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Integral Method for Contact Problem of Bonded Plane
Material with Arbitrary Cracks

Yueting Zhou1, Xing Li2 and Dehao Yu1

Abstract: A problem for bonded plane material with a set of curvilinear cracks,
which is under the action of a rigid punch with the foundation of convex shape, has
been considered in this paper. Kolosov-Muskhelishvili complex potentials are con-
structed as integral representations with the Cauchy kernels with respect to deriva-
tives of displacement discontinuities along the crack contours and pressure under
the punch. The contact of crack faces is considered. The considered problem has
been transformed to a system of complex Cauchy type singular integral equations
of first and second kind. The presented approach allows to consider various con-
figurations of cracks and the punch foundation. Numerical results for the bonded
plane material with a vertical crack or a horizontal crack under the frictionless flat
punch are obtained.

Keyword: Cracks, contact, rigid punch, singular integral equation, numerical so-
lution.

1 Introduction

The problem of contact interaction (contact problem) as one of the most popular
means of transmitting external forces is important for both fundament develop-
ments on solid mechanics and various branches of modern engineering. Typical
contact problem such as the contact between running pulley and rollay, gear outer
ring and bearing box in bearing systems, gears and connecting elements, frictional
contact between wheel and rail in the rolling process, the contact interaction be-
tween different rock formations and the coupling contact between structure and
soil ground in the rock-soil engineering, are well known [Christensen, Klarbring,
and Pang (1998); Liu, Liu, L., and Mahadevan (2007); Keppas, Giannopoulos, and
Anifantis (2008); Zhang, He, and Li (2008)].
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During the contact of the units of machines and structures, dynamic cracks [Maiti
and Geubelle (2004); Nishioka (2005); Gao, Liu, and Liu, Y. (2006); Guo and
Nairn (2006); Liu, Han, Rajendran, and Atluri (2006); Rabczuk and Areias (2006);
Rabczuk and Belytschko (2006, 2007); Song, Areias, and Belytschko (2006); Le,
Mai-Duy, and Tran-Cong (2008); Xu, Dong, and Zhang (2008); Zhang and Chen
(2008)] and static cracks [Shah, Tan, and Wang (2006); Rabczuk and Zi (2007);
Zi, Rabczuk, and Wall (2007); Ma, Levy, and Perl (2008)] often arise and propa-
gate in the contact zones. These cracks cause the loss of the units serviceability.
Thus, it is important for engineering practice to study the fracture of elastic [Miers
and Telles (2006)], gradient elasticity [Karlis, Tsinopoulos, Polyzos, and Beskos
(2008)], elastic-plastic [Hagihara, Tsunori, Ikeda, and Miyazaki (2007); Long, Liu,
and Li (2008)], elasto visco-plastic [Fujimoto and Nishioka (2006)], piezoelectric
solids [Ozaki, Hashiguchi, Okayasu, and Chen (2007); Sanz, Solis, and Dominguez
(2007); Sladek, Sladek, V. and Zhang (2007)], nonhomogeneous material [Sladek,
Sladek, V. and Krivacek (2005); Liu, Long, and Li (2008); Wen, Aliabadi, and
Liu (2008)], shell structure [Gato and Shie (2008) ] and nonlinear elastic-plastic
material [Nishioka, Kobayashi, and Fujimoto (2007)].

To approximate the contact interaction between rigid punches and a vertical crack,
the method generally used is the dual integral equation method. For example,
[Tonoyan and Melkumian (1973) and Tonoyan and Minasian (1976)] have used
this method to study the contact problem of indentation of two rigid punches into
an elastic half-plane with a vertical semi-infinite crack and a infinite crack, respec-
tively. In their study, the initial problem was reduced to Fredholm integral equations
of the second kind finally. On the other hand, some researchers use the conformal
mapping method to investigate rigid punches and an inclined crack. For example,
Qian and Hasebe (1997) have used this method to study contact problem of inden-
tation of circular rigid punch into a semi-infinite plane with an oblique edge crack
subjected to concentrated forces or point dislocations. The above work neglects the
contact of crack faces.

