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Probabilistic Collocation used in a Two-Step approach for
efficient uncertainty quantification in computational fluid

dynamics.

G.J.A. Loeven1,2 and H. Bijl3

Abstract: In this paper a Two-Step approach is presented for uncertainty quan-
tification for expensive problems with multiple uncertain parameters. Both steps
are performed using the Probabilistic Collocation method. The first step consists
of a sensitivity analysis to identify the most important parameters of the problem.
The sensitivity derivatives are obtained using a first or second order Probabilis-
tic Collocation approximation. For the most important parameters the probability
distribution functions are propagated using the Probabilistic Collocation method
using higher order approximations. The Two-Step approach is demonstrated for
flow around a NACA0012 airfoil with eight uncertain parameters in the free stream
conditions and geometry. The first step identified the freestream velocity, angle of
attack, and the camber of the airfoil as the three most important parameters. In
the second step the probability distributions of all three parameters are propagated
using higher order Probabilistic Collocation approximations. Statistical properties
of the lift and drag are obtained, as well as uncertainty bounds for the pressure and
skinfriction on the surface of the airfoil.

Keyword: Probabilistic Collocation, Polynomial Chaos, Computational Fluid Dy-
namics, Uncertainty Quantification, Sensitivity Analysis.

1 Introduction

Interest in uncertainty quantification for computational fluid dynamic problems is
growing rapidly. Due to efficient algorithms and increasing computing power, un-
certainty quantification has become feasible for computationally intensive prob-
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lems. In Computational Fluid Dynamics (CFD) problems uncertainties are inher-
ently present due to physical variations in the geometry and flow conditions. One
can think of atmospheric conditions and production tolerances in the fabrication
process.

If deterministic computations are computationally intensive, efficient uncertainty
quantification methods are required. Extensive research has been performed on
the use polynomial chaos methods. The polynomial chaos methods are based on
the homogeneous chaos theory of Wiener (1938). To obtain the coefficients of the
polynomial chaos expansion, the equations can be solved by applying the stochas-
tic Galerkin method [Babuška, Nobile, Zouraris, and Tempone (2004); Ghanem
and Spanos (1991); Xiu and Karniadakis (2002); Xiu, Lucor, Su, and Karniadakis
(2002)]. This approach results in a set of coupled equations, which means that the
source code of the CFD solver should be available for implementation.

To be able to use a commercial CFD solver, a so-called non-intrusive method
is used in this paper. Non-intrusive methods use the deterministic solver as a
black-box for uncertainty propagation [Loeven, Witteveen, and Bijl (2007); Hosder,
Walters, and Perez (2006); Parussini and Pediroda (2007, 2008); Reagan, Najm,
Ghanem, and Knio (2003)]. The Probabilistic Collocation method [Babuška, No-
bile, and Tempone (2007); Loeven, Witteveen, and Bijl (2007); Tatang, Pan, Prinn,
and McRae (1997)] is employed, since it converges exponentially with respect to
the polynomial order for arbitrary input distributions. The method is also based
on the polynomial chaos expansion, only here the coefficients are obtained using
Gauss quadrature. This results in a decoupled set of equations.

A disadvantage of the standard Probabilistic Collocation method is the curse of di-
mensionality. For multiple uncertain parameters, for CFD above say five, even low
order approximations cannot be computed within reasonable time. A solution to
this problem can be sparse grid approaches [Ganapathysubramanian and Zabaras
(2007); Xiu and Hesthaven (2005)]. Advantages of sparse grid approaches are the
fact that all uncertain parameters can be propagated efficiently and combined ef-
fects of the parameters are computed. However, some uncertain parameters may
not affect the solution much, so taking them into account results in additional com-
putations that do not contribute to the stochastic solution of interest.

