation of the form (Pestel and Leckie 1963)

{
M (ω)
θ (ω)

}
R

= [T (ω)]
{

M (ω)
θ (ω)

}
L

(23)
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Figure 10: Free-free beam in undamaged state considered in example 5.2; A1-A6
indicate accelerometers; F indicates the force applied through impulse hammer; M
is a concentrated mass; damaged structure is created by removal of mass M; all
dimensions are in mm.

Figure 11: Example 5.2; results on damage detection using Method II; damage
indication factors for mass; reference values are indicated in the parenthesis.
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(a)

(b)
Figure 12: Example 5.2; results on damage detection using Method II; (a) System
FRF in damaged and undamaged states; (b) comparison of measured and predicted
FRF-s of the damaged system; note that the damage detection using Methods I and
II are equally successful and the two results overlap.
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Figure 13: Example 5.2; results on damage detection using Method II.

Here T is the 2× 2, frequency dependent, system transfer matrix. If one con-
siders a periodic structure, with the beam unit in figure 14 as the repeating unit,
clearly, the propagation of a traveling wave in such a system would be governed
by the eigenvalues of the matrix T . These eigenvalues are known to occur in re-
ciprocal pairs. By denoting the eigenvalues as λ1,2 and, introducing the notation
λ1,2 = exp [±(γ + iκ)], we observe that the nature of spatial variation of the waves
depends on the attenuation constant γ . Clearly, for spatial periodic motions to be
possible, it is required that γ (ω) = 0 (here ω is said to belong to the ‘pass’ band)
otherwise the waves would attenuate (here ω will be in the ‘stop’ band). For the
purpose of illustration, we consider a four span continuous beam that is perfectly
periodic (individual span=0.5m, E=2.0E+11 N/m2, area of cross section= 98.84
mm2, density=7483.2 kg/m3). Figure 15 shows the spectrum of the attenuation
constant which clearly depicts the occurrence of alternating sequence of stop and
pass bands. Furthermore, the figure also shows the natural frequencies of the four
span beam and these frequencies are seen to occur in clusters of four with each clus-
ter lying within a pass band. To demonstrate the effect of modifying the structure
which leads to the breaking of periodicity, we consider the density of the material in
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the second span to be increased by 50%. The resulting changes in natural frequen-
cies of the system are shown in figure 16 in which the spectrum of the attenuation
constant of the perfectly periodic beam is also shown. It may be observed from
the plot that some of the natural frequencies of the disordered beam now lie in the
stop bands of the perfectly periodic beam. The mode shapes associated with these
natural frequencies display spatial attenuation characteristics (figure 17) and the
mode is said to be spatially localized. While this phenomenon has been the subject
of extensive research in structural mechanics literature, it appears that the inverse
problem associated with SSI and SDD as applied to this class of structures has not
received wide attention.

Figure 14: One span beam unit.
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Figure 15: Spectrum of the attenuation constant for a perfectly periodic beam; the
circles show the natural frequencies occurring in clumps within the pass bands.
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Figure 16: Spectrum of the attenuation constant for a perfectly periodic beam; the
circles show the natural frequencies of the disordered beam.

Table 2: Properties of the four span steel beam considered in section 5.3

Total length 2.0 m
Length of each span 0.50 m
Width 24.9590 mm
Thickness 3.9620 mm
Mass density 7483.250 kg/m3

Modulus of elasticity 2.0e11 N/m2

Concentrated mass M 37.550 g
Added mass (m) 8.670 g
Mass A1-A7 8.670 g
Rayleigh’s damping parameters ξms = 10.7117 & ξks = 1.9360E−06
Rotational stiffness at each support
(Nm/rad)

892.5, 811.5, 805.5, 830.5, 913.0

In the present study we consider the four span steel structure shown in figure 18.
This model serves as the first cut physical model for an experimental model that the
authors are currently studying. M denotes a point mass which can be either added
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(a)

(b)

Figure 17: Normal modes of multi-span beam (a) Extended mode of perfectly pe-
riodic structure; (b) localized normal mode of disordered structure.
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Figure 18: Example 5.3; M= a point mass that is introduced to create disorder;
A1-A7: accelerometers; m=dummy mass introduced to retain periodicity of the
structure; Kθ i; i = 1,2, . . .,5are the rotary springs to correct for imperfect simply
supported end conditions; all dimensions are in mm.
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Figure 19: Example 5.3; detection of changes in mass parameters using inverse
sensitivity of singular solutions; reference values are indicated in the parenthesis.

or removed to create disorder in the system; A1-A7 indicate the accelerometers and
a point mass m is added in the fourth span to ensure that all the spans are identical;
Kθ i; i = 1,2, . . .,5 denote tortional springs that are introduced to model imperfect
simple support conditions in the experimental fixture. Table 2 summarizes the prop-
erties of the structure. In implementing the identification algorithm, the structure is
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Figure 20: Example 5.3; detection of changes in stiffness parameters using inverse
sensitivity of singular solutions; reference values are indicated in the parenthesis.