When a crack is loaded, there have a contact interval (or intervals) between the
crack faces. Ioakimidis (1982) investigated the classical problem of a finite single
straight crack inside an infinite isotropic elastic plane under a polynomial normal
loading distribution along both crack faces. He derived a quantifier-free formula of
general validity concerning the conditions for contact/lack of contact [Ioakimidis
(1997)] of the crack faces along the whole crack in terms of the loading parameters,
taking into consideration that the crack opening displacement should satisfy the
physically posed inequality constraint that it must be a continuously positive quan-
tity (in the popular case of no contact). Contact problems along circular-arc-shaped
cracks were also investigated [Toya (1974); Chao and Laws (1992); Chao and Rau
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(1995)], where the phenomenon of contact along the crack under appropriate ten-
sile loadings at infinity only becomes completely clear. Panasyuk, Datsyshyn, and
Marchenko (2000) investigated contact problem for an elastic half-plane with edge
or a set of curvilinear internal cracks under action of a rigid punch. In their study,
it is assumed the crack faces are under conditions of either stick or smooth con-
tact on contact parts. The problems of the crack edges contact interaction in 2-D
and 3-D elastodynamics, with consideration for the contact interaction of the crack
faces have been investigated in Guz and Zozulya (2002); Guz, Menshykov, and
Zozulya (2003); Guz, Zozulya, and Menshikov (2004); Menshykov and Guz, I
(2006, 2007); Guz, Menshykov, Zozulya, and Guz, I (2007); Guz and Zozulya
(2007). The aforementioned studies were limited to the contact problems of a sin-
gle isotropic infinite plane(space) or a single isotropic half-plane(half-space).

For contact problem of composite laminated plates, one of the most widely used
laws is that proposed by Yang and Sun (1982). In their work, it is assumed that
the contact pressure and contact area could be obtained from the usual formulas
for isotropic materials, but with the isotropic modulus of elasticity replaced by the
orthotropic modulus in the loading direction. Cairns and Lagace (1987) studied
the thick composite laminates subjected to lateral loading by the stress function
proposed by Leknitskii (1963). Wu and Yen (1994) and Chao and Tu (1999) used
Pagano’s solution as a Green’s function approximating the static indentation of a
cross-ply laminate to the contact force exerted by a rigid sphere. Recently, Chen,
Xiong, and Shen (2008) proposed a modified Hertz contact law for the contact
problem of a laminated plate indented by a rigid sphere. They analyzed the effects
of the thickness, in-plane dimensions and boundary conditions of the plate. To the
authors’ knowledge contact problem for the composite bonded plane material with
rectilinear arbitrary cracks under rigid punch action has not been studied yet.

In this paper, the singular integral equation method [Panasyuk, Savruk, and Dat-
syshyn (1976, 1977); Savruk (1981); Panasyuk, Datsyshyn, and Marchenko (1995,
2000)] is used to solve the contact problem for the bonded plane material with
rectilinear arbitrary cracks under rigid punch action with the foundation of convex
shape. Kolosov-Muskhelishvili complex potentials are constructed as integral rep-
resentations with the Cauchy kernels with respect to derivatives of displacement
discontinuities along the crack contours and pressure under the punch. As a re-
sult, the considered problem is reduced to a system of singular integral equations
of first and second kind. An algorithm which is based on using the method of me-
chanical quadratures and an iterative procedure has been applied to find solution
of these equations. The presented approach allows to consider various configura-
tions of cracks and the punch foundation and also general conditions of interaction
between the crack faces and between the punch and the bonded plane material. Be-
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sides, this approach allows to find effective numerical solution of obtained singular
integral equation. Numerical results for bonded plane material with a vertical crack
or a horizontal crack under the frictionless flat punch are obtained.

