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A Novel Fictitious Time Integration Method for Solving
the Discretized Inverse Sturm-Liouville Problems, For

Specified Eigenvalues
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Abstract: The inverse Sturm-Liouville problem finds its applications in the iden-
tification of mechanical properties and/or geometrical configurations of a vibrating
continuous medium; however, this problem is hard to solve, either theoretically or
numerically. Previously, Liu (2008a) has constructed a Lie-group shooting method
to determine the eigenvalues, and the corresponding eigenfunctions, for the direct
Sturm-Liouville problem. In this study, we are concerned with solving the inverse
Sturm-Liouville problem, by developing a Lie-group of SL(2,R) to construct non-
linear algebraic equations (NAEs), when discrete eigenvalues are specified. Our
purpose here is to use these NAEs to solve the unknown function in the Sturm-
Liouville operator. Then, we use a fictitious time integration method (FTIM) devel-
oped by Liu and Atluri (2008), to find the potential function, impedance function or
weighting function, in a discretized manner. Numerical examples are presented to
show that the Lie-group and FTIM methods have a significantly improved accuracy,
along with ease of numerical implementation. The numerical examples also include
the inverse problem of determining the material properties and cross-sectional area
of a tapered rod undergoing axial vibrations, when the eigen-frequencies are spec-
ified.

Keyword: Inverse Sturm-Liouville problem, Eigenvalues, Eigenfunctions, Lie-
group method, Lie-group shooting method (LGSM), Fictitious time integration
method (FTIM), Inverse problem of a vibrating rod for specified frequencies

1 Introduction

The Sturm-Liouville eigenvalue problem has been of considerable physical interest
for a long time. It is important in many engineering and scientific fields, including
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partial differential equations, vibrations of continuum solids, and quantum mechan-
ics as described by the Schrödinger equations.

In most cases, it is not easy to obtain the eigenvalues and eigenfunctions of the
Sturm-Liouville problem, analytically. However, there are various numerical meth-
ods to approximately determine the eigenvalues and eigenfunctions. Pryce (1993)
has provided a comprehensive review of the mathematical background of the Sturm-
Liouville problems and their numerical solutions, as well as a detailed discussion
of their applications. He summarized the examples of Sturm-Liouville problems
that have been considered by numerous authors.

There is a continued interest in the numerical solution of Sturm-Liouville prob-
lems with the aim of improving the convergence and ease of implementation of
different numerical algorithms. In order to obtain more accurate numerical results
efficiently, several numerical methods have been developed, e.g., Andrew (1994,
2000a, 2000b), Andrew and Paine (1985, 1986), Celik (2005a, 2005b), Celik and
Gokmen (2005), Condon (1999), Ghelardoni (1997), Ghelardoni, Gheri and Mar-
letta (2001, 2006), Vanden Berghe and De Meyer (1991, 2007), Vanden Berghe,
Van Daele and De Meyer (1995), and Yücel (2006). Ghelardoni and Gheri (2001)
have discussed a shooting technique for computing the eigenvalues. A very ef-
fective modification of the shooting technique is the Lie-group shooting method
(LGSM) as suggested recently by Liu (2008a). This technique is applicable for
regular as well as singular Sturm-Liouville eigenvalue problems.

In this paper we propose a novel method for computing the potential function q(x),
the impedance function p(x), or the weighting function s(x) in the following inverse
Sturm-Liouville problem:

− d
dx

[
p(x)

dy(x)
dx

]
+q(x)y(x) = λ s(x)y(x), x0 < x < x f , (1)

y(x0) = 0, y(x f ) = 0. (2)

The inverse problem here is, that for some specified eigenvalues λ , we need to de-
termine the potential function q(x), the impedance function p(x), or the weighting
function s(x). Here, we suppose that p(x), q(x), and s(x) are continuous, with p(x)
and s(x) being strictly positive. When x0 and x f are finite, the Sturm-Liouville
problem is regular; otherwise, it is singular.

To motivate the present study, we consider the longitudinal wave motion of a one-
dimensional rod with variable Young’s modulus E(x) and cross-sectional area A(x):

1
A(x)

∂
∂x

(
E(x)A(x)

∂u(x, t)
∂x

)
= ρ(x)

∂ 2u(x, t)
∂ t2 , (3)

where ρ(x) is the variable mass-density, and u(x, t) is the displacement.
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Let u(x, t) = eiωt y(x). Eq. (3) can be simplified as

− d
dx

(
E(x)A(x)

dy(x)
dx

)
= ρ(x)A(x)ω2y(x), (4)

where ω is the vibrational frequency. Upon comparing with Eq. (1) we can see that
p(x) = E(x)A(x), s(x) = ρ(x)A(x), q(x) = 0 and λ = ω2. In the inverse problem,
it is technically important to identify the material properties E(x), ρ(x) and the
geometric variable A(x) for some specified frequencies ω of the vibrating rod. This
problem is known as an inverse problem of a vibrating rod for specified frequencies.
Our proposed method can solve this sort of an inverse problem.