In this paper a Two-Step approach is followed by first performing a sensitivity anal-
ysis and secondly propagating the statistics of the most important parameter(s) in
the next step. The sensitivity analysis is based on the scaled sensitivity derivatives
[Turgeon, Pelletier, and Borggaard (2003)]. The sensitivity derivatives are obtained
from a first or second order Probabilistic Collocation approximation, depending on
the distribution of the uncertain parameters. For each output of interest, the scaled
sensitivity derivatives are compared, yielding the most important parameters. Next
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the probability distribution functions are propagated using higher order Probabilis-
tic Collocation approximations. The Two-Step approach starts with a sensitivity
analysis based on separate effects of the uncertain parameters, so interactions be-
tween parameters are not taken into account in this step. The second step is per-
formed using a multidimensional Probabilistic Collocation expansion to include
interactions between the parameters. By taking into account only the most impor-
tant parameters, the number of deterministic computations is reduced significantly.

This paper starts with explaining the Two-Step approach in section 2. Where first
the Probabilistic Collocation method in section 2.1 and secondly the sensitivity
analysis using the scaled sensitivity derivatives in section 2.2 are shown. The Two-
Step approach is then applied to flow around a NACA0012 airfoil with eight uncer-
tain parameters in section 3. The paper is concluded in section 4.

2 Two-Step approach for expensive problems
with multiple uncertain parameters

Since the propagation of probability distributions for multiple uncertain parameters
is computationally intensive a Two-Step approach is followed. The first step con-
sists of a sensitivity analysis using scaled sensitivity derivatives [Turgeon, Pelletier,
and Borggaard (2003)], which is performed to identify the most important param-
eter of the problem. After that in the second step the uncertainty of the identified
parameter is propagated using the Probabilistic Collocation method [Babuška, No-
bile, and Tempone (2007); Loeven, Witteveen, and Bijl (2007); Tatang, Pan, Prinn,
and McRae (1997)] which results in the stochastic response of the solution based
on the input distribution of the uncertain parameter. The Probabilistic Collocation
method is a polynomial chaos type method [Ghanem and Spanos (1991); Wiener
(1938)], which is non-intrusive, it uses a deterministic solver as a black-box. For a
low number of uncertain parameters, the method is more efficient than the intrusive
Galerkin Polynomial Chaos method and other non-intrusive methods [Loeven, Wit-
teveen, and Bijl (2006, 2007)]. The sensitivity analysis is based on separate effects
of each parameter. The full Probabilistic Collocation computations also includes
interaction between the uncertain parameters.

2.1 The Probabilistic Collocation Method

In the Probabilistic Collocation method a polynomial chaos expansion is constructed
based on Lagrange polynomials. Secondly, Gauss quadrature weighted by the prob-
ability density function of the uncertain parameter is used to compute the Galerkin
projection and to integrate the approximation of the distribution function. By using
Gauss quadrature a decoupled set of equations is obtained and the approximated
distribution is integrated exactly to obtain the mean and variance.
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Probabilistic Collocation expansion

The solution and each variable depending on the uncertain input parameter is ex-
panded as follows:

u(x, t,ω) =
Np

∑
i=1

ui(x, t)hi(ξ (ω)) , (1)

where the solution u(x, t,ω) is a function of space x and time t and the random
event ω ∈ Ω, and the number of collocation points Np. The complete probability
space is given by (Ω,F ,P), with Ω the set of outcomes, F ⊂ 2Ω the σ -algebra
of events and P : F → [0,1] a probability measure. Furthermore, ui(x, t) is the
solution u(x, t,ω) at the collocation point ωi; hi is the Lagrange interpolating poly-
nomial chaos corresponding to the collocation point ωi; ξ is the random basis. The
Lagrange interpolation results in polynomial chaoses. A polynomial chaos is a
polynomial of random variables instead of ordinary variables. The term chaos in
this context originates from the paper of Wiener (1938) on homogeneous chaos,
and should not be confused with deterministic chaos of dynamical systems. The
Lagrange interpolating polynomial is a function in terms of the random variable
ξ (ω), which is chosen such that the uncertain input parameter is a linear transfor-
mation of ξ (ω). The Lagrange interpolating polynomial chaos is the polynomial
chaos hi (ξ (ω)) that passes through the Np collocation points, with hi (ξ (ω j))= δi j .
The collocation points are chosen such that they correspond to the Gauss quadrature
points used to integrate the function u(x, t,ω) in the ω domain. For convenience
of notation the argument ω is omitted from here on. The solution is integrated to
obtain the mean or variance. When multiple uncertain parameters are present, the
collocation points are obtained from tensor products of one dimensional points. The
number of collocation points Np then becomes Np = (P+1)d, where P is the order
of approximation and d then dimension of the stochastic problem (i.e. number of
uncertain parameters). To find the suitable Gauss quadrature points and weights the
procedure below is followed.

