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Meshless Analysis of Ductile Failure

L. Li, S. Liu and H. Wang1

Abstract: We study ductile fracture using Reproducing Kernel Particle Interpo-
lation and the Gurson-Tvergaard-Needleman (GTN) model. The meshless sim-
ulations are compared with the available experimental results and previous finite
element simulations for crack propagation. The results agree well with experimen-
tal results, and it is confirmed that the proposed method provides a convenient and
yet accurate means for simulation of ductile fracture.
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1 Introduction

There is an enormous application potential for methods that are capable of pre-
dicting the onset and propagation of macroscopic cracks in structures undergoing
gross plastic deformations. Despite a substantial effort over the past decades, still
no method has been proposed which is fully satisfactory with regard to general ac-
curacy on the one hand and ease of use for the engineering society on the other
hand. One of the challenges in predicting fracture in structures is the significant
span of length scales. While the size of structures is in the order of a meter the
mechanics governing material separation under void growth and coalescence is on
a scale of several micro-meters.

Typically, finite element methods are used for such type of problems. However,
finite element methods are not well suited since in simulations of failure pro-
cesses, we need to model the propagation of cracks with arbitrary and complex
paths. Therefore, methods which can track the growth of extensive microcrack-
ing are required Belytschko and Tabbara (1996); Organ, Fleming, Terry, and Be-
lytschko (1996); Fleming, Chu, Moran, and Belytschko (1997); Liu, Hao, and Be-
lytschko (1999); Ventura, Xu, and Belytschko (2002); Rabczuk and Belytschko
(2004); Hao, Liu, Klein, and Rosakis (2004); Chandra and Shet (2004); Hao, Liu,
and Chang (2000); Maiti and Geubelle (2004); Rabczuk and Belytschko (2007).
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Meshless methods Atluri and Zhu (1998, 2000); Atluri and Shen (2002); Atluri
(2002); Han and Atluri (2003); Tang, Shen, and Atluri (2003); Liu, Han, Rajen-
dran, and Atluri (2006); Liu, Jun, and Zhang (1995a); Duarte and Oden (1996);
Melenk and Babuska (1996); Belytschko, Lu, and Gu (1994, 1995); Rabczuk and
Belytschko (2005); Idelsohn and Onate (2006); Hao and Liu (2006); Wu and Tao
(2007); Wen and Hon (2007) are so far the most suited methods for dealing with this
type of problems Rabczuk and Eibl (2003); Nishioka (2005); Guz, Menshykov, and
Zozulya (2007); Hagihara, Tsunori, and Ikeda (2007); Nishioka, Kobayashi, and
Fujimoto (2007); Guo and Nairn (2006a); Rabczuk and Areias (2006); Rabczuk,
Areias, and Belytschko (2007); Rabczuk, Belytschko, and Xiao (2004); Ma, Lu,
and Wang (2006); Gao, Liu, and Liu (2006a); Fujimoto and Nishioka (2006);
Rabczuk, PMA, and Belytschko (2007); Rabczuk and Belytschko (2006); Chen,
Gan, and Chen (2008); Zhang and Chen (2008); Guo and Nairn (2006b); Miers LS
(2006); Gao, Liu, and Liu (2006b); Xu, Dong, and Zhang (2008); Wen, Aliabadi,
and Lin (2008).