The above problem is known as an inverse Sturm-Liouville problem or in short, in-
verse eigenvalues problem [Hald (1984); McLaughlin (1986); Chu (1998)]. Many
algorithms were developed for solving the inverse Sturm-Liouville problem of re-
constructing the potential function from the specified eigenvalues [Andrew (2004);
Paine (1984)]. Some have been developed analytically. Among them, the best
known one is studied by Gel’fand and Levitan (1951), wherein the potential func-
tion was determined uniquely by a spectral function. McLaughlin (1986) has given
an analytical method to treat this type of an inverse problem.

On the other hand, McLaughlin (1988) first noted that it is possible to obtain the
potential function and boundary conditions, using only a set of nodal points. This
interesting problem soon became known as the inverse nodal problem [Browne and
Sleeman (1996); Cheng, Law and Tsay (2000); Hald and McLaughlin (1989); Yang
(1997)].

Discretization methods often transform the inverse Sturm-Liouville problem into
an inverse eigenvalue problem of a certain matrix [Boley and Golub (1987)]. How-
ever, many of these discretizations resulting in a matrix form lead to higher eigen-
values which are significantly different from the true eigenvalues of the continuous
system. As a consequence, the inverse algorithms based on those discretizations
require careful implementation [Andrew (2004); Paine (1984)]. Previously, Liu
(2008b) has used the specified data on eigenfunctions in order to identify the po-
tential function. In this study, the following inverse Sturm-Liouville problem is
considered. Some specified data on eigenvalues is to be used to reconstruct the po-
tential function q(x), the impedance function p(x), or the weighting function s(x).
The present inverse problem is more difficult than that studied in Liu (2008b).

It would be obvious that the reconstruction algorithm in this paper appears to be
more efficient than the algorithms for approximate solutions given by Rundell and
Sacks (1992), Knobel and Lowe (1993), and Neher (1994, 1998).

This paper is organized as follows. In Section 2 we give a brief description of
the one-step group preserving scheme, which includes a shooting method for a



264 Copyright © 2008 Tech Science Press CMES, vol.36, no.3, pp.261-285, 2008

second-order boundary value problem, the group preserving scheme (GPS), a gen-
eralized mid-point rule to construct a one-step GPS, and a one-step mapping of
GPS between two points on the cone. In Section 3 we introduce our main tool
of the Lie-group shooting method (LGSM), and its use in deriving the unknown
slope is given in Section 4. For later use, we demonstrate a technique of calculat-
ing the eigenvalues in Section 5. The main results are given in Section 6, where
we develop the Lie-group and fictitious time integration methods to determine the
potential function or other function in the Sturm-Liouville operator for specified
eigenvalues, and the numerical examples are given in Section 7. The numerical
examples also include the physical problem of determining the material properties
and/or cross-sectional area of a tapered rod undergoing axial vibrations, for a pre-
scribed set of eigen-frequencies. Finally, we draw some conclusions in Section
8, wherein a flow-chart of the present algorithm for the inverse Sturm-Liouville
problem is also presented.

2 One-step group preserving scheme

2.1 Shooting method

By letting

x = x0 +(x f −x0)t, (5)

u(t) = y(x)+ t(1− t)+c, (6)

where c is a given positive constant, we can transform Eqs. (1) and (2) into an
equivalent system:

ü(t) = − ṗ(t)
p(t)

[u̇(t)+2t−1]+
(x f −x0)2

p(t)
[q(t)−λ s(t)][u(t)− t(1− t)−c]−2, (7)

u(0) = c, u(1) = c. (8)

In above p(t), q(t) and s(t) should be understood as p(x(t)), q(x(t)) and s(x(t)).

The time stepping techniques developed for initial value problems (IVPs) require
both the initial conditions of u1 = u and u2 = u̇ for the second-order ODEs. If the
initial value of u2 is also available, then we can numerically integrate the following
IVP step-by-step in a forward direction from t = 0 to t = 1:

u̇1 = u2, (9)

u̇2 = f (t,u1,u2), (10)

u1(0) = c, (11)

u2(0) = A, (12)
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where

f (t,u1,u2) :=

− ṗ(t)
p(t)

[u2(t)+2t −1]+
(x f −x0)2

p(t)
[q(t)−λ s(t)][u1(t)− t(1− t)−c]−2. (13)

The shooting technique involves in simply finding a suitable A, such that the so-
lution of u(t) = u1(t) can also match the right-end boundary condition of u(1) =
u1(1) = c.