Computing Gaussian quadrature points with corresponding weights

A powerful method to compute Gaussian quadrature rules is by means of the Golub-
Welsch algorithm [Golub and Welsch (1969)]. This algorithm requires the recur-
rence coefficients [Gautschi (2005)] of polynomials which are orthogonal with re-
spect to the weighting function of the integration. Exponential convergence for
arbitrary probability distributions is obtained when the polynomials are orthogonal
with respect to the probability density function of ξ , so w(ξ ) = fξ (ξ ). The Golub-
Welsch algorithm requires the recurrence coefficients of the orthogonal polynomi-
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als. The recurrence coefficients are computed using the discretized Stieltjes proce-
dure [Gander and Karp (2001)], which is a stable method for arbitrary distribution
functions. Orthogonal polynomials satisfy the following three-term recurrence re-
lation:

Ψi+1(ξ ) = (ξ −αi)Ψi(ξ )−βiΨi−1 i = 1,2, . . .,Np,

Ψ0(ξ ) = 0, Ψ1(ξ ) = 1, (2)

where αi and βi are the recurrence coefficients determined by the weighting func-
tion w(ξ ) and {Ψi(ξ )}Np

i=1 is a set of (monic) orthogonal polynomials with Ψi(ξ ) =
ξ i + O(ξ i−1), i = 1,2, . . .,Np. The recurrence coefficients are given by the Dar-
boux’s formulae [Gautschi (2005)]:

αi =
(ξΨi,Ψi)
(Ψi,Ψi)

i = 1,2, . . .,Np,

βi =
(Ψi,Ψi)

(Ψi−1,Ψi−1)
i = 2,3, . . .,Np, (3)

where (·, ·) denotes an inner product. The first coefficient β1 is given by (Ψ1,Ψ1).
Gander and Karp (2001) showed that discretizing the weighting function leads to a
stable algorithm. Therefore the discretized Stieltjes procedure is used to obtain the
recurrence coefficients. Hereto, first the weighting function w(ξ ) is discretized by

wN(ξ ) =
N

∑
j=1

wjδ (ξ −ξ j), wj > 0, (4)

where δ is the Dirac delta function. Stieltjes’ procedure starts with i = 1. With
Eq. (3) the first coefficient α1 is computed, β1 = ∑N

j=1 wj . Now Ψ2(ξ ) is computed
by Eq. (2) using α1 and β1. This is repeated for i = 2,3, . . .,Np. When continuous
weighting functions are considered Np � N, for discrete measures Np ≤ N. The
inner product is defined as

(p(ξ ),q(ξ )) =
∫

S
p(ξ )q(ξ )wN(ξ )dξ =

N

∑
j=1

wj p(ξ j)q(ξ j), (5)

for two functions p(ξ ) and q(ξ ).

From the recurrence coefficients αi and βi, i = 1,2, . . .,Np, the collocation points
ξi and corresponding weights wi are computed using the Golub-Welsch algorithm
[Golub and Welsch (1969)]. With the recurrence coefficients the following matrix
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is constructed:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
√

β2√
β2 α2

√
β3 /0√

β3 α3
√

β4
. . . . . . . . .

/0
√

βNp−1 αNp−1

√
βNp√

βNp αNp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

The eigenvalues of J are the collocation points ξi, i = 1, . . .,Np, which are the
roots of the polynomial of order Np from the set of the constructed orthogonal
polynomials. The weights are found by wi = β1v2

1,i, i = 1, . . . ,Np, where v1,i is the
first component of the normalized eigenvector corresponding to eigenvalue ξi.