The basic idea is to resolve the continuum mechanics problem all the way to
the crack tip and introduce material separation whenever a damage measure has
reached a critical value. A very large number of constitutive models with evolving
damage have been proposed over the past few decades. The simplest of these meth-
ods can be called damage indicators. Those methods do not include any coupling
between the constitutive behavior and the material damage, except at the point of
fracture where the stress carrying capacity is removed instantaneously. A large part
of the methods falls in the category of damage mechanics, where a scalar or tensor
defines the degradation of material stiffness without referring this damage quan-
tity to the microstructure of the material. Finally, yet another category of methods
uses micro-mechanics to relate the developing microstructure of the material to the
macro-mechanical behavior of the material. The model applied in the present pa-
per is based on the idea that material fracture is governed by nucleation, growth
and coalescence of voids. The idea was originally proposed by Mc Clintock (1968)
and Rice and Tracey (1969). It was further developed by Gurson (1977) and sub-
sequently modified by Tvergaard (1981, 1982); Tvergaard and Needleman (1984).
Although the model has certain shortcomings–see the discussions by Pardoen and
Hutchinson (2000) and Roychowdhury, Roy, and Jr (2002) –it has also proved to
be able to predict the important phenomena of initiation, Besson, Steglich, and
Brocks (2001), and propagation Xia, Shih, and Hutchinson (1995); Kikuchi (2006).
Since the focus of the present paper is on the application of the meshless method
rather than on the material model, the Gurson-Tvergaard-Needleman (GTN) model
is used here without modifications.

The paper is outlined as follows: We first state the governing equation. Then, we
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develop the SPH formulation and apply the method to some problems. At the end,
we conclude our paper.

2 Governing Equations

The governing equations are the continuity equation, momentum equation and en-
ergy equation. The energy equation is is only needed for problems involving heat
transfer and related matters and is therefore not considered in our manuscript. For a
Lagrangian description, conservation of mass (continuity equation is not required)
can be written in an algebraic equation:

ρcJ = ρ0 (1)

where ρ0 and ρc are, respectively, the initial and current densities and J is the
determinant of the deformation gradient, J = det(F), F = dx

dX = I− du
dX where I

is the second order unity tensor and u denotes the displacement field. Hence, the
remaining equation is the momentum equation. In a Total Lagrangian description,
conservation of linear momentum can be written as

∇0 ·P+b = ρ0 ü ∈ Ω (2)

where b is the body force per unit volume, superimposed dots denote material time
derivatives and P is the first Piola-Kirchhoff stress tensor. The momentum equation
is complemented with displacement and traction boundary conditions given as

u = ū on Γ0u (3)

n0 ·P = t = t̄ on Γ0t (4)

where index t refers to “traction” and index u refers to “displacement”; n0 is the
normal to the traction boundary.

3 Reproducing Kernel Particle Interpolation

We employ the reproducing kernel particle (RKP) interpolation Liu, Jun, and Zhang
(1995b) for the meshless approximation of the dependent variables in PDEs. The
problem domain Ω is first discretized into a set of particles (x1,x2, ...,xN), where xI

is the location of node I and N denotes the total number of particles. The unknown
variable u(x, t) of a PDE is approximated by

uh(x, t) =
N

∑
I=1

NI(x)uI(t) (5)
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where uh(x, t) is the approximation of u(x, t), NI(x) are the RKP shape function
and uI(t) are the nodal parameters. In RKP interpolation, the shape function NI(x)
has the form

NI(x) = c(x,x−xI)Ψa(x−xI) (6)

where c(x,x−xI) is the correction function expressed as a linear combination of
an n-th order monomial basis:

c(x,x−xI) = HT (x−xI)b(x) (7)

with HT (x−xI) containing the basis functions

HT (x−xI) = (1 x−xI y−yI . . . (y−YI)n) (8)

In Eq. (6), Ψa(x− xI) is a weighting function that defines the smoothness and
locality of the approximation with a compact support measured by h. A commonly
used kernel function is the cubic spline function:

Ψa(s) =

⎧⎨
⎩

2
3 −4s2 +4s3 0 ≤ s ≤ 1

2
4
3 −4s+4s2 − 4

3 s3 1
2 ≤ s ≤ 1

0 s > 1
(9)

with s = x−xI
h . The coefficient vector b(x) in Eq. (7) is obtained by satisfying the

following n-th order reproducing conditions:

xkyl =
N

∑
I=1

NI(x)xk
I y

l
I (10)

where k + l = 0,1,2, ...,n. The solution for coefficient vector b(x) is obtained by
substituting Eq. (6) into Eq. (10) yielding:

M(x)b(x) = H(0) (11)

M(x) =
N

∑
I=1

H(x−xI)HT (x−xI)ΨaI(x−xI) (12)

Upon solving for b(x) = M−1(x)H(0), the RKP shape functions take the form:

NI(x) = HT (0)M1(x)H(x−xI)Ψa(x−xI) (13)
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4 Discretization

The weak form of the linear momentum equation is: Find u ∈U and δu ∈U0 such
that

δW = δWint −δWext +δWkin = 0 (14)

with

δWint =
∫

Ω0

∇0δu : P dΩ0

δWext =
∫

Γ0t

δu · t̄0 dΓ0 +
∫

Ω0

δu ·b dΩ0

δWkin =
∫

Ω0

ρ0δu · ü dΩ0 (15)

with the approximation spaces U and U0 for the trial and test functions, respec-
tively,

U =
{

u|u ∈ H1, u = ū on Γu
}

U0 =
{

δu|δu ∈ H1, δu = 0 on Γu
}

(16)

Introducing the test and trial functions into the weak formulation yields

n

∑
I=1

δuI

{
n

∑
J=1

−
∫

Ω0

∇0NIP dΩ0 +
∫

Ω0

NIb dΩ0 +
∫

Γ0t

NI t̄0 dΓ0

+
∫

Ω0

ρ0NINJu dΩ0

}
= 0 (17)

For each particle I, the following identity must hold

n

∑
J=1

∫
Ω0

∇0NIP dΩ0 =
∫

Ω0

NIb dΩ0 +
∫

Γ0t

NI t̄0 dΓ0 +
∫

Ω0

ρ0NINJu dΩ0 = 0 (18)

Rewriting these equations in matrix form gives the final system of equations:

MIJüJ = −fext
I + fint

I (19)

with

MIJ =
∫

Ω0

ρNI NT
J dΩ0
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fext
I =

∫
Γ0t

NT
I t̄0dΓ0 +

∫
Ω0

NT
I bdΩ0 (20)

fint
I =

∫
Ω0

∇0NT
I PdΩ0 (21)

Figure 1: Voronoi cell diagram

The most efficient way to evaluate the integrals is nodal integration that results in
a truly meshless method. In nodal integration, the particles are used as quadrature
points and the associated integration weights are their tributary volumes obtained
usually from Voronoi diagram, figure 1:

MIJ =
n

∑
K=1

ρKNINJVK (22)

fext
I =

n

∑
K=1

NT
I bKVK +

n

∑
K=1

NT
I t̄K0AK (23)

fint
I =

n

∑
K=1

∇0NT
I PKVK (24)

Since nodal integration leads to numerical instabilitydue to numerical under-integration,
several techniques have been developed Chen, Wu, Yoon, and You (2001); You,
Chen, and Voth (2002). We employ stress-point integration and add additional
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quadrature points to the nodes Randles and Libersky (2000). More detailed can be
found e.g. in Randles and Libersky (2000).

Crack propagation is modeled by visibility method Belytschko, Lu, and Gu (1995).
Therefore, discontinuities are introduced in the shape functions. The crack is de-
scribed as line segments connected to each other. They can be inserted arbitrarily.
An initial crack is propagated once the damage has reached a critical value ahead
of the crack tip. Then, the crack line is extended in the direction of this particle.
For sake of simplicity, we control the crack size of the crack advance vector and
assume constant crack length when crack propagates.