We will use the group preserving scheme (GPS) developed by Liu (2001) for the
integration of IVPs. The GPS method is very effective in dealing with ordinary
differential equations (ODEs), endowing them with special structures as shown
by Liu (2005) for stiff equations, and by Liu (2006a) for ODEs with constraints.
Liu (2006b, 2006c, 2006d) has extended the GPS for ODEs to solve the boundary
value problems (BVPs), and the numerical results reveal that the Lie-group shoot-
ing method is a rather promising method to effectively solve the two-point BVPs.
In the construction of the Lie-group method for the solutions of BVPs, Liu (2006b)
has introduced the idea of one-step GPS by utilizing the closure property of the Lie
group, and hence, the new shooting method has been named the Lie-group shooting
method. Then, Liu (2008a) has modified the Lie-group shooting method to solve
the Sturm-Liouville problems.

2.2 The GPS

We rewrite Eqs. (9) and (10) in a vector form:

u̇ = f(t,u), (14)

where

u :=
[

u1

u2

]
, f :=

[
u2

f (t,u1,u2)

]
. (15)

Liu (2001) has embedded Eq. (14) into an augmented differential equations system:

Ẋ :=
d
dt

[
u

‖u‖
]

=

⎡
⎣ 02×2

f(t,u)
‖u‖

fT(t,u)
‖u‖ 0

⎤
⎦[ u

‖u‖
]

:= AX, (16)

where A is an element of the Lie algebra so(2,1) satisfying

ATg+gA = 0 (17)
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with

g =
[

I2 02×1

01×2 −1

]
(18)

being a Minkowski metric. Here, I2 is the identity matrix, and the superscript T

stands for the transpose.

The augmented variable X satisfies the cone condition:

XTgX = u ·u−‖u‖2 = 0. (19)

Accordingly, Liu (2001) has developed a group-preserving scheme (GPS) as fol-
lows:

Xk+1 = G(k)Xk, (20)

where Xk denotes the numerical value of X at the discrete tk, and G(k) ∈ SOo(2,1)
satisfies

GTgG = g, (21)

det G = 1, (22)

G0
0 > 0, (23)

where G0
0 is the 00th component of G.

2.3 Generalized mid-point rule

Applying scheme (20) to Eq. (16) with a specified initial condition X(0) = X0

we can compute the solution X(t) by GPS. Assuming that the stepsize used in
GPS is Δt = 1/K, and starting from an initial augmented condition X0 = X(0) =
(uT

0 ,‖u0‖)T we can calculate the value X(1) = (uT(1),‖u(1)‖)T at t = 1 by

X f = GK(Δt) · · ·G1(Δt)X0. (24)

However, we recall that each Gi, i = 1, . . .,K, is an element of the Lie group
SOo(2,1), and by the closure property of the Lie group, GK · · ·G1 is also a Lie
group element of SOo(2,1) denoted by G. Hence, we have

X f = GX0. (25)

This is a one-step transformation from X0 to X f .

Usually it is very hard to obtain an exact solution of G. To be an approximation,
we can calculate G by a generalized mid-point rule, which is obtained from an
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exponential mapping of A by taking the values of the argument variables of A at
a generalized mid-point. The Lie group generated from this constant A ∈ so(2,1)
is known as a proper orthochronous Lorentz group, which admits a closed-form
representation:

G =

⎡
⎢⎣ I2 + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (26)

where

û = ru0 +(1− r)u f , (27)

f̂ = f(t̂, û), (28)

a = cosh

(
‖f̂‖
‖û‖

)
, (29)

b = sinh

(
‖f̂‖
‖û‖

)
. (30)

Here, we use the initial u0 and the final u f through a suitable weighting factor r to
calculate G, where 0 < r < 1 is a parameter and t̂ = r. The above method employed
a generalized mid-point rule to calculate G, and the result is a single-parameter Lie
group element G(r).

