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Analytical Solution for Estimation of
Temperature-Dependent Material Properties of Metals
Using Modified Morse Potential
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Abstract: An atomic-level analytical solution, together with a modified Morse
potential, has been developed to estimate temperature-dependent thermal expan-
sion coefficients (CTE) and elastic characteristics of bulk metals. In this study,
inter-atomic forces are considered as a set of anharmonic oscillator networks which
can be described by Morse potential, while the material properties can be defined by
these inter-atomic forces; when temperature increases, the vibration of the anhar-
monic oscillator causes the phenomenon of temperature-dependent material prop-
erties. The results of analysis showed that the original Morse potential can give a
reasonable prediction of the thermal expansion coefficients and elastic constants of
metals at room temperature; however, it has difficulties in giving an accurate result
at low and high temperatures. Therefore, to overcome the deficiency, a temperature-
dependent modified Morse potential is developed and validated with various met-
als.
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1 Introduction

Potential functions are developed to simplify the complexity of quantum mechanics-
based computation such as ab initio calculations. These functions return a value of
energy based on the conformation of the molecules or atoms. Some potentials
such as Morse potential [Girifalco and Weizer (1959)] and embedded-atom method
(EAM) [Daw and Baskes (1984)] have been proposed to describe the potential en-
ergy of metal atoms. They have been applied successfully in a number of studies
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to estimate the material properties of metals at room temperature in many articles
[Chiang, Chou, Wu and Yuan (2006); Foiles and Daw (1988); Jeng and Tan (2002);
Park, Cho, Kim, Jun and Im (2006); Theodosiou and Saravanos (2007)]. However,
there are some difficulties in predicting the thermal and mechanical behaviors of
metals when the temperature condition deviates from room temperature.

Chemical bonds are also treated as anharmonic oscillators. The summation of the
potential and kinetic energy of the oscillator remains a constant and is as a func-
tion of temperature. The vibrate-kinetic energy reaches the maximum status as
the stretched/compressed potential energy is in the minimum state, the same way
that the potential energy reaches the maximum status as the kinetic energy is in
the minimum state. Temperature is the physical quantity that implies atomic vi-
bration, resulting in the shift of the anharmonic vibration center when the temper-
ature increases. Likewise, it causes the phenomenon of thermal expansion, which
is a temperature-dependent behavior. Moreover, other material characteristics of
solids, such as elastic constant and heat capacity, also vary with temperature due
to the nature of anharmonic vibrations. Furthermore, molecular or atomic bond-
ing strengths are presented after taking the differentiation of the potential function.
Bonding strengths are the key factors of the mechanical properties of bulk materi-
als.

Based on the simple-spring-single-lattice (SSSL) calculation [Chiang, Chou, Wu
and Yuan (2006)], this study presents the development of an atomic-level analyti-
cal solution together with a modified Morse potential are developed in estimating
temperature-dependent thermal expansion coefficients (CTE) and elastic character-
istics of bulk metals. A set of metal elements with its Morse potential parameters
is investigated. This model provides an efficient and rapid way for evaluating ma-
terial characteristics once the parameters of potential function and temperature are
determined. At the same time, a temperature-dependent modified Morse potential
is also developed and validated with various metals.

2 Temperature-Dependent Thermal Expansion Coefficient Calculation

Considering the diatom system shown in Fig. 1, two atoms are bonded together
by an atomic pseudo spring with proper potential energy. The atoms are stationary
at absolute zero, and they start to vibrate as temperature increases. At temperature
T, the disturbing (increased) energy AE of one-dimensional diatom motion is de-
scribed as 1/2kgT, where kg represents Boltzmann’s constant. AE represents the
disturbing energy of diatom vibration with the repulse and attractive vibration am-
plitudes r; and r,, the average distance of this diatom system changes from ry to
(ra —r1)/2 when the temperature increases from 7; K to 73K. In comparison with
experimental data, 77 is set to be 0 K in this study. Therefore, the thermal expansion
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coefficient of the diatom system is described as following:

(r2=r1)

2
CTE=———+ (1
ro(Ta—Th)

— = Diatom System Solution ‘
< A q * Experimental Data
3 0 k B < 20 p
g g 180 - "

é g 160
] ‘% 140 L]
.E % 1204 =
5 &
% 1004 .
o — .
] ] .
g 80 R
5 60

= 40] - . L]

S 0] ' o g

€ LI * ] ma &

[} 04
B LU S S S I e B s e e B s B e e
. % Na K CrFeRbMoCsBaW  AlCaNiCuSrAgPb
° S
o
[P CRLL] Distance &)

Figure 2: The calculated coefficient of
thermal expansion of metals with exper-
imental validation