5 Constitutive model

The Gurson-Tvergaard-Needleman (GTN) model is based on additive split of the
rate-of-deformation tensor D = Del + Dpl . The Jaumann rate of the Cauchy stress
tensor σ is used in the present formulation:

σ∇ = C : Del = C :
(

D−Dpl
)

= σ el −C : Dpl (25)

where C is the first order elasticity tensor. Objective trial stress is calculated making
use of Hughes and Winget (1980) formula

σ el
n+1 = Q σn QT +Δt C∇ : D (26)

with Q = I +(I−αW)−1 W where I is the second order identity matrix, W is the
antisymmetric part of the velocity gradient and the parameter α = 0.5. Note that
the global integration scheme assumes constant first-order derivatives throughout
the time step, which is consistent with the above assumption of constant values of
Q and W during the time step. An interesting paper on objectivity of incremental
constitutive formulations is discussed in detail in Rubenstein and Atluri (1983).
The stress tensor can be decomposed into

σ = p I+
2
3

σeq m (27)

with

p =
1
3

σ : I (28)

σdev = σ − pI (29)

σeq =
(

3
2

σdev : σdev

)1/2

(30)

m =
3

2σeq
σdev (31)
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where p denotes the hydrostatic stress and the index dev and eq denote deviatoric
and equivalent stresses, respectively. The inelastic behavior of the material is de-
scribed by a plasticity model which includes void growth caused by hydrostatic
tension. The basic idea is that the state of the material damage is described by the
current void volume fraction f , i.e. the volume of voids to the total element vol-
ume in a representative volume element. The material between the voids, i.e. at the
microscopic level, is assumed to follow a general, isotropic material hardening law
fh(ε̄pl) where ε̄pl is the microscopic plastic strain that is described by a power law

σ̄0 = fh(ε̄pl) = σy

(
1− E

σy
ε̄pl

)N

(32)

where σy is the initial yield stress. The evolution of ε̄pl is obtained from the physical
condition that plastic work of the macroscopic stresses and strains should be equal
to the energy dissipated in plastic deformations at micro-level

(1− f )σ̄0 ˙̄εpl = σ : Dpl (33)

which yields

˙̄εpl =
σ : Dpl

(1− f )σ̄0
(34)

At the macroscopic level, the yield function is given as

φ =
(

σeq

σ̄0

)2

+2a1 f ∗( f ) cosh

(
3a2 p
2σ̄0

)
−(1+a2

1 f ∗( f )2) (35)

where a1 and a2 are material parameters. When f = 0, the Gurson model obviously
reduces to J2 plasticity. The function f ∗( f ) accounts for rapid void coalescence at
failure and is given as

f ∗( f ) =

⎧⎪⎨
⎪⎩

f f ≤ fc

fc + 1/a1− fc
f f− fc

( f − fc) fc < f ≤ f f
1
a1

f > f f

(36)

The void volume grows partly due to the expansion of existing voids and partly due
to the nucleation of new voids:

ḟ = ḟgrowth + ḟnucleation (37)

For incompressible material, the growth rate is

ḟgrowth = (1− f )Dpl : I (38)
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and the nucleation rate is described by the empirical relationship

ḟnucleation = AN ˙̄εpl (39)

where we used the formulation by Chu and Needleman (1980)

AN(ε̄pl) =
fN

sN
√

2π
exp

(
−0.5

[
ε̄pl −εN

sN

]2
)

(40)

with fN being the volume fraction of void nucleating particles. As discussed e.g.
by Tvergaard (1990); Roy and Jr (2002), the macroscopic material behavior during
void initiation, growth and coalescence may exhibit a sensitivity to the shape and
distribution of voids which cannot be captured by the void volume fraction alone.
Even if the predicted value of f may not correspond to the measured value, several
studies have shown that the model has excellent capacity to predict macroscopic
behavior, i.e. crack length, applied loads, etc. Besson, Steglich, and Brocks (2001);
Xia, Shih, and Hutchinson (1995); Xia and Shih (95a,b). From equation (35), it is
seen that as the void volume fraction f grows towards f f and f ∗( f ) approaches
1/a1, the yield surface for the macroscopic stresses shrinks towards a point. To
attain numerical stability the present procedure assumes full material damage, i.e.
σ = 0, when f = k f f f where 0.5 < k f < 0.9, as discussed later. The flow rule gives

Dpl = λ̇
∂φ
∂σ

= λ̇
(

∂φ
3∂ p

I+
∂φ

∂σeq
Im
)