2.4 A Lie group mapping between two points on the cone

Let us define a new vector

F :=
f̂

‖û‖ , (31)

so that, Eqs. (26), (29) and (30) can also be expressed as

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (32)

a = cosh(‖F‖), (33)

b = sinh(‖F‖). (34)

From Eqs. (25) and (32) it follows that

u f = u0 +ηF, (35)

‖u f‖ = a‖u0‖+b
F ·u0

‖F‖ , (36)
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where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2 . (37)

Eq. (35) is rewritten as:

F =
1
η

(u f −u0). (38)

Substituting Eq. (38) into Eq. (36) and dividing both sides by ‖u0‖ we can obtain

‖u f‖
‖u0‖ = a+b

(u f −u0) ·u0

‖u f −u0‖‖u0‖ , (39)

where

a = cosh

(‖u f −u0‖
η

)
, (40)

b = sinh

(‖u f −u0‖
η

)
(41)

are obtained by inserting Eq. (38) for F into Eqs. (33) and (34).

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖ , (42)

S := ‖u f −u0‖. (43)

From Eqs. (39)-(41) it follows that

‖u f‖
‖u0‖ = cosh

(
S
η

)
+cosθ sinh

(
S
η

)
. (44)

By defining

Z := exp

(
S
η

)
, (45)

we obtain from Eq. (44), a quadratic equation for Z:

(1+cosθ )Z2 − 2‖u f‖
‖u0‖ Z +1−cos θ = 0. (46)
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The solution for Z in Eq. (46) is found to be

Z =

‖u f ‖
‖u0‖ +

√( ‖u f ‖
‖u0‖

)2 −1+cos2 θ

1+cosθ
. (47)

From Eqs. (45) and (43) we obtain

η =
‖u f −u0‖

lnZ
. (48)

Therefore, between any two points (u0,‖u0‖) and (u f ,‖u f‖) on the cone, there ex-
ists a Lie group element G ∈ SOo(2,1) mapping (u0,‖u0‖) onto (u f ,‖u f‖), which
is given by

[
u f

‖u f‖
]

= G
[

u0

‖u0‖
]
, (49)

where G is uniquely determined by u0 and u f through Eqs. (32)-(34), (38) and (48).

3 The Lie-group shooting method

The Sturm-Liouville problem considered in Section 1 requires both the information
at the initial point t = 0 and at the terminal point t = 1. However, the usual stepping
scheme requires a complete information at the starting point t = 0. Some effort is
then required to reconcile the stepping scheme for the integration of the Sturm-
Liouville problem presented there.

From Eqs. (9)-(12) it follows that

u̇1 = u2, (50)

u̇2 = f (t,u1,u2), (51)

u1(0) = c, u1(1) = c, (52)

u2(0) = A, u2(1) = B, (53)

where A and B are two supplemental unknown constants, and c is a given positive
constant.

From Eqs. (38), (52) and (53) it follows that

F :=
[

F1

F2

]
=

1
η

[
0

B−A

]
. (54)
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By inserting Eq. (15) for u into Eqs. (48), (47) and (42) we can obtain

η =

√
(A−B)2

lnZ
, (55)

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+cos2 θ

1+cosθ
, (56)

cosθ =
A(B−A)√

(A−B)2
√

c2 +A2
. (57)

Comparing Eq. (54) with Eq. (31), and with the aid of Eqs. (27), (28) and (50)-(53),
we obtain

rA+(1− r)B = 0, (58)

A−B+
η
ξ

f̂ = 0, (59)

where

f̂ := f (r,c, rA+(1− r)B) = f (r,c,0), (60)

ξ :=
√

c2 +[rA+(1− r)B]2 = c, (61)

because of û1 = c and û2 = rA+(1− r)B = 0.

Eq. (58) is a crucial result for the further development of a closed-form formula
about A. This equation is obtained by using the two identical boundary values of
u1 = u in Eq. (8). From the above equations we can see that c must be a positive
value, and the advantage of adjusting the two boundary values in Eq. (8) to be equal
is that we can derive Eq. (58), and that a closed-form solution of A will be available
as follows.

The above derivation of the governing equations (55)-(61) is based on equating the
two F’s in Eqs. (31) and (38). It also means that the two Lie groups defined by
Eqs. (26) and (32) are equal. In this sense, we have called our shooting technique a
Lie-group shooting method (LGSM).

4 The solution of A

From Eqs. (58)-(60), (13), and (61) we obtain an algebraic equation for A:

Ac+η0 f1 = 0, (62)
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where

f1(r) = − ṗ(r)
p(r)

(2r−1)− (x f −x0)2r(1− r)
p(r)

[q(r)−λ s(r)]−2, (63)

Z =
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
, (64)

η0 =

√
A2

lnZ
. (65)

Here, B = rA/(r−1) has a different sign from A because of the fact that 0 < r < 1.

