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Efficient Numerical Solution of the 3-D Semiconductor
Poisson Equation for Monte Carlo Device Simulation

Z. Aksamija1,2 and U. Ravaioli3

Abstract: Finding the scalar potential from the Poisson equation is a common,
yet challenging problem in semiconductor modeling. One of the central problems
in traditional mesh-based methods is the assignment of charge to the regular mesh
imposed for the discretisation. In order to avoid this problem, we create a mesh-
free algorithm which starts by assigning each mesh point to each particle present
in the problem. This algorithm is based on a Fourier series expansion coupled with
point matching. An efficient algorithm for repeatedly solving the Poisson problem
for moving charge distributions is presented. We demonstate that this approach is
accurate and capable of solving the Poisson equation on any point distribution.
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1 Introduction

Numerical simulation has established itself as an indispensable tool in nanotech-
nology [Srivastava and Atluri (2002)] and microelectronics [Klimeck, Oyafuso,
Boykin, Bowen and von Allmen (2002)]. The Poisson equation arises frequently
from problems in applied physics, fluid dynamics and electrical engineering [Pini,
Mazzia and Sartoretto (2008)]. Here we are primarily concerned with a prob-
lem in Electrical Engineering and Computational Electronics, and more specifically
Monte Carlo simulation of semiconductor devices [Jacoboni and Reggiani (1983);
Hess (2000)]. We solve the Poisson equation in order to obtain the electric potential
in a semiconductor device and find the related electric field for electronic simula-
tion. Once we find them, we let the particles move for some time interval, at the
end of which we recompute the charge configuration and solve the Poisson equa-
tion again. This forms a self-consistent loop which ensures the underlying phys-
ical problem is solved accurately [Hess (1991); Duncan, Ravaioli and Jakumeit
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(1998)]. This setup is common in semiconductor simulation, but applies to many
other problems based on particles [Hockney and Eastwood (1988)], including cos-
mology and gravitational problems.

Finding a suitable solution mesh is complicated by the fact that there is usually
a large region at the bottom of the device which has few particles and is of little
interest. On the other hand, the channel region at the top of the device is small
but the detailed solution in it is important. There are also numerous problems aris-
ing from assigning charge to a regular mesh [Laux (1996)]. Therefore a regular
rectangular mesh is the least desirable solution. An alternative approach is to treat
each individual particle as a mesh point. Meshless methods have been proposed for
the semiconductor Poisson equation in the past by Wordelman, Aluru and Ravaioli
(2000) using the Finite Cloud method of Aluru and Li (2001). This method is
based on reproducing kernels [Aluru (2000); Jin, Li and Aluru (2004)] and has
been shown to be equivalent to a lest-squres approach [Jin, Li and Aluru (2001);
Atluri and Shen (2002)]. Another method suitable for the solution of the Poisson
equation is the Meshless Local Petrov-Gallerkin (MLPG) method [Atluri and Zhu
(1998)], and has been shown to be especially suitable for the 3-dimensional prob-
lems by Pini, Mazzia and Sartoretto (2008). The MLPG method has also been
shown to be suitable for the simulation of a variety of electrical and mechanical
systems [Aluru (1999)], as well as solid mechanics [Atluri, Liu and Han (2006b)],
and heat conduction [Wu, Shen and Ttao (2007)]. There is a rich and growing liter-
ature on meshless methods (see Belytschko, Krongauz, Organ, Fleming and Krysl
(1996) for an overview). This work also seeks to utilize a mesh-free formulation,
but in particular a formulation which can be repeatedly solved efficiently through-
out the course of simulation as the simulated particles move. while being efficient
for Monte Carlo simulation of particles. Fourier series have been used success-
fully for the formulation of a meshless method by Liu (2007) and in 3-D spectral
element approaches [Wu, Al-Khoury, Kasbergen, Liu and Scarpas (2007)], but
not in conjuntion with collocation. On the other hand, collocation has been used
in the MLPG method in an effort to further improve the efficiency of the MLPG
implementation. Atluri et al. Atluri, Liu and Han (2006a) proposed a MLPG
“mixed” collocation method, in which the Dirac delta function is adopted as the
test function, and therefore the system of equations is established at nodal points
only. This collocation method has achieves a stable convergence rate, and it is more
efficient than the MLPG finite volume method [Atluri, Han and Rajendran (2004)].
Another possible choice of expansion is that of wavelets, as proposed by Mitra and
Gopalakrishnan1 (2006). Due to their compact support, wavelets are a good choice
for highly localized functions, but for a smooth charge distribution, we expect the
solution to also be smooth and continuous. Therefore our approach starts with a
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Fourier series expansion and aims at reaching a solution which is continuous and
infinitely differentiable, and optimal in the least squares sense.