Now the collocation points ξi in the ξ -domain are known. They are mapped to the
ω-domain using the distribution function of ξ . The collocation points ωi are found
by

ωi = Fξ (ξi), i = 1, . . .,Np. (7)

If multiple uncertain parameters are present, the collocation points are found using
tensor products of one dimensional points or using a sparse grid approach [Ganap-
athysubramanian and Zabaras (2007); Xiu and Hesthaven (2005)].

Application to a general model

The application of Probabilistic Collocation method to a general model is shown.
The model is a black box and can be for example a CFD solver. It is demon-
strated how the method is used when the parameter of interest is a functional of the
solution, like the lift of an airfoil. Expansion (1) is substituted into the model, rep-
resented here by the operator L , which depends on an uncertain input parameter
a(ω):

L (a(ω))u(x, t,ω)= S(x, t). (8)

A Galerkin projection on each basis {hk (ξ (ω))} is applied:

(
L (a(ω))

Np

∑
i=1

ui(x, t)hi,hk

)
= (S,hk) , k = 1, . . . ,Np. (9)
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This projection is approximated using Gaussian quadrature as in Eq. (5), with col-
location points and corresponding weights based on the input distribution. The
result is a fully decoupled system of equations, similar to the deterministic Eq. (8):

L (a(ωk))uk(x, t) = S(x, t), k = 1, . . .,Np. (10)

The distribution function is obtained from Eq. (1). From the distribution one can
extract the probability density function or confidence intervals. The mean and vari-
ance of the solution are found by

μu =
Np

∑
i=1

ui(x, t)wi, (11)

σ2
u =

Np

∑
i=1

(ui(x, t))2 wi −
(

Np

∑
i=1

ui(x, t)wi

)2

, (12)

where wi are the weights corresponding to the collocation points ωi. These relations
are derived from the definition of the mean and variance.

Output of interest

Often the output of interest is a functional of the solution, like the lift force of an
airfoil. The flow around the airfoil is computed and integration of the pressure on
the surface of the airfoil yields the lift. Due to the uncertainty present in the system,
the lift becomes a random variable as well. The lift is written as a Probabilistic
Collocation expansion as follows

L =
Np

∑
i=1

Li(t)hi(ξ ), (13)

where Li(t) is the lift force at time t for collocation point ωi. Li(t) follows from the
deterministic computations for every collocation point. The distribution function of
the lift L is then constructed using Eq. (13), the mean and variance are obtained us-
ing Eqs. (11) and (12). For the Galerkin Polynomial Chaos method the functionals
have to be applied to the reconstructed solution u(x, t,ω), which can give troubles
[Loeven, Sarkar, Witteveen, and Bijl (2007); Sarkar, Witteveen, Loeven, and Bijl
(2008)].

A stochastic computation is now performed as follows:

1. Specify input distributions for every uncertain parameter by determining the
probability density function.
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2. Compute collocation points and weights based on the probability density
functions of the uncertain parameter, using Eqs. (3), (4), (6), and (7).

3. Perform deterministic computations for every collocation point. These com-
putations can be performed in parallel.

4. Construct the stochastic solution using all obtained deterministic solutions,
e.g. mean/variance fields, uncertainty bars or probability density functions,
using Eqs. (1), (11), and (12).

2.2 Sensitivity analysis to obtain the most important parameter

Sensitivity analysis is based on the scaled sensitivity derivative [Turgeon, Pelletier,
and Borggaard (2003)]. In this paper sensitivity derivatives are used to identify
the most important uncertain parameter in a particular physical system. Sensitivity
analysis is used here as an efficient way of reducing the amount of uncertain pa-
rameters. A reduction of the amount of uncertain parameters results directly in less
required deterministic solves and therefore reduces the computational time.