Eq. (62) can be used to solve A for a given r, analytically. If A is solved for, we
can return to integrating Eqs. (9)-(12) by a suitable forward IVP solver. Here we
consider only the case of A > 0. For this case, inserting Eq. (65) for η0 into Eq. (62)
we obtain

lnZ =
− f1

c
. (66)

Defining

f2(r) := exp

(
− f1(r)

c

)
, (67)

and substituting Eq. (64) for Z into Eq. (92) we obtain
√

c2 +B2 +
√

B2
√

c2 +A2 −
√

A2
= f2. (68)

Eq. (68) can be written as

f2A−B = f2

√
c2 +A2 −

√
c2 +B2 (69)

by using A > 0 and B < 0. Squaring the above equation and cancelling the common
terms we can rearrange it as:

2 f2

√
c2 +B2

√
c2 +A2 = (1+ f 2

2 )c2 +2 f2AB. (70)

Squaring again and cancelling the common term and factor, we can obtain:

4 f 2
2 (A2 +B2)−4 f2(1+ f 2

2 )AB = (1− f 2
2 )2c2. (71)

Inserting B = rA/(r−1) and through some algebraic manipulations we eventually
obtain:

4 f2

(r−1)2 [ f2− (1− f2)2r2 +(1− f2)2r]A2 = (1− f 2
2 )2c2. (72)
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If the following condition holds

f3(r) := f2 − (1− f2)2r2 +(1− f2)2r > 0, (73)

then A has a positive solution:

A =

√
(r−1)2(1− f 2

2 )2c2

4 f2 f3
. (74)

5 Calculating the eigenvalues for the direct problem

In the previous section we have derived a closed-form solution to calculate the slope
A for each r in its admissible range. If A is available, then we can apply the GPS to
integrate the (u, t)-IVP in Eqs. (9)-(12).

In principle, if there exists one solution y of Eqs. (1) and (2), there are many
solutions of the type αy, α �= 0 ∈ R. Assume that one of these solutions has a
slope y′(x0) �= 0 at the left-end, then there are many different solutions with slopes
αy′(x0), α �= 0 ∈ R. It means that the slope A can be an arbitrary value. So the
factor r in Eq. (74) can be any value in the interval of r ∈ (0,1). Therefore, we can
fix r = 1/2, and then we obtain the following equation for A:

A =

√
(1− f 2

4 )2c2

4(1+ f 2
4 )2 f4

, (75)

where

f4(λ ) := exp

(
(x f −x0)2

4cp(1/2)
[q(1/2)−λ s(1/2)]+

2
c

)
. (76)

Here A is only dependent on λ .

In order to calculate the eigenvalues we let λ run in a selected interval in which
we are interested, and then insert λ into Eq. (75) we can obtain A. When c and
A are given, we can calculate y(x f ) by integrating Eqs. (9)-(12) and using Eq. (6).
Therefore, we can plot a curve of the variation of y(x f ) with respect to λ , namely
the eigenvalue curve, of which the intersecting points with the zero line give the
values of the required eigenvalues. In order to obtain more accurate eigenvalues,
we can adjust the λ near the marked one until y(x f ) satisfies |y(x f )| < ε1, where
ε1 is a given tolerance of error of mismatching the right-end boundary condition
y(x f ) = 0. Numerical examples will be given below by using the above method.
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6 Calculating the potential function, for specified eigenvalues

When n eigenvalues of λi, i = 1, . . .,n are specified, we can insert them into Eq. (75)
to calculate A. Corresponding to each λi we denote the corresponding A by Ai.
However, q is an unknown function, which we are required to identify, with the aid
of n eigenvalues λi.

Below we will develop a numerical procedure to determine q(x) at the n discretized
points of xi = x0 + iΔx, where Δx = (x f − x0)/n is a uniform spatial length. First
from Eqs. (5) and (6) we have

y′i(x0) =
Ai −1
x f −x0

, (77)

where yi is the i-th eigenfunction. The above condition together with yi(x0) = 0
can be used as the initial conditions of Eq. (1). However, we require a numerical
integrator. Second, we let zi(x) = p(x)y′i(x), and from Eq. (1) we have

d
dx

[
yi(x)
zi(x)

]
=

[
0 1

p(x)
q(x)−λ s(x) 0

][
yi(x)
zi(x)

]
, (78)

where the initial conditions are given by[
yi(x0)
zi(x0)

]
=

[
0

p(x0)(Ai−1)
x f−x0

]
=
[

0
1

]
. (79)

As mentioned by Liu (2008a) there are many eigenfunctions, which satisfy Eqs. (1)
and (2); in order to give a unique solution we can choose Ai by p(x0)(Ai − 1) =
x f −x0, such that p(x0)(Ai−1)/(x f −x0) = 1.