2 Background

The Poisson equation is a special case of the more general Sturm-Liouville [Logan
(2004)] differential equation expressed as:

∇2u(r)+ s(r)u(r)+λ u(r)+ρ(r) = 0

When s(r) = 0 and λ = 0 the equation above reduces to the standard Poisson form:

∇2V(x,y, z) = −ρ(x,y, z)

Here we use notation typical of an electrical engineering problem. V(x,y, z) repre-
sents electrical potential and ρ(x,y, z) represents charge. The negative sign is due
to electron charge. We choose a Cartesian co-ordinate system because of the rect-
angular geometry which is usually encountered in Monte Carlo simulation. More
generally, all devices are made up of rectangular regions so Cartesian co-ordinates
are quite natural and widely applicable. The only exception are devices based on
Carbon Nanotubes (CNT-FETs), which have a cylindrical geometry, but the solu-
tion presented here can easily be adapted to this configuration.

Since we have to find the charge density ρ(x,y, z) at each step, choosing a sensible
grid is an important decision in the process. Another related issue is that in today’s
ultra-scaled devices the total number of electrons present is rather small, on the
scale of a thousand. Even in larger devices, it is typical to let each simulated elec-
tron represent several actual electrons, so that the number of simulated particles is
reduced to a similar number. Finding a suitable solution mesh is complicated by
the fact that there is usually a large region at the bottom of the device called the
Substrate which has few particles and is of little interest. On the other hand, the
channel region at the top of the device is small but the detailed solution in it is im-
portant. Therefore a regular rectangular mesh is the least desirable solution. More
complex meshes can yield better resolution, but the problem of assigning the elec-
tron charge, which is taken to be localized, to an irregular mesh point requires an
integration known as box integration. The simplest and best approach would then
be to consider each individual particle (or often super-particle representing several
actual particles) to be a mesh point. Because of the irregularity of this approach,
using the standard finite-difference approach is not feasible.

Another issue in 3-D simulation is that of size. A typical rectangular mesh will use
between 20 and 100 points in each direction, reducing the Poisson equation to a
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linear problem:

AV = ρ

where A is the banded matrix representing the Laplace operator ∇2 by some kind of
suitable finite-difference approximation, or a generalized version for non-uniform
grid [Kleiber (1998)], such as that of Sukumar and Bolander (2003) based on
Voronoi cells. Therefore for a typical 3-D problem, A is a 64000x64000 to a mil-
lion by a million entry matrix. In 1-D this operator is tridiagonal, and has a particu-
larly simple solution. In 2-D the bandwidth depends on the finite-difference stencil,
but is still a sparse matrix. In 3-D the bandwidth becomes even larger and straight-
forward solvers become inefficient. The Poisson equation is an elliptic PDE and
can be solved efficiently by transform methods, and Wavelets can give especially
efficient and sparse representations, but all require regular meshes.