The sensitivity derivative is defined as the partial derivative of the solution u(x, t,ω)
or any output of interest with respect to the uncertain parameter a(ω). The sensi-
tivity derivatives are computed by differentiating a first or second order PC approx-
imation. One can also use a finite difference approach, but then the size of the
difference should be carefully chosen. A smaller difference leads to more accurate
sensitivity derivatives, however, truncation errors of the deterministic solver may
produce wrong sensitivity derivatives. For symmetric distributions, like the nor-
mal distribution, the second collocation point with corresponding solution u2(x, t)
is equal to the computation with deterministic settings. For this case two solves
for each parameter are required to obtain the sensitivity derivative, with a total of
2d + 1 solves for the complete sensitivity analysis, with d the number of uncer-
tain parameters. For asymmetric distributions 3d deterministic solves would be
required. Therefore, to save computational costs, a first order Probabilistic Col-
location expansion is used for cases with asymmetric distributions, requiring 2d
solves. In this paper truncated normal distributions are used, which are symmetric.
The approximation of the derivative is then obtained by first differentiating Eq. (1)
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for Np = 3 with respect to ξ (ω):

∂u
∂ξ

∣∣∣∣
a
=u1,a(x, t)

[
ξ (ω2)−ξ (ω3)

(ξ (ω1)−ξ (ω2)) (ξ (ω1)−ξ (ω3))

]
+

u2,a(x, t)
[

2ξ (ω2)−ξ (ω1)−ξ (ω3)
(ξ (ω2)−ξ (ω1)) (ξ (ω2)−ξ (ω3))

]
+

u3,a(x, t)
[

ξ (ω2)−ξ (ω1)
(ξ (ω3)−ξ (ω1)) (ξ (ω3)−ξ (ω2))

]
, (14)

where ui,a(x, t) indicates the ith collocation point for uncertain parameter a. The
parameter a is a linear combination of the random variable ξ , so a = Aaξ + Ba,
with constants Aa and Ba. The sensitivity derivative of the solution with respect to
parameter a is given by

∂u
∂a

=
∂u
∂ξ

∣∣∣∣
a

∂ξ
∂a

=
1

Aa

∂u
∂ξ

∣∣∣∣
a
. (15)

When more parameters are involved in the problem the scaled sensitivity derivative
with respect to each parameter is calculated. One has to take into account that this
procedure provides the sensitivity information for each parameters separately, so
no combined effects are taken into account in this step. By scaling the sensitivity
derivatives with the standard deviation of the parameters a good estimate of the
effect of the uncertain parameter on the solution is obtained. If the solution depends
on N parameters, the most important parameter is

max

{
σa1

∂u
∂a1

, σa2

∂u
∂a2

, . . . , σaN

∂u
∂aN

}
. (16)

Once the most important parameter is obtained by Eq. (16) the stochastic response
of the solution can be computed based on the input distribution of the uncertain
parameter.

3 Two-Step Framework applied to
NACA 0012 airfoil with 8 uncertain parameters

In this section the Two-Step framework is applied to steady flow around a NACA0012
airfoil with eight uncertain parameters. A commercial deterministic CFD code is
used to compute the deterministic solves for every collocation point. The determin-
istic case is flow around a NACA0012 airfoil at an angle of attack α of 5 degrees
and a free stream velocity U of 100. The Reynolds number is equal to 3 ·106. The
deterministic computations are performed using the Fine™/Hexa solver by Numeca
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Int. on a grid of approximately 100,000 cells. A close-up of the grid layout is shown
in Fig. 1(a). A grid convergence study was performed to make sure the determin-
istic solutions are fully grid independent. If the deterministic computations are not
grid independent or numerically sufficiently converged, the induced errors may be
larger than the variations due to the uncertain parameter. For the grid convergence
study grids of 50, 75, 100, 125, and 150 thousand cells were used. The grid of
100,000 cells showed no significant difference compared to the finer grids and was
used for further computations.

(a) (b)

Figure 1: The mesh layout near the airfoil (a) and magnitude of velocity (b) of the
mean conditions.