Because the state matrix in Eq. (78) is a sl(2,R) we can employ the following
numerical integrator:[

yk+1
i

zk+1
i

]
= Gk(λi)

[
yk

i
zk

i

]
, (80)

where

Gk :=
1

1− (Δx)2(q̄k−λi s̄k)
4p̄k

⎡
⎢⎣ 1+ (Δx)2(q̄k−λi s̄k)

4p̄k

Δx
p̄k

Δx(q̄k −λi s̄k) 1+ (Δx)2(q̄k−λi s̄k)
4p̄k

⎤
⎥⎦ (81)

is an element of the Lie-group SL(2,R). In the above we have simplified the
notations by sk = s(x0 + kΔx), pk = p(x0 + kΔx) and s̄k = (sk + sk+1)/2, p̄k =
(pk + pk+1)/2 and q̄k = (qk +qk+1)/2.
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Applying the above integration method to Eq. (78) n times, and by noting the initial
conditions given in Eq. (79) we have[

0
zi(x f )

]
= Gn(λi) · · ·G1(λi)

[
0
1

]
. (82)

Inserting each λi into the above equation, replacing the term q(1/2) in Ai by qn/2

where n is taken to be an even number, similarly p(1/2) by pn/2 and s(1/2) by sn/2,
and taking its first row we get a nonlinear algebraic equation denoted by Fi = 0,
such that when i runs from i = 1 to i = n we have

F1(q1, . . . ,qn) = 0,

...

Fn(q1, . . . ,qn) = 0. (83)

Therefore, we have n equations to solve n unknowns q1, . . . ,qn. However, in order
to solve these equations we may require a feasible numerical method.

Now we propose a new method to solve the above algebraic equations. Recently,
Liu and Atluri (2008) have developed a very poweful fictitious time integration
method (FTIM) to solve nonlinear algebraic equations, which is based on the fol-
lowing idea.

In order to apply our new method to solve the system of nonlinear algebraic equa-
tions, we demonstrate it through a single nonlinear algebraic equation:

F(x) = 0, (84)

where we only have one independent variable x. We transform it into a first-order
ODE by introducing a fictitious time variable τ into the following transformation
of variables from x to y:

y(τ) = (1+τ)x. (85)

Here, τ is a variable which is independent of x; hence, y′ = dy/dτ = x. If ν �= 0,
Eq. (84) is equivalent to

0 = −νF(x). (86)

Adding the equation y′ = x to Eq. (86) we obtain:

y′ = x−νF(x). (87)
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By using Eq. (85) we can derive

y′ =
y

1+τ
−νF

(
y

1+τ

)
. (88)

This is a first-order ODE for y(τ). The initial condition for the above equation is
y(0) = x, which is however an unknown and requires a guess.

Multiplying Eq. (88) by an integrating factor of 1/(1+τ) we can obtain

d
dτ

(
y

1+τ

)
= − ν

1+τ
F

(
y

1+τ

)
. (89)

Further using y/(1+τ) = x, leads to

x′ = − ν
1+τ

F(x). (90)

Therefore, we have transformed the algebraic Eq. (84) into a first-order nonau-
tonomous ODE. Under certain conditions, we expect that the solution of Eq. (90)
starting from an initial guess of x(0) can approximate the true solution x of Eq. (84).

The above idea was first employed by Liu (2008b) to treat an inverse Sturm-Liouville
problem by transforming an ODE into a PDE. Then, Liu (2008c, 2008d) and Liu,
Chang, Chang and Chen (2008) extended this idea to develop new methods for
estimating parameters in the inverse vibration problems.

Now, by applying Eq. (90) to Eq. (83) we can obtain

q′1 = − ν
1+τ

F1(q1, . . .,qn),

...

q′n = − ν
1+τ

Fn(q1, . . .,qn). (91)

Starting from an initial value of qi(0), we may employ the GPS in Section 2.1 to
integrate Eq. (91) from τ = 0 to a selected final time τ f . In the numerical integration
process we can check the residual norm by

(
n

∑
i=1

F2
i

)1/2

≤ ε2, (92)

where ε2 is a given convergent criterion. If at a time τ0 ≤ τ f the above criterion is
satisfied, then the solution of qi is obtained.
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Similarly, we can determine the unknown function s(x) when p(x) and q(x) are
given. For this problem we need to replace Eq. (83) by a new set of algebraic
equations in terms of the discretized si. Then, a similar FTIM is used to solve si.
By the same token, we can determine the unknown function p(x) when q(x) and
s(x) are given.