3 Problem Formulation

If we choose from the start to make each particle a mesh point, we are dealing with
an arbitrary mesh, as the particles move along arbitrary trajectories decided by the
forces of the applied electric field, and randomized by the effect of scattering inter-
actions with phonons, impurities, and other particles. In order to seek a solution, we
expand the potential into sinusoidal components [Peyret (2002)]. Since we have
fixed boundary conditions (the voltage at the edges/contacts is given), we know all
solutions must be a super-position of sinusoidal harmonics, so we write the solution
as follows:
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∑
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where Lx,Ly and Lz are the lengths of the solution domain in each respective direc-
tion. The Laplace operator in Cartesian co-ordinates is written as:
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Inserting this into the non-linear semiconductor Poisson equation,

−∇(εr(x,y, z) ·∇Φ(x,y, z))= ρ (Φ(x,y, z)) (3)

we obtain an algebraic expression because sinusoids are eigenfunctions of the dif-
ferential operator. We will return to the issue of non-linearity. Ignoring it for now,
we get:
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Here we have cancelled the negative signs on both sides. There are some arbi-
trary number of particles, say P, located at positions (X ,Y,Z)1 through (X ,Y,Z)P.
Including this information into the system above, we get a set of P linear equations:
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(5)

Choosing an ordering for l,m and n, say a lexicographical ordering, we represent
this set of equations as a linear system AΦ = ρ where the matrix A absorbs all the
coefficients arising from evaluating the sinusoidal factors. The entries of matrix A
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will look like:
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for the index j arranged so that

j = (l−1)NmNn +(m−1)Nn +n

The dimensions of this problem depend on the number of electrons presents, typ-
ically a thousand, and the number of spectral components we choose. Choosing
more components gives a more over-determined system, while choosing fewer pro-
duces smoother solutions because how rapidly the solutions changes depends on the
highest frequency present in the expansion. Therefore we have a trade-off between
size, consequently speed, and precision. This issue highlights the underlying phys-
ical problem: in a modern device, in certain areas only few electrons are present
and they are taken to represent a localized charge. In the classical limit, we have
many particles in each mesh so we can "smear" them across the mesh, or essentially
take them to represent a continuous function ρ(x,y, z). But when few particles are
present, we have no good way of re-assigning that charge unless we take into ac-
count the full quantum-mechanical problem and de-localize the electron charge, but
that is beyond our present scope. Under the present assumption that electron charge
is localized, our approach corresponds to a collocation method [Atluri (2005)].

An advantage of this approach is that the non-uniform dielectric can now be in-
serted and treated exactly, rather than being left to be approximated by the discreti-
sation. Returning to (3), we note that the expression can be expanded as

∇(εr(x,y, z) ·∇Φ(x,y, z))= ∇εr(x,y, z) ·∇Φ(x,y, z)+εr(x,y, z)∇2Φ(x,y, z) (7)

which allows the gradient of the dielectric constant to be applied analytically and
exactly, rather than approximated by the discretisation, which is relevant at the
oxide interface of modern device channels. This is possible because the gradient of
the potential is available analytically as
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The expression (refeq:field) also gives us the field analytically, as the real part of
the gradient E(x,y, z) = ℜ{∇Φ(x,y, z)}. Given that the gradient is available analyt-
ically, Dirichelet, Neumann, and mixed boundary conditions can be also included
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by augmenting the system matrix and adding a line for each boundary point. We
will return to the issue of boundary conditions in more detail later. If we have some
number of points where, for example, Dirichelet boundary conditions must be en-
forced, say NB, located at points (X ,Y,Z)1, through (X ,Y,Z) j up to (X ,Y,Z)NB ,
then we end up again with NB equations like

∑
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)
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for j = 1,2, . . .,NB, and g(x,y, z) the value at these boundary points. The augmented
system can now be solved to find a solution which includes boundary conditions.
Now we return to the issue of non-linear systems. The nonlinearity present in (3)
can be treated by the usual Newton-Raphson approach [Wordelman, Aluru and
Ravaioli (2000)]. This sets up an outer iteration where, at each step, we solve a
linearized system by the method given herein.