Figure 1: General scheme of the problem

2 Problem statement

Consider a problem of indention of a punch with convex foundation into an elastic
strip bonded to a half-plane with cracks along the entire real axis Ox (Figure 1).
The elastic constants of the strip and half-plane are κ1,μ1 and κ2,μ2 respectively.
The contact area is γ0. The positive direction of γ0 is from t1 to t2. There are N
cracks of arbitrary shapes in the half-plane, and these cracks are smooth and non-
intersecting segment Lk(k = 1, · · · ,N), the positive direction of Lk is from ak to bk.
The bonded plane material is related to the system of coordinates xOy, while the
cracks related to local systems xnOnyn, connected with basic system xOy by the
relation z = zneiαn + z0

n (z = x + i · y, zn = xn + i · yn), z0
n is the affix of the point On

in the basic system of coordinates, αn is the angle of the Onxn-axis with Ox.

There are three kinds of loadings act on the punch, (i) a vertical force P with ab-
scissa of the application point t0, (ii) a horizontal force Q, (iii) a moment M. The
boundary of bonded material is free outside the contact area γ0. Due to the ex-
ternal loading, the punch is displaced transitionally in the direction parallel to the
Oy-axis with simultaneous rotation through a certain small angle ε . Between the
punch and the bonded plane material, frictional forces arise by the Coulomb fric-
tion; Q = ρP, where ρ is the coefficient of friction. The punch fulfills following
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equilibrium conditions∫
γ0

p0(ζ )dζ = −(P+ iQ) (1)

∫
γ0

(ζ − t0)p0(ζ )dζ = −M (2)

Here, p0 (ζ ) = −(1+ iρ)p(ζ ), p(ζ ) is the unknown pressure under the punch.

Due to the punch indentation, the contact of crack faces may take place in com-
pression zone. Thus, contact stress propagates. Outside the contact parts the crack
faces are unstressed. We will limit our investigation to two limiting cases: (i) stick
contact of the crack faces, (ii) smooth contact of the crack faces.

Let a∗nrb
∗
nr(r = 1, · · · ,Rn) denotes the rth no contact zone on the nth crack. Thus ,

the whole no contact zones on the nth crack can be denoted by

L∗
n =

Rn⋃
r=1

a∗nrb
∗
nr (n = 1, · · ·N, r = 1, · · · ,Rn) (3)

In addition, the points a∗nr,b∗nr at r = 1 and r = Rn may coincide with crack tips
an,bn. Obviously, for any open crack, L∗

n = Ln.

Generally speaking, the borders of the contact parts between the crack faces and be-
tween the punch foundation and the bonded plane material boundary are unknown
beforehand and can be found from additional equations. The borders of the contact
parts of the cracks can be found from following equations

KIn(tnr) = 0, tnr = a∗nr,b∗nr, r = 1, · · · ,Rn, a∗nr �= an, b∗nr �= bn (4)

where KIn denotes the Model I stress intensity factor for the nth crack. Employing
the condition that the contact pressure, p(t) = −σy(t)(p(t)≥ 0, t ∈ γ0 for physical
sense ), at the edge points t1 and t2of this area is equal to zero, i.e.

p(t1) = 0, p(t2) = 0 (5)

the unknown width of the contact area between the punch foundation and the
bonded plane material boundary can be determined.

The boundary conditions of the bonded plane material are following

dv(t)
dt

= f ′(t)+ε , τxy(t) = −ρσy(t), t ∈ γ0 (6)

σy(t)+ iτxy(t) = 0, t /∈ γ0 (7)
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where u and v denote displacements on the Ox- and Oy-axes within the basic coor-
dinate system, respectively. The punch foundation contour is described by smooth
function f (t).

Kolosov-Muskhelishvili complex potentials of the stated problem can be repre-
sented as function sums [Panasyuk, Datsyshyn, and Marchenko (2000)]

Φ0(z) = Φ1(z)+Φ2(z) Ψ0(z) = Ψ1(z)+Ψ2(z) (8)

The functions Φ1(z) and Ψ1(z) describe the stress state of the uncracked bonded
plane material with boundary loaded by the contact stress p0(t).

The functions Φ2(z) and Ψ2(z) define the bonded plane material stress state due to
displacement discontinuities along the crack contours Ln(n = 1, · · · ,N).