Figure 1: A sketch of CTE calculation
model

In this study, Morse potential function, which illustrates the bond strength of the
diatom system and which has been used for more than 70 years, is adopted. It can
describe the relationship of potential energy versus diatom distance, as well as de-
pict the relationship of bond strength versus diatom distance. The potential energy
E(rij) of two atoms i and j separated by a distance r;; is expressed as following:

T

where D is the dissociation energy of the diatom system, rg is the equilibrium
length, and « is a constant with the dimension of reciprocal distance. By applying
Eq. (2), one can determine the disturbing energy AE when temperature increases
from 0 K to 7 K as shown in Eq. (3):

1
D (e_zo‘(”.i_m) — 2e_a(”-"_r°)> +D = EkBT 3)

By solving Eq. (3), the vibration amplitudes r; and r, are determined; therefore,
the CTE defined by Eq. (1) becomes
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Equation (5) shows that the coefficient of thermal expansion of metals can be es-
timated simply by three Morse potential parameters, namely, o, D, ry, and the
disturbing energy which is represented in the form of temperature 7. Girifalco and
Weizer [Girifalco and Weizer (1959)] calculated the Morse potential parameters
for cubic metals using the experimental values of the energy of vaporization, the
lattice constant, and the compressibility. Table I shows the Morse parameters for
cubic metals applied in this study and presents two groups of the metallic lattice
structure that can be categorized. One is the body-centered cubic (BCC) structure
including Na, K, Cr, Fe, Rb, Mo, Cs, Ba, and W, while the other is the face-centered
cubic (FCC) structure including Al, Ca, Ni, Cu, Sr, Ag and Pb.

In Girifalco’s potential model, the dissociation energy is explicitly associated with
two energy equations in equilibrium, and one experimental compressibility rela-
tion. Therefore, the Morse potential is treated as a semi-empirical formulation.
After substituting Morse potential parameters of Table I into Eq. (5), the CTE
of metals at room temperature is obtained as shown in Fig. (2). The calculated
CTE shows reasonable agreement with the experimental one [Davis (1990); Gray
(1973); Lide (2002)].

Applying further Eq. (5) to calculate the CTE at different temperatures, the results
become insensitive to temperature and the prediction does not match experimental
results anymore. Figure (3) shows the comparison of the temperature-dependent
thermal expansion coefficients of Fe, Al, Ag, Ca, and Ni metals. In reality, the
CTE of metals is much smaller at a low temperature than that at room tempera-
ture, and CTE becomes larger when the temperature is close to the melting point.
This is due to the changes in bond strength and shifting of the average position
of atomic vibration. However, in the analytical solution using original Morse po-
tential, the calculated CTE is insensitive with temperature which does not fit the
natural thermal behavior of metals. Therefore, a modified Morse potential function
with temperature-dependent parameters is a must in describing the thermal expan-
sion behavior of metals.

There are two terms in the original Morse potential function, one representing the
attractive energy and the other representing the repulsive energy between atoms.
In order to fully describe the thermomechanical characteristics, it is deduced that a
temperature-related parameter should be included in the Morse potential. A modi-
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Table 1: The Morse potential parameters constructed by Girifalco and Weizer!

Metal r0=A D(V) o=A-1
Na 5336 0.06334 0.58993
K 6369 0.05424 0.49767
Cr 2754 04414 15721
Fe 2845 04174 13885
Rb  7.207 0.04644 0.42981
Mo 2976 0.8032 1.5079
Cs  7.557 0.04485 0.41569
Ba 5373 0.1416 0.65698
W 3.032 09906 14116
Al 3253 02703  1.1646
Ca 4569 0.1623 0.80535
Ni 278 04205  1.4199
Cu 2866 03429 1.3588
Sr 4988 0.1513 0.73776
Ag  3.115 03323 1369
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Figure 3: Comparison of temperature-dependent CTE between original Morse po-
tential and experiments

fied Morse potential is developed as following:
E (rl-j) =D |:e—2a(r;_/—r0) —A (T) e—a(r;_;—ro) (6)

In Eq. (6), the constant of the attractive term is replaced by a temperature-related
function A(T'). After substituting the modified Morse potential into the energy
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equation AE = 1/2kgT, the solved vibration amplitudes are described as following:
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In this study, the second-order polynomial equation is applied to determine the
undefined function A(T).

E(rij) —D |:e—20t(r[j—r0) _ (aO +611T—|—612T2) e—a(r;_/—rg)} (8)

where ag, a;, and a, are curve-fitted by the experimental data [Davis (1990); Gray
(1973); Lide (2002)], and Table II shows the parameters of the modified Morse
potential function.