The total system of equations is now posed as a full matrix of size (NP + NB)×
(NlNmNn). Because of this, we can now apply any of the standard tools to solve it.
The system can be solved by standard lest-squares techniques or by fast iterative
methods [Watkins (2002)]. If we choose fewer spectral components and make the
system nearly square, then the size of the problem is greatly reduced from its finite-
difference counterpart, while reflecting the underlying physics in a more meaning-
ful way. The computational complexity can be reduced significantly by using the
non-equispaced Fast Fourier Transform (NFFT) [Pöplau and Potts (1994)]. This
approach produces a solution which is O(N) log(N), which is much more efficient
than the cubic time required for the direct solution of a full matrix system.

In any case, the matrix A is a full matrix of size P× (NlNmNn). It requires a regu-
larization approach to the solution. Because of this, we can now pose the problem
as a linear system and apply any of the standard tools to solve it. If we choose
fewer spectral components and make the system nearly square, then the size of the
problem is greatly reduced from its finite-difference counterpart, while reflecting
the underlying physics in a more meaningful way.

4 Efficient Implementation

So far our problem has been posed as a dense problem to be solved by a regular-
ization approach. Typically this will be a least squares method which, although
implemented in various ways, always can be considered in terms of the singular
value decomposition. Such approaches produce excellent solutions, but can be in-
efficient and costly for large dense systems like ours. Therefore we have to seek a
more efficient implementation. One possible path is to consider the fact that, in a
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typical Monte Carlo simulation, the Poisson equation is solved at each step, or every
few steps, and the total number of steps, or simulation iterations, is very large, on
the order of a hundred thousand. Each step represents a time interval of a duration
often less then a femto-second. The drift velocity of electrons in silicon saturates
at about 107 m

s so the distance traveled by an electron between two solutions of the
Poisson equation can be very small, on the order of a nanometer. Therefore we can
apply perturbation analysis to try to come up with a more efficient solution which
will avoid a complete SVD (Singular Value Decomposition) at each step.

Let us denote the position of particle i at iteration k as (Xk
i ,Yk

i ,Zk
i ). Then the posi-

tion at iteration k +1 will be
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i ) = (Xk
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i )

The only position dependence in the problem are the sinusoidal components in the
matrix A, so we can analyze them as

sin(x+δx) = sin(x)cos(δx)+cos(x)sin(δx)
≈ sin(x)+δxcos(x)

Here we’ve used the first terms in the Taylor series expansion of sine and cosine to
obtain a first order approximation. There are terms in x,y and z, so we proceed as
follows
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In this derivation we dropped all terms that had two or three δ terms because they
are assumed to be small. We can now write the entries of the matrix A at the k +1
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Then the complete matrix at the k +1 instant can be written in a decomposed form
as

Ak+1 = Ak +δAk+1
x +δAk+1

y +δAk+1
z
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where the δ terms represent the respective portions of the matrix as expressed
above. Then the entire Poisson system can be written as

Ak+1Φk+1 = ρ(
Ak +δAk+1

x +δAk+1
y +δAk+1

z

)
(Φ+δΦ) = ρ

Then we cancel the terms that have two δ variations.

AkΦk +AkδΦk+1 +
(

Ak +δAk+1
x +δAk+1

y +δAk+1
z

)
Φk = ρ

Making use of the previous solution

AkΦk = ρ

and the fact that the charge density is just a constant because only position of the
electrons changes and not their individual charge, the above simplifies to

AkδΦk+1 = −
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y +δAk+1
z

)
Φk

We can, for simplicity, denote the right-hand-side of the above by a variable

AkδΦk+1 = −γk+1

Assuming we have a decomposition for the matrix A as

Ak = UkΣkV T
k

where Σ is a diagonal matrix of singular values. We can form the solution using
this decomposition
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Adding together the previous solution and the update gives