The flow is modeled by the Reynolds-Averaged Navier-Stokes (RANS) equations
using the Spalart-Allmaras turbulence model. Fig. 1(b) shows the magnitude of
velocity of the mean conditions. The mean air properties are at 0m ISA. The uncer-
tainties are present in the free stream flow conditions, i.e. the velocity U , angle of
attack α , pressure p, temperature T , viscosity ν , and turbulence intensity I and in
the geometry by the thickness t and camber c. The free stream conditions are never
constant in real flight due to atmospheric irregularities. The geometric uncertainties
result from production tolerances in the fabrication process, as a result of which the
actual airoil slightly differs from the designed shape.

Input distributions

All uncertain parameters are assumed to have a truncated normal distribution and
are shown in Fig. 2; the specifications of the distributions are given in Tab. 1. Trun-
cated normal distributions are used to avoid unphysical settings and too large vari-
ations. The variations in the geometry are chosen such that the parameters vary
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within a reasonable interval. The parameters of the freestream are based on varia-
tions that can occur in flight, due to uncertain height and atmospheric conditions.
The kinematic viscosity is varied to see the effect of the Reynolds number. For
real life applications the input distributions should be measured to be able to find
a realistic input distribution. One can think of measuring the shape of products
after production or measuring air properties and freestream velocity and angle of
attack during flight. Currently, these data are not available yet, so assumptions on
the input distributions have to be made. For the truncated normal distributions it is
important to use the orthogonalization procedure described in section 2.1. If one
would use the Hermite polynomials (corresponding to a normal distribution), the
support is infinite and collocation points will fall outside the truncation interval for
higher orders of approximation.

Table 1: Distribution description of the uncertain parameters. All parameters have
a truncated normal distributions, truncated on the μ ±3σ interval.

Parameter Mean μ Standard Minimal Maximal Coefficient of
deviation σ value value variation (COV )

U 100 5 85 115 5 %
α 5 0.3333 4 6 6.67 %
t 12 0.3333 11 13 2.78 %
c 0 0.16667 -0.5 0.5 -
p 101325 1013.25 98285 104365 1 %
T 288.15 2.8815 279.5 296.8 1 %
ν 3.3333 ·10−5 3.3333 ·10−7 3.2333 ·10−5 3.4333 ·10−5 1 %
I 0.1 0.005 0.085 0.115 5 %

To propagate the distributions of all eight parameters for a second order PC ap-
proximation requires 6561 deterministic solves. The RANS computation of the
NACA0012 airfoil on the grid of 100,000 cells runs in the order of 10 CPU hours
on an AMD Opteron 2800 MHz processor. A second order PC approximation is not
feasible for this problem for all parameters simultaneously. To be able to perform
uncertainty quantification, the Two-Step approach is employed. The sensitivity
analysis only requires 17 deterministic solves for all eight parameters. After that
only the probability distributions of the most important parameters are propagated.

3.1 Step I: Identifying the most important parameter

In this paper the lift and drag forces and coefficients are considered as the main out-
put of interest. The scaled sensitivity derivatives are shown in Fig. 3 for the lift and
drag forces and Fig. 4 for the lift and drag coefficients. The notation of the scaled
sensitivities is for example LŨ = σU ∂L/∂U for the scaled sensitivity derivative of
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Figure 2: Uncertain input parameters; the cumulative distribution functions F are
shown by the blue line (–) and the probability density functions f are indicated by
the green line (–).
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the lift force L with respect to the free stream velocity U . Clearly, the conclusions
depend on the output of interest. Furthermore, the sensitivity derivatives show the
effects of the parameters separately. The user should, therefore, be careful when
selecting the most important parameters, because combined effects are not taken
into account in this step. The scaled sensitivity derivatives of the forces in Fig. 3
show expected variations in the order of 10% of the deterministic value. Since the
forces depend on the dynamic pressure, the velocity U is most dominant in this
case. Also the angle of attack α shows significant variation, as well as the camber c
for the lift force. For the coefficients, however, Fig. 4 shows that the expected vari-
ations are different. The lift coefficient variations are expected up to 7%, mainly
due to an uncertain angle of attack α and camber c. The other parameters are not
important for the lift coefficient. The variations of the drag coefficient are about
2.5%, due to uncertain angle of attack α . All other parameters are expected to con-
tribute less than 1% variation in the drag coefficient. Based on these observations,
further computations are performed for uncertain velocity U , angle of attack α , and
camber c.