(41)

Defining

Dp = λ̇
(

∂φ
3∂ p

)
, Deq =

(
∂φ

∂σeq
I
)

(42)

the flow rule finally writes

Dpl =
1
3

Dp I+Deqm (43)

Elimination of λ̇ in equation (42) gives

Dp
∂φ

∂σeq
+Deq

∂φ
∂ p

= 0 (44)

By inserting equation (43) back into equation (26) and integrating from tn to tn+1,
one can show that the relaxation from the trial stress is given by

σn+1 = σel −K Δt Dp I−2G Δt Deq mn+1 (45)
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The mean and equivalent components of this equation are

σm = σ el
m −K Δt Dp , σeq = σ el

m −3G Δt Deq (46)

The underlying assumption of constant values of Dp and Deq during the time step
is consistent with the global, explicit integration method. Obviously, the return in
deviatoric stress space is along mn+1 which can be determined from the trial stress
tensor:

mn+1 =
3

2σ el
eq

σ el
dev (47)

The fact that mn+1 is determined by the elastic trial stress tensor simplifies the
analysis significantly because the stress tensor at tn+1 is then determined by only
two unknowns, (Dp,Deq), instead of all six components of the stress tensor. For the
constitutive update, we proceed as follows: Consider the two internal variables, the
effective plastic strain and the void volume fraction. The time derivatives of these
internal variables are given by equations (34) and (35):

∂ ε̄ pl

∂ t
=

pDp +σeqDeq

σ0(1− f )
(48)

∂ f
∂ t

= (1− f )Dp +AN
∂ ε̄ pl

∂ t
(49)

Integration in time is then simply given by

ε̄ pl
n+1 = ε̄ pl

n +Δt
∂ ε̄ pl

∂ t
(50)

fn+1 = fn +Δt
∂ f
∂ t

(51)

In order to determine the values of Dp and Deq which satisfy the yield function and
the flow rule at tn+1 an iterative Newton method is used. Equations 35 and 44 to be
solved are denoted by g1 and g2, respectively:

g1(Dp,Deq) = φ (Dp,Deq) = 0

g2(Dp,Deq) = Dp
∂φ

∂σeq
+Deq

∂φ
∂ p

= 0 (52)

where the index ’n + 1’ is dropped for simplicity. The roots (Dp,Deq) are deter-
mined in a predictor-corrector iteration by improving the initial, predicted estimate,
(Dk

p,Dk
eq)

Dk+1
eq = Dk

eq +ΔDk
m

Dk+1
p = Dk

p +ΔDk
p (53)
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where k is an iteration counter. The correction (ΔDk
p,ΔDk

eq) is found by a first-
order Taylor expansion of g1 and g2 and solution of the resulting linearized set of
equations:

gk+1
1 = gk

1 +
∂gk

1

∂Dp
ΔDk

p +
∂gk

1

∂Deq
ΔDk

eq = 0

gk+1
2 = gk

2 +
∂gk

2

∂Dp
ΔDk

p +
∂gk

2

∂Deq
ΔDk

eq = 0 (54)

where the notion gk
i = gi(Dk

p,Dk
eq) is employed.

6 Results

100mm

50mm

30mm

thickness 25.4mm

10mm 10mm200mm

Figure 2: Three-point beam in bending

We consider the three-point test in bending. Experimental data is well documented
Joyce and Hacket (1994); Joyce and Link (1994). There is also computational data
Xia and Shih (95a), who employed the finite element method, pre-defined the crack
path. Therefore, the crack is to be within a row of the so-called “computational
cells”, each with a constitutive behavior according to the GTN model. They choose
a side length of the computational cells of 0.2mm and adjusted the material param-
eters of the GTN model to give a good prediction of the loads and crack growth in
the TPB specimen.