Φk+1 = Φk +δΦk+1 = V T
k diag{ρ1− γk+1

1

σ k
1

, . . . ,
ρP − γk+1

P

σ k
P

}Uk

Therefore we can solve the problem at each step using the previous decomposition,
as long as the overall motion of electrons in small compared to the wavelength of
the highest spectral component. All that is required at each step is the knowledge
of the positions of the particles. The amount of work required to form the update
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scales as P× (NlNmNn), which is the amount of work required just to write the
entries of the matrix, and cannot be improved upon by any method.

As we iterate and the electrons move, the error made using this approach will first
show up in the highest frequencies, and thus will be small. Then it is possible
to correct the solution every few iteration by re-computing the decomposition and
starting over with the updates. This way our solution will not incur the large cost of
a de-composition at every iteration and will be more efficient by a constant factor
depending on how many iterations we allow between decompositions.

Other efficient approaches are also possible. For example, it is efficient to solve the
problem by an iterative method without resorting to a decomposition at all. Then,
because the change in the problem matrix A is small, the solution will not vary
greatly and we can expect fast convergence at each iteration using the previous
solution as a starting point.

Another obvious choice that can offer savings over a full SVD is the LU factoriza-
tion. The LU factorization can be applied to arbitrary matrices, such as the one in
this problem, and used to create a solution more efficiently. The matrices L and U
are lower and uppertriangular, respectively. If we factor the system matrix as

AΦ = LUΦ = ρ

then we can form the solution can be formed by solving the simpler uppertriangular
problem by back substitution

Φ = U−1LT ρ

Efficiency can still be improved by keeping the same LU factorization for several
iterations, and only solving the update system at each step

LUδΦk+1 = −γk+1

δΦk+1 = −U−1LT γk+1

The cost of back substitution is only quadratic while the LU factorization is still
cubic, but less costly than a full SVD decomposition. Therefore, combined with
the fact that the full decomposition is not necessary at each iteration, the solution
can be very efficient.

5 Cost Analysis

We can partition the cost of this algorithm into a few sections. First we have the
cost of forming the problem at the onset. This involves making the matrix A based
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on the list of electron positions. In the rest of this analysis we shall assume, for the
sake of simplicity, that Nl = Nm = Nn = N as there is no apparent reason to make
a distinction in the number of spectral components by direction. Then the matrix
size will be P×N3. Each entry in the matrix requires a total of 27 flops (floating
point operations) so the cost is 27PN3. There is no cost associated with ρ because
this is just a constant given by electron charge and dielectric constant. In the case
where the dielectric constant changes throughout the device, ρ may depend on the
position, but even then it is constant throughout different regions of the device.

Next we have a similar analysis for the cost of actually forming the solution for the
potential. The cost of this is 18 flops per harmonic so there is a total of 18N3 for
each point where we want to find out the potential. Similar is the cost of computing
updates at each step between re-computing a full decomposition. This has a cost of
30PN3 flops in each direction plus an addition and a matrix-vector multiplication
so the total is 92PN3 flops. The constant factor here can be reduced by re-cycling
some intermediate values at a cost of higher storage requirements.

Finally, when we decide to do a full de-composition, this will incur a large cost
penalty. The cost is cubic in the number of singular values, but this is where the
strength of this method lies. The number of singular values is P, equal to the num-
ber of electrons in the system. As we said before, this may be as small as a thousand
for a typical simulation, so the total cost may be acceptable in comparison to a more
traditional finite-difference method which may be of a lower order, but not in the
number of electrons P, but in the total number of mesh points, which exceeds N3.
Therefore this approach can be very competitive in terms of computational cost,
while offering a solution which avoids costly and un-physical charge assignments.
There may well be additional properties of the system which allow a more efficient
solution due to the properties of the sine and cosine functions, but they are not at
this point obvious.