Scaled sensitivity derivative

LŨ Lα̃ Lt̃ Lc̃ Lp̃ LT̃ Lν̃ LĨ

0

200

400

(a)

Scaled sensitivity derivative

DŨ Dα̃ Dt̃ Dc̃ Dp̃ DT̃ Dν̃ DĨ

0
2

4
6

8

(b)

Figure 3: Scaled sensitivity derivatives of the lift L (a) and drag D (b) forces.
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Scaled sensitivity derivative
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Figure 4: Scaled sensitivity derivatives of the lift Cl (a) and drag Cd (b) coefficients.

3.2 Step II: Propagating the Probability Distributions

The probability distribution functions of the free stream velocity U , angle of attack
α , and camber c are propagated using the Probabilistic Collocation method for
p =1,2, and 3, requiring 8, 27, and 64 deterministic computations respectively.
The convergence is checked by estimating the error using an approximation of one
order higher. The estimated error of the lift force L for a pth order approximation is
given by

εL =

√√√√ 1
Np+1

Np+1

∑
i=1

wi

(
Lp+1

i − L̂i

)2

1
Np+1

Np+1

∑
i=1

L̂i

, (17)

where Np+1 is the number of collocation points, Lp+1
i are the lift forces for the col-

location points, all corresponding to a (p+1)th order approximation. L̂i are the esti-
mated lift forces at the collocation points of the (p+1)th order approximation using
a pth order approximation. The resulting convergence of the lift and drag forces are
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shown in Fig. 5. To estimate the error of the third order approximation a fourth
order computation was performed (requiring 125 deterministic solves). Based on
Fig. 5, a first order approximation would be sufficient for this case. However, since
it is known that the forces depend quadratically on the free stream velocity, a sec-
ond order approximation would be appropriate here. Further results are, therefore,
obtained from a second order Probabilistic Collocation approximation. So a total
of 27 deterministic solves were required for the following results.

Polynomial order p
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ti
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at
e

Lift L
Drag D

1 2 310−5

10−4

10−3

Figure 5: Convergence of the lift and drag forces with respect to the polynomial
order.

The statistics of the lift and drag are summarized in Tab. 2. The deterministic
values are L = 3395.763 N, D = 79.41934 N, CL = 0.5544, and CD = 0.012966.
The difference between deterministic and mean values of the coefficients are less
than one count (a lift count is defined as 10−3, and a drag count as 10−4), this
difference is negligible. On average the performance of the airfoil remains the
same with the assumed uncertainties. The input uncertainties, however, result in
possible variations of the output. A good indication for the variability of the output
is the coefficient of variation (COV ), defined as COV = σ/μ . The lift and drag
force show a variation of 12.59% and 10.39% respectively. The variation of the lift
and drag coefficients of 7.24% and 2.56% is smaller. These variations correspond
very well with expected variations based on the sensitivity analysis in section 3.1.

Fig. 6 shows the distributionfunctions of the lift and drag forces, which look similar
to the truncated normal input distribution. This indicates that the propagation is
almost linear, although some skewness is introduced. The mean values are the
most probable points and points away from the mean have less probability to occur.
The distributions of the lift and drag coefficients are shown in Fig. 7, which show
a similar picture. The drag coefficient has a small variation, all possible values fall
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Table 2: Statistics of the solution resulting from uncertain free stream velocity U ,
angle of attack α and airfoil camber c using a second order Probabilistic Colloca-
tion expansion.