modeled using 80 number of 2-noded, Euler-Bernoulli beam elements with 2 dofs
per node. The beam is further dived into four zones and properties within each zone
are taken to be constant. The damping matrix within each of these zones is taken to
be of the Rayleigh type with the matrix being a linear combination of the mass and
stiffness matrices. The mass density, flexural rigidity and proportionality constants
appearing in the damping model in each of the four zones are treated as parameters
to be identified. Additionally, the torsional springs at the supports are also taken to
be parameters to be identified. Thus, in this example we have 21 parameters to be
identified. The structure in its undamaged state is given by the system with M=0
and in the ‘damaged’ structure the mass M=37.55 g is introduced. We employ the
method based on inverse sensitivity of singular value and the left singular vector of
a 7×1FRF matrix to detect the changes in the 21 parameters of the system. This
FRF matrix is obtained by driving at A4 and measuring response accelerations at
the points A1-A7 (figure 18). Figures 19 and 21 show a selection of results and
these figures illustrate identification of mass and stiffness parameters. The drive
point accelerances of the system in its damaged and undamaged states are super-
posed in figure 21. The successful performance of the SDD can be evidenced in
figure 22 in which the predicted drive point accelerance of the damaged system is
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Figure 21: Example 5.3; detection of changes in support stiffness parameters us-
ing inverse sensitivity of singular solutions; reference values are indicated in the
parenthesis.

observed to match very well with the measured accelerance.

5 Closing remarks

The problem of structural damage detection, location and quantification in linear
time invariant structural dynamical systems has been considered in this study by
using singular solutions of the system FRF matrix as response features for dam-
age characterization. The study assumes that a baseline mathematical model of
the structure in its undamaged state is available. The proposed method is capa-
ble of detecting changes to mass, stiffness and (or) damping characteristics of the
system. For systems with well separated modes, the proposed method conceptually
encompasses in its fold the inverse sensitivity methods based on eigensolutions and
FRF-s. Thus we note the following:

a. By selecting the frequencies of interest to coincide with the system natural fre-
quencies, and by taking the first singular solution as the response feature of



142 Copyright © 2008 Tech Science Press CMES, vol.37, no.2, pp.113-147, 2008

-150 -100 -50 0 50 100 150
0

50

100

150

200

250

300

Real,(m/s/s)/N

Im
ag

in
ar

y,
(m

/s
/s

)/N
disordered
ordered

Figure 22: Example 5.3; Nyquist plot of the drive point accelerance for the structure
in its damaged and undamaged states.
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Figure 23: Example 5.3; Nyquist plot of the drive point accelerance for the structure
in its damaged state and the prediction of the accelerance after damage detection.
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interest, the present method becomes nearly the same as the method that uses
inverse sensitivity of natural frequencies alone.

b. In addition to the first singular value as in the item above, if we also include the
first left singular vector as an additional response feature, the procedure becomes
nearly the same as the method that uses inverse sensitivity of natural frequencies
and mode shapes.

c. If we include all the singular values and singular vectors at all the frequencies,
the method is equivalent to inverse sensitivity method based on FRF-s.

Thus, the method has the inherent ability to selectively include key features of sys-
tem response and permits an increasingly elaborate analysis of measured data with
a view towards structural damage characterization. More importantly, the method is
particularly suited for damage detection in systems with repeated or closely spaced
modes. This has been exemplified in the present study by considering damages to
system with repeated natural frequencies and also spatially periodic structures in
which the natural frequencies occur in packets of closely spaced modes.
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Appendix A

Here we consider a 7-dof system with the 7×7 mass and stiffness matrices given
respectively by Mii = 100 kg, i = 1,2, · · · ,7; Mi j = 0 ∀i �= j; i, j = 1,2, · · · ,7 and
Kii = 7000N/m; i = 1,2, · · · ,7; Ki j = −10000N/m ∀i �= j; i, j = 1,2, · · · ,7. The
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undamped natural frequencies for the system are obtained as ω1=10 rad/s and
ω2 = ω3 = · · · = ω7= 28.28 rad/s. Figure A.1 shows a few of the system FRF-s
obtained under the assumption that the system is viscously damped with damp-
ing ratio in all the modes being equal to 0.02. Given that one of the natural fre-
quencies of the system is already known to repeat six times, as one might expect
the FRF-s show only two peaks although the system itself has 7 dofs. This de-
duction, however, would not be straightforward if the FRF-s are obtained experi-
mentally and they could as well be mistaken for response of a 2-dof system. The
singular solutions of the FRF matrix serve useful purpose in this context in de-
termining the number of modes present in a measured FRF. Figure A.2 show the
spectrum of the singular solutions (based on the 7×7FRF matrix). The first singu-
lar solution shows two peaks and the second peak repeats prominently in the next
five singular value spectra. This leads to the conclusion that the FRF-s are orig-
inating from a system with seven dofs. If we change the mass matrix such that
M11 = 100, M22 = 2004, M33 = 300, M44 = 250, M55 = 400, M66 = 50, M77 = 90;
Mi j = 0 ∀i �= j; i, j = 1,2, · · · ,7 and keep the stiffness matrix as above, the system
would now possess 7 distinct natural frequencies (6.92, 15.00,17.13, 19.23, 25.77,
29.18, and 28.26 rad/s). A few of the FRF-s for the system are shown in figure A.3
and the spectrum of singular values here are as shown in figure A.3. These spectra
corroborate the fact that the system has 7 distinct natural frequencies.
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Figure A.1: Receptance functions for the 7-dof system considered in Appendix A;
system with repeated natural frequencies.
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Figure A.2: Singular values of FRF matrix considered in Appendix A; system with
repeated natural frequencies.
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Figure A.3: Receptance functions for the 7-dof system considered in Appendix A;
system with distinct natural frequencies.
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Figure A.4: Figure A.4 Singular values of FRF matrix considered in Appendix A;
system with distinct natural frequencies.