6 Conditioning

Since the number of electrons in the system is not necessarily equal to the total
number of harmonics P �= N3, we are faced with a non-square system. If we have
more points than harmonics, meaning P > N3, then the system is overdetermined,
and we must seek a solution which minimizes the norm of the error in some norm,
typically the �2 norm

Φ = argmin ||AΦ−ρ ||22
Otherwise, if the number of harmonics is larger than the number of points, or equiv-
alently electrons, we have P < N3, and the system is underdetermined, and there is a
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space of possible solutions which all satisfy the given equality. Then we must seek
a solution which satisfies additional constraints, such as, for example, a minimum
energy solution

Φ = argmin ||Φ||22 s.t AΦ = ρ

The decision to be made here is how many harmonics to take in each orthogonal
direction, in other words, the values of Nl , Nm, and Nn. Conditioning of the inverse
problem depends heavily on the number of harmonics. Experience has shown that
the condition number increases with the number of harmonics. When N3 exceeds
P and the system becomes underdetermined. Finding a solution then turns into a
more complicated search that demands additional knowledge of the nature of the
solution, which may not be available. On the other hand, as the problem becomes
more overdetermined, finding a solution gets easier and the condition number de-
creases, thereby increasing our ability to select the best solution. Therefore it was
decided to keep the number of harmonics less than the number of electrons. This is
easily done in practice as the number of harmonics N is a free parameter, unlike the
number of electrons P. This also allows us to reduce the size of the problem arbi-
trarily and trade off precision for speed even further. Reducing N creates smoother
solutions, as mentioned before, but also makes the cost of a decomposition smaller.

7 Boundary Conditions

The issue of boundary conditions is now a simple one to solve in the present setup.
The potential can be equated to a given value at any number of boundary points. In
fact, the points do not have to be at the boundary, although they typically are. This
is formulated at the i’th point as

VB(Xi,Yi,Zi) =
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∑
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∑
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)
sin

(
πn
Lz

Zi

)
(10)

Since sinusoids are always zero at the boundary, we must make the formulation
more general and extend it to arbitrary and complex values. Therefore the sines
have to be replaced by complex exponentials, which is equivalent to combining
both sine and cosine solutions. Then the system reads as

VB(Xi,Yi,Zi) =
Nl

∑
l=1

Nm

∑
m=1

Nn

∑
n=1

Φ(l,m,n)exp

(
iπ l
Lx

Xi

)
exp

(
iπm
Ly

Yi

)
exp

(
iπn
Lz

Zi

)
(11)

For multiple boundary points a system of equations is again obtained

BΦ = VB
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where the entries of the matrix are given by

bi j = Φ(l,m,n)exp

(
iπ l
Lx

Xi

)
exp

(
iπm
Ly

Yi

)
exp

(
iπn
Lz

Zi

)

as before. Now the complete system can be solved for the potential.

Solutions for the potential can also be obtained at any arbitrary point, and not just
at those locations where the electrons are. For some arbitrary point, we have

V(XS,YS,ZS) =
Nl

∑
l=1

Nm

∑
m=1

Nn

∑
n=1

Φ(l,m,n)exp

(
iπ l
Lx

XS

)
exp

(
iπm
Ly

YS

)
exp

(
iπn
Lz

ZS

)
(12)

The problem of determining the potential from a charge distribution on a arbitrary
mesh is now complete.