Quantity Mean μ Standard Minimal Maximal Coefficient of
deviation σ value value variation (COV )

Lift force L [N] 3404.991 428.602 1923.069 5408.222 12.59%
Lift coefficient CL 0.5543 0.0401 0.402108 0.7043135 7.24%
Drag force D [N] 79.86150 8.29917 53.74992 113.9887 10.39%

Drag coefficient CD 0.013004 0.000333 0.012019 0.014354 2.56%

inside an interval of 24 counts. Whereas the interval of all possible values of the
lift coefficients covers about 300 counts, which is very large.
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Figure 6: Distribution functions of the lift and drag forces resulting from uncertain
U , α , and c using a second order Probabilistic Collocation approximation.

The variations in lift and drag are a direct consequence of variations in the pressure
and skinfriction on the surface of the airfoil. Fig. 8 shows the pressure distribution
on the surface of the airfoil. The dashed lines indicate the interval which contain
100% of all possible outcomes. The shading presents the probability of the solution,
dark blue means a high probability, white is no probability. First Fig. 8(a) shows
the relative pressure P/P0, where P0 is the free stream pressure. Secondly, Fig. 8(b)
shows the pressure coefficient CP = (P−P0)/( 1

2ρU2
0 ), which is much less affected

by the uncertain parameters. The figures show that a large contribution on the
uncertainty bounds of the relative pressure is due to the dynamic pressure.

Fig. 9(a) shows the skinfriction on the surface of the airfoil. The variation of the
skinfriction is much less than the variation of the pressure, this results in less vari-
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Figure 7: Distribution functions of the lift and drag coefficients resulting from un-
certain U , α , and c using a second order Probabilistic Collocation approximation.

ation in drag compared to lift. The skinfriction coefficient Cf = τw/( 1
2ρU2

0 ) on the
surface is shown in Fig. 9(b), which turns out to be insensitive to the input uncer-
tain parameters. As a result the drag coefficient shows a very low coefficient of
variation.

4 Conclusions

A Two-Step approach for efficient uncertainty quantification for computationally
intensive problems was presented. The approach starts with a sensitivity analysis
based on the scaled sensitivity derivatives of the output of interest with respect to
each uncertain parameter. The sensitivity derivative is computed using a first or
second order Probabilistic Collocation approximation. The sensitivity analysis is
used to identify the most important parameters. When the most important parame-
ters are identified, the probability distribution functions are propagated using higher
order Probabilistic Collocation approximations.

The Two-Step approach was applied to a NACA0012 airfoil with 8 uncertain pa-
rameters. The parameters were present in the boundary conditions and geometry
of the airfoil. Since a single RANS computation runs in the order of 10 CPU
hours on an AMD Opteron 2800 MHz processor, it is infeasible to propagated all
8 parameters for orders higher than one. A second order approximation requires
already 6561 deterministic computations. Therefore, the Two-Step framework has
been applied. The sensitivity analysis identified the importance of each parameter.
From the results the velocity U , angle of attack α , and camber c are found to be
most important for the output of interest, in this case the lift and drag forces and
coefficients of the airfoil. Result show the resulting distribution functions of the



210 Copyright © 2008 Tech Science Press CMES, vol.36, no.3, pp.193-212, 2008

(a) Relative pressure P/P0

(b) Pressure coefficient CP

Figure 8: Relative pressure P/P0 and
pressure coefficient CP on the surface
of the airfoil. The dashed lines (--) in-
dicate the interval that covers all pos-
sible outcomes. The shaded area indi-
cates the probability of the solution.

(a) Skinfriction τw

(b) Skinfriction coefficientCf

Figure 9: Skinfriction τw and skinfric-
tion coefficient Cf on the lower (--)
and upper (--) surface of the airfoil.
The dashed lines indicate the interval
that covers all possible outcomes. The
shaded area indicates the probability of
the solution.

lift and drag forces and coefficients. Furthermore, the effect of the uncertain input
parameters on the pressure and skinfriction on the surface of the airfoil are shown.
To obtain the final results a total of 44 deterministic computations were required,
17 for the sensitivity analysis and 27 for the second order Probabilistic Collocation
computations.
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