7 Numerical examples

7.1 Example 1

For this example we consider the Sturm-Liouville eigenvalues problem with [Ghe-
lardoni, Gheri and Marletta (2001); Yücel (2006)]:

−y′′(x)+exy(x) = λ y(x),
y(0) = y(π) = 0. (93)

The eigenvalue in this case does not have a closed-form solution, and we first em-
ploy the Lie-group shooting method in Section 5 to search the first thirty eigenval-
ues as shown in Table 1.

Table 1: The first thirty eigenvalues for Example 1

k λk k λk k λk

1 4.897 2 10.045 3 16.0192
4 23.267 5 32.264 6 43.221
7 56.181 8 71.161 9 88.132
10 107.117 11 128.105 12 151.096
13 176.089 14 203.083 15 232.079
16 263.075 17 296.072 18 331.069
19 368.067 20 407.065 21 448.064
22 491.062 23 536.061 24 583.060
25 632.059 26 683.058 27 736.057
28 791.057 29 848.056 30 907.055

For this example we use n = 30, Δτ = 1 used in the GPS, ε2 = 0.01 and ν =
0.001. The eigenvalues listed in Table 1 are then used in the inverse problem, for
the estimation of q(x) by utilizing the Lie-group and FTIM methods in Section
6. In Fig. 1 we compare the calculated potential function and exact one plotted
respectively by the dashed line and solid line. It can be seen that the numerical
solution is very close to the exact one.
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Figure 1: Comparing the calculated po-
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Example 1.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

q 
(x

)

1.0 1.3 1.6 1.9 2.2 2.5 2.8

x

Numerical

Exact

Figure 2: Comparing the computed po-
tential function with the exact one for
Example 2.

7.2 Example 2

For a second test example we consider an inverse Sturm-Liouville problem with

[x−1y′(x)]′+(λ +1)x−3y(x) = 0,

y(1) = y(e) = 0. (94)

The direct problem has the solution: eigenvalues are λk = k2π2, k ∈ N, and eigen-
functions are yk = xsin(kπ lnx). In the inverse problem, we specify the eigenvalues
to be λk = k2π2, and seek to determine the potential function numerically.

For this example we use n = 50, Δτ = 0.5 used in the GPS, ε2 = 0.01 and ν = 0.005.
In Fig. 2 we compare the calculated potential function and the exact one. It can be
seen that the numerical solution is very close to the exact one.

7.3 Example 3

As another example, we consider a singular inverse Sturm-Liouville eigenvalues
problem to calculate the potential function q(x) in the Schrödinger equation

d2y(x)
dx2 +[λ −q(x)]y(x) = 0,

y(−∞) = y(∞) = 0, (95)

where q(x) = x2 is used as a test example. Here λk = 2k + 1, k ∈ Z+ is the eigen-
value, and

yk(x) = Hk(x)exp

(
−x2

2

)
(96)
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is the eigenfunction, where the Hermite polynomials are given by

Hk(x) = (−1)kex2
dke−x2

/dxk, k = 0,1, . . ..

In Fig. 3 we compare the calculated potential function in the inverse problem with
specified λk, and the exact one in the range of −5 ≤ x ≤ 5. Here we use n = 100,
Δτ = 10−5, ε2 = 0.01 and ν = 10−6. The numerical error is about in the order of
10−2.
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Figure 3: Comparing the computed po-
tential function with the exact one for
Example 3.
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Figure 4: Comparing the computed
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for Example 4.

7.4 Example 4

Alternatively, we may identify the weighting function s(x) in the following inverse
Sturm-Liouville problem:

d2y(x)
dx2 +λ s(x)y(x) = 0,

y(0) = y(1) = 0, (97)

where s(x) = 1/(1+x)2 is used as a test example. Here,

λk =
1
4

+
(

kπ
ln2

)2

, k ∈ Z
+, (98)

yk(x) =
√

1+x sin

(
kπ ln(1+x)

ln2

)
(99)

are respectively the eigenvalues and eigenfunctions.
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In Fig. 4 we compare the calculated s(x) in the inverse problem with specified λk,
and the exact s(x) under the following parameters: n = 50, Δτ = 1, ε2 = 0.01 and
ν = −0.1. The numerical error is about in the order of 10−2.