We will use the same material parameters and the same particle spacing in our
paper (as compared to Xia and Shih (95a)) but will also test coarser ’meshes’ to
demonstrate the capability of our method. Note that the crack path is not aligned in
our simulation but can grow arbitrarily. This advantage can be better exploited for
more complex phenomena. However, the purpose of our paper is to demonstrate
the applicability of our approach to ductile fracture. The test-setup is illustrated in
figure 2. The material parameters are: Young’s modulus E = 300GPa, Poisson’s
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ratio ν = 0.3, initial yield stress σy = 400MPa, hardening exponent N = 10, initial
void volume ratio f = 0.005, void volume at coalescence fc = 0.021, void volume
at total failure f f = 0.2109, parameters a1 = 1.5 and a2 = 1.0 and void nucleation
parameter fN = 0.

Symmetry conditions are not enforced, in order to allow the crack to move away
from the symmetry line. We present results starting from around 80,000 (0.4mm
particle spacing) particles up to more than 160,000 particles (0.2mm particle spac-
ing):

• 0.2mm

• 0.3mm

• 0.4mm

In these simulations, a uniform particle spacing is used. We tested also discretiza-
tions with finer particle densities around the crack tip (from 0.4mm up to 0.1mm)
and gradually coarsened the mesh. These simulations gave very similar results to
the ones with uniform particle spacing. Note that the number of particle increases
slightly during crack propagation when the crack propagates.

The essential boundary conditions are enforced by point collocation Gunther and
Liu (1998). At the supports, displacement boundary conditions were enforced for
only two particles (similar to Xia and Shih (95a)) and the essential boundary condi-
tions at the loading point are prescribed over a length of approximately 2mm. This
assures global bending mode of the beam rather than just a local indentation at the
loading point. The displacement of the loading point is increased at a sufficiently
low and smooth rate to ensure that dynamic effects do not dominate the response.

(a) (b)

(c)

Figure 3: Displaced configuration of Three-point bending beam
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Figure 3 shows sequences of the global bending of the beam together. Obviously,
the load does introduce some local indentation but the figures also illustrate that
the global bending is dominant, as it should be. Figure 4 shows a comparison
between the present predictions and the experiments. We firstly note that the results
are independent of mesh refinement. A particle spacing of 0.4mm is sufficient.
Secondly, the agreement between experiment and numerical simulation is good and
similar to the one obtained in Xia and Shih (95a). As the purpose of the paper is
to demonstrate that our method can be used to predict ductile fracture, no attempts
have been made here at carefully adjusting material- and numerical parameters to
make a perfect fit to experiments. Figure 4b shows the predicted increase in crack
length as a function of the displacement of the loading point. The experimental
results presented by Joyce and Hacket (1994); Joyce and Link (1994) also showed
a crack length of approximately 5mm when the displacement was 6.5mm, i.e. a
result very close to the prediction shown in Figure 4b.
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Figure 4: a) Load displacement curve; b) Crack length displacement curve

7 Conclusions

We presented meshless method for prediction of ductile fracture under plane strain
conditions. The Gurson-Tvergaard-Needleman model is adopted as the constitutive
model. Crack propagation is modelled by the so-called visibility method. The
visibility method modifies shape function in vicinity of the crack such that the
displacement field becomes discontinuous.

We presented ductile fracture in a three-point bending beam with available exper-
imental data Joyce and Hacket (1994); Joyce and Link (1994) that was tested by
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other numerical method Xia and Shih (95a). Our computational results show that
the proposed method seems to work well ductile crack propagation. Our results
are in good agreement with the previously published experimental and numerical
results. The next steps will be to develop this methodology for several propagating
cracks and for crack nucleation. Crack nucleation is typically distinguished from
crack propagation in meshfree method. Moreover, we intend to use novel tech-
niques of modeling the crack through enrichment as e.g. suggested by Rabczuk
and Zi (2007). Finally, the method will be extended to 3D.

It is thus believed that the proposed methodology could be further developed to
become an accurate and practical procedure for modeling of ductile crack propaga-
tion.
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