Table 2: The parameters of modified Morse potential

Element ap a; a»

Na 201921  16.696*%10~>  10.968*10~8
Cr 2.00379  3.7781*107°  -4.7839%10°%
Fe 2.00432  0.63508*107° -4.5863*%10°%
Mo 2.001177 2.2493%107° -2.2123%1078
Ba 2.002339 25.681%107° -24.736%1078
W 2.00083  1.3114*107° -1.0097*10~%
Al 2.00379 0.64463*107>  -10.8%10°%

Ca 2.007344 11.901*%107> -8.3558*10~8
Ni 2.005466 0.10218%107° -5.0596*10~8
Cu 2.000231 1.0371*%107>  -4.7982%10~8
Ag 2.003773 -1.7284*107> -5.3719%1078
Pb 2.002602 -4.673*107>  -7.2574%1078

In the case of the fitting result of aluminum element, the value of A(T) slightly
varies from 2.006 to 1.94 when different temperatures are applied. Figure (4) de-
picts the calculated CTE of Fe, Al, Ag, Ca, and Ni metals with modified Morse po-
tential. Thus, comparing the original Morse potential with the modified Morse po-
tential, it is observed that the modified Morse potential addresses the temperature-
dependent thermal expansion problem of metals.
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For an anharmonic oscillator shown in Fig. 1, it is difficult to calculate the average
position. In this study, the assumption of (r, —r;)/2 being the average position,
which is not far away from the exact average position of a Morse oscillator, is
applied to simplified the complexity of the problem. One can get a more accurate
solution through this procedure once the true average position is obtained.
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Figure 4: Comparison of temperature-dependent CTE between modified Morse
potential and experiments

3 Temperature-Dependent Elastic Constant Calculation

Based on the SSSL model [Chiang, Chou, Wu and Yuan (2006)], an extensive
study is proposed herein to investigate the temperature-dependent elastic constant
of metals. This model assumes that the average position of atomic vibration of
solid elements can be treated as the positions that achieve minimum total energy.
All interatomic forces, which are described by Morse potential function, can be
transferred into atomic springs from metallic lattice structure. Through the trans-
formation, the originally discrete atomic structure can therefore be analyzed in the
continuum level. Moreover, with the assumption of symmetric boundary condi-
tions, the SSSL model can be considered as an infinitely repeated cubic structure,
which assumes that the mechanical behavior is close to the bulk material.

Morse potential, as shown in Eq. (1), is adopted to describe the relationship of
potential energy versus the distance of the diatom system, as well as to depict the
relationship of bond strength versus diatoms distance. The force constants or bond
strengths k(r;;) of the atomic springs are the second derivative of potential energy
E(rij), as shown in Eq. (9)

2
k(rij) = %(Zr”) = 20D [Ze—za(”f—’o) — e~ o(rii=) )
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Figure (5) shows the atomic spring network of BCC and FCC lattice. In the BCC
structure, there are one body-centered atom and eight corner atoms in a single cubic
lattice. With the assumption of symmetric boundary conditions, six virtual nodes
are illustrated in the center of the edge surfaces to evaluate the interatomic forces
between adjacent body-centered atoms. The SSSL model is therefore illustrated
including one body-centered node B, eight corner nodes, C to Cg, six virtual nodes,
V1 to Vs, and three sets of atomic springs, as shown in Fig. 5(a). The spring set 1,
BC; to BCg, is the center-corner spring which represents the interatomic forces
between the body-centered atom and the eight corner atoms with initial lengths of
ro. The spring set 2, C;C;, to C7Cg, is the corner-corner spring which represents the
interatomic forces between adjacent corner atoms with initial lengths of 2rycos 6
where 0 represents the angle between the center-corner spring and corner-corner
spring. The spring set 3, BR; to BRg, is the center-center spring which represents
the interatomic forces between adjacent body-centered atoms with initial lengths of
10.

Similarly, in FCC structure, the SSSL model is illustrated including the face-centered
nodes F to Fy and the corner nodes C; to Cg as shown in Fig. 5(c). The interatomic
forces in the FCC structure are transferred into four sets of atomic springs. The
spring set 1, F1C; to F4Cg, is the center-corner spring which represents the in-
teratomic forces between the adjacent face-centered atoms and corner atoms with
initial lengths of r. The spring set 2, F1F, to FsFg, is the A-center spring which
represents the interatomic forces between the adjacent face-centered atoms with
initial lengths of ry. The spring set 3, C;C, to C;Cs, is the corner-corner spring
which represents the interatomic forces between the adjacent corner atoms with
initial lengths of 2rycos @ where 0 represents the angle between the center-corner
spring and corner-corner spring. The spring set 4, F\ Fg, F>Fy, F3F5, is the C-center
spring which represents the interatomic forces between the across face-centered
atoms with initial lengths of 2rycos 6.