7.5 Example 5

In this example we consider the direct and inverse problems of an axial vibrating
tapered rod:

− d
dx

(
E(x)A(x)

dy(x)
dx

)
= ρ(x)A(x)ω2y(x), 0 < x < L,

y(0) = y(L) = 0. (100)

Let y = Lw, x = Lξ , and

Ê(ξ ) =
E(x)
E0

, Â(ξ ) =
A(x)
A0

, ρ̂(ξ ) =
ρ(x)
ρ0

, (101)

where E0 = E(0), A0 = A(0), and ρ0 = ρ(0), and then we have a non-dimensionalized
equation:

− d
dξ

(
Ê(ξ )Â(ξ )

dw(ξ )
dξ

)
= ρ̂(ξ )Â(ξ )λ 2w(ξ ), 0 < ξ < 1,

w(0) = w(1) = 0, (102)

where λ 2 = ρ0L2ω2/E0.

In order to give some specified data of λ 2 for the use in the inverse problem, as an
example we take

Ê(ξ ) = Â(ξ ) = ρ̂(ξ ) = 1−0.5ξ . (103)

The direct problem is finding λ 2; however, the eigenvalues do not have a closed-
form solution, and we have employed the Lie-group shooting method in Section 5
to search the eigenvalues in the range of 0 < λ < 5000 as shown in Fig. 5. There
are 24 intersecting points of the eigenvalue curve with the zero line, and Table 2
lists the first twenty eigenvalues.

Next, we turn to the inverse problem by identifying one of (Ê(ξ ), Â(ξ ), ρ̂(ξ )), for
the specified eigenvalues λ 2

k in Table 2. For the first case we identify Ê(ξ ), and
this problem leads to pi being unknowns. Under the following parameters: n = 20,
Δτ = 0.1, and ν = −0.0001, the computed Ê(ξ ) is compared with the exact one in
Fig. 6(a). For the second case we identify Â(ξ ), which leads to both pi and si being
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Figure 5: Eigenvalue curve for the problem of a vibrating rod.

Table 2: The first twenty eigenvalues for Example 5

k λ 2
k k λ 2

k k λ 2
k k λ 2

k
1 0.32 2 9.87 3 15.67 4 39.48
5 88.82 6 157.92 7 246.74 8 355.31
9 483.63 10 631.69 11 799.52 12 987.11
13 1194.48 14 1421.66 15 1668.66 16 1935.52
17 2222.28 18 2528.98 19 2855.67 20 3202.42

unknowns. The computed Â(ξ ) is compared with the exact one in Fig. 6(b). Then,
the last case is identifying ρ̂(ξ ). This problem leads to si being unknowns, and
the computed ρ̂(ξ ) is compared with the exact one in Fig. 6(c). All the numerical
errors are in the order of about 10−2.

8 Conclusions

In this paper we have proposed a novel SL(2,R) Lie-group shooting method (LGSM),
combined with the use of FTIM, for solving the inverse Sturm-Liouville prob-
lems. We solved the resulting algebraic equations by the Fictitious Time Integration
Method (FTIM), to find the unknown potential function, the unknown impednce
function, or the unknown weighting function in the Sturm-Liouville operator, when
the discrete eigenvalues are specified. Several numerical examples were given to
confirm the efficiency and accuracy of the present LGSM and FTIM approaches,
which are rather easy to implement with a low computational cost than the previous
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Figure 6: Comparing the computed (a) Young’s modulus, (b) cross-sectional area,
and (c) mass-density, with the exact ones for a rod undergoing axial vibrations.

numerical methods. Moreover, the accuracy is improved significiantly. The numer-
ical examples also include the mechanics problem of determining the mechanical
properties and/or geometric configuration of a tapered bar undergoing axial vibra-
tions, when the discrete eigen-frequencies are specified.

In summary, we present here the following algorithmic flow chart in Fig. 7 for deter-
mining one of (q(x), p(x), s(x)) when the eigenvalues λi are given. We demonstrate
it by finding the unknown potential q(x), while the other two unknown functions
p(x) or s(x) can be found by a similar numerical algorithm.

Acknowledgement: Taiwan’s National Science Council projects NSC-96-2221-
E-019-027-MY3 and NSC-97-2221-E-019-009-MY3 granted to the first author are
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Given λi, i = 1, . . . , n

�

Given pk, sk, k = 1, . . . , n

and initial qk, k = 1, . . . , n

�

For each λi, use Eq. (81)

to calculate Gk, k = 1, . . . , n

�

Insert Gk, k = 1, . . . , n into

Eq. (82) to obtain Eq. (91)

�

Integrate Eq. (91) by the GPS

until Eq. (92) satisfied or τ ≥ τf

Figure 7: An algorithmic flow chart to determine, for example, the unknown func-
tion q(x), when λi are specified.
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