8 Implementation Details and Results

A test was performed by solving the system above for a rectangular region with
zero boundary conditions and uniformly randomly distributed charges. We com-
pare the solutions obtained by a finite difference discretization with the sine series
expansion system solved with an LU decomposition. The two solutions and their
running times were compared for a total of 1000 uniformly distributed points in a
3-D region of dimensions Lx = Ly = Lz = 100. Dielectric constant was taken to be
1, and so was the electron charge. This only affects the scaling of the problem and
does not affect the shape or properties of the solution at all. The number of har-
monic components was taken to be Nx = Ny = Nz = 8, while the finite difference
solutions was computed on a 50x50x20 grid in space. The total cpu time required
to solve the finite difference system using an efficient conjugate gradients itera-
tion with a relative residual set to 10−6 was around 2.7 seconds. For comparison,
the LU factorization and backsubstitution took only 0.17 seconds. The second ap-
proach was more than an order of magnitude faster. This is due to a relatively small
number of harmonics used, dictated by the total number of points. The sine series
solution is still more appealing than finite differences because the finite difference
solution suffers from problems arising from the charge assignment scheme. This
can be improved upon by better cloud-in-cell (CIC) charge assignments [Wordel-
man and Ravaioli (2000)], but it remains always a problem due to the unphysical
need to discretize the charge positions. Finally, the Poisson equation in this exam-
ple case has a constant on the right-hand side. The 3-D results in Fig. 1 shows
good smoothness and precision. We contrast this to the usual approach based on
finite differences (FD) and a cloud-in-cell (CIC) scheme for assigning charge to
the rectangular mesh imposed by the finite difference discretisation [Hockney and
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Figure 1: Solution obtained from the meshless approach. Only a horizontal cut
through the 3-D computational domain is shown.

Eastwood (1988)]. The FD-CIC solution for the same uniform random distribution
of charges is shown in Fig. 2. We demonstrate that the FD-CIC approach, while
being capable of representing potentials due to uniform distributions well, fails in
representing non-uniform clumps of charge. The meshless solution, on the other
hand, is based on global smooth functions which do not suffer from such problems.

The Fig.3 compares the numerical solution to the analytical solution we would ex-
pect from a uniform charge distribution. Integrating a constant charge distribution
twice and applying the boundary conditions produces a quadratic analytical solu-
tion. This gives a simple solution

V(x,y, z) = (x−50)2 +(y−50)2 +(z−50)2 +C

where the constant C is used to match boundary conditions. The shape of the
sine series solution is a very good match to the expected parabolic solution, unlike
the finite difference solution, which exhibits many irregularities, as shown by the
dashed line in Fig.3. This is further proof of the usefulness of meshless approaches
to the solution of the Poisson equation. From this comparison we conclude that
algorithm presented herein is capable of great accuracy when representing charges
as mesh points. We can also note from Fig. 4 that the resulting system is well-
conditioned and therefore poses no challenge to solve.



Numerical Semiconductor Poisson Equation 59

0
10

20
30

40
50

0
10

20
30

40
50

60
0

50

100

150

Figure 2: Solution obtained from finite differences with a cloud-in-cell (CIC)
charge assignment. Only a horizontal cut through the 3-D computational domain is
shown.
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Figure 3: Comparison of solutions. The solid line is the numerically computed
solution, and the dashed line is the analytical quadratic solution which assumes a
uniform distribution. The agreement is excellent and the small discrepancy is due
to the random assignment of charge locations.
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Figure 4: Logarithmic plot of the singular values of the matrix A. The ratio of
the largest to the smallest singular value is around 100, meaning that the solution
is sufficiently well conditioned. Experience has shown that increasing the number
of harmonics N beyond the number of points P drastically increases the condition
number and makes the solution ill-conditioned.

9 Conclusions

We have demonstrated the feasibility and efficiency of a spectral collocation ap-
proach for the non-linear semiconductor Poisson problem. One issue is deciding
how many spectral components N to choose. This can be tailored to the particular
application and may well depend on the actual problem. This will also determine
the size of the problem and an appropriate method for its solution. We can also
choose how long to run the efficient update scheme between re-computing a full de-
composition. Fewer iterations between re-computing a full decomposition means
we have a more efficient algorithm, but we sacrifice some accuracy. Both of these
parameters can be tailored to the problem at hand, thus allowing for a very efficient
implementation of the semiconductor Poisson problem.
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