By applying a small prescribed extension on the top nodes of SSSL model, the
elastic constants of cubic metals are calculated in the following equations.

202D [8 +15 <2e‘2(%“>‘”° _e‘(%—‘>“r0>]

Epcc =
g V3ro (10)
1002D |14 (2¢72(VZan _o=(V2-Dan) |
E =
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Equation (10) shows that the elastic constant could be simply estimated by three
Morse potential parameters, namely, o, D, and ry. The calculated elastic constant
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Cg C;

Figure 5: Simple-spring-single-lattice model construction. (a) The SSSL model for
the BCC structure (b) Sketch of reaction force calculation for the BCC structure (c)
The SSSL model for the FCC structure (d) Sketch of reaction force calculation for
the FCC structure

of SSSL models are shown in Fig. 6 where the Morse potential parameters o, D,
and ry in Table 1 are adopted. To compare with the bulk values [Gschneider (1964);
Kaye and Laby (1995); Lide (2002)], the elastic constants of most metals obtained
by SSSL model are close to the bulk value.

In Morse potential, the parameter ry indicates the diatom distance at the lowest
energy state, as well as the distance of vibration center of diatoms. When the
temperature increases, the anharmonic oscillators between atoms start to vibrate.
The distance of vibration centers 7y becomes larger which means the bond strength
k(r;;) varies with temperature. Equation (4) shows vibration amplitudes ry and r; of
Morse oscillator at temperature 7', and we assume the diatom distance of vibration
centers is 7o = (r;+r2) /2. After substituting 7y into Eq. (10) to replace the pa-
rameter ry, temperature-dependent elastic constants of cubic metals are evaluated.
In this study, both original Morse function and aforementioned modified Morse
function are taken into account in temperature-dependent elastic constant calcula-
tion. In the elastic constant calculation, all Morse parameter sets shown in Table
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Figure 6: The calculation results of the SSSL model for Girifalco’s potential pa-
rameter set

I were analyzed. Taking Cu (FCC structure) and Fe (BCC structure) as examples,
the calculation results as against the experimental data [Ledbetter (1977); Rayne
and Chandrasekhar (1961)] are shown in Figure (7) and (8). The results show that
an agreement is achieved on trends between the predicted elastic constants and the
corresponding experimental data. Moreover, the results of the modified Morse po-
tential do not show obvious difference from the original Morse potential.

The reason deduced is that the modified Morse potential is applied to adjust the
material properties of CTE, which is much sensitive to temperature than elastic
constant. In CTE model, The CTE is determined by the average position of Morse
oscillator as shown in Eq. 5. In SSSL model, the elastic constant calculation is
the combination of the second differentiation of Morse potential, as shown in Eq.
10. The average position of Morse oscillator varies dramatically when the potential
energy from zero to the dissociation energy D. However, the variation of the second
differentiation of Morse potential is not as much as the average position.
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4 Conclusion

In this study, two temperature-dependent material properties of cubic metals, the
thermal expansion coefficient and the elastic constant, were analyzed using anhar-
monic oscillator networks; several closed-form analytical equations were devel-
oped. The interatomic forces are treated as anharmonic oscillators; the originally
discrete atomic structure can therefore be analyzed in the continuum level.

In the investigation of thermal expansion coefficient, the result showed that the
closed-form solution using the original Morse potential can give a good prediction
of the CTE of metals at room temperature; however, it is not adequate to use its
temperature-insensitive parameters to predict the CTE at low temperature and at
high temperature; a modified Morse potential is therefore proposed and developed
to describe the nature of the thermomechanical behavior of metals. The calculated
CTE using modified Morse potential can meet the experimental data quantitatively.

In the investigation of elastic constant, an agreement on trends between the pre-
dicted elastic constants and the corresponding experimental data is also achieved.
Besides, different from CTE calculation results, the results of elastic constant calcu-
lation show that there is no significant discrepancy between original Morse poten-
tial and modified Morse potential application. Though the SSSL-based model much
reduces the complexity of the real bulk metals including their defects, dislocations,
etc., it provides a feasible way to estimate temperature-dependent properties within
a reasonable range.

In the case of SSSL computation, after the closed-form solution is established,
both original Morse potential and modified Morse potential can be taken into con-
sideration immediately. Through the analyzing procedure, one can make a prompt
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estimate on the material properties such as the CTE and elastic constant, once the
potential function and lattice structure are determined.
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