The boundary conditions have to satisfy along the interface (x-axes) of the bonded
plane material are the continuity of the normal and shear stress components, as
well as continuity of displacements, which can be written as [Ioakimidis, Theocaris
(1979)]

Φ+
i (x)+Φ+

i (x)+xΦ
′+
i (x)+Ψ+

i (x) = Φ−
i (x)+Φ−

i (x)+xΦ
′−
i (x)+Ψ−

i (x) (9)

1
μ1

[
Φ+

i (x)−κ1Φ+
i (x)+xΦ

′+
i (x)+Ψ+

i (x)
]

=
1
μ2

[
Φ−

i (x)−κ2Φ−
i (x)+xΦ

′−
i (x)+Ψ−

i (x)
]

(10)

where i =0,1,2, x denotes the points of x-axes, μ is the shear modulus, κ = 3−4ν
for plane strain, κ = 3−ν

1+ν for plane stress, and ν is Poisson’s ratio.

These functions are represented as follows:

Φ1 (z) =

⎧⎨
⎩
−1−A

2πi

∫
γ0

p0(ζ)
ζ−z dζ , 0 < Imz ≤ b

− 1
2πi

∫
γ0

p0(ζ)
ζ−z dζ + A·b

π
∫

γ0

p0(ζ)
(ζ−z)2

dζ , Imz < 0
(11)

Ψ1 (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0
2π i

∫
γ0

p0(ζ)
ζ−z

dζ + 1−A
2πi

∫
γ0

ζ p0(ζ)
(ζ−z)2 dζ , 0 < Imz ≤ b

1
2π i

∫
γ0

ζ p0(ζ)
(ζ−z)2 dζ

+ 1
2πi

∫
γ0

[
A0

ζ−z
− A

ζ−z
− 2·A·i·b·(ζ+z)

(ζ−z)3

]
p0(ζ )dζ , Imz < 0

(12)

Φ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
A1{Lk}g′k(τk) 0 < Imz ≤ b

N
∑

k=1
A2{Lk}g′k(τk) Imz < 0

(13)
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Ψ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
B1 {Lk}g′k(τk) 0 < Imz ≤ b

N
∑

k=1
B2 {Lk}g′k(τk) Imz < 0

(14)

g′k(τk) =
2μ2

i(1+κ2)
d

dτk
[u+

k (τk)−u−k (τk)+ i(u+
k (τk)−u−k (τk))] (15)

where bi-material constants A,A0, the operators A1{Lk},A2{Lk},B1{Lk},B2{Lk}
are given in Appendix.

The functions Φ1,2(z) and Ψ1,2(z) satisfy the boundary conditions Eqs. (9) and (10)
identically. Thus, Φ0(z) and Ψ0(z) satisfy boundary conditions Eqs. (9) and (10)
identically, also.

Singular integral equations for each case between interactions of the crack faces
will be constructed.

3 Stick of the crack faces in contact

The boundary conditions on the crack faces in case of stick are as follows:

N±
n (tn)+ iT±

n (tn) = 0, tn ∈ L∗
n, n = 1, · · · ,N (16)

T±
n (tn) = 0, v+

v (tn)−v−v (tn) = 0, tn ∈ Ln\L∗
n, n = 1, · · · ,N (17)

N+
n (tn)−N−

n (tn) = 0, tn ∈ Ln\L∗
n, n = 1, · · · ,N (18)

Here, Nn and Tn are the normal and tangential stresses on the nth crack faces on the
Onxn- and Onyn-axes in the local coordinate system xnOnyn, vν the normal com-
ponent of displacements of the crack faces. The superscripts (+) or (-) denote the
boundary values of quantities when approaching the crack contours from left or
from the right. Note that the positive direction of the tangential traction Tn coin-
cides with that of tracing the region boundary when the region stays all the time on
the left [Muskhelishvili (1975)].

In accordance with the boundary condition (17), the functions (13), (14) can be
rewritten as

Φ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
A1
{

L∗
k

}
g′k(τk) 0 < Imz ≤ b

N
∑

k=1
A2
{

L∗
k

}
g′k(τk) Imz < 0

(19)

Ψ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
B1
{

L∗
k

}
g′k(τk) 0 < Imz ≤ b

N
∑

k=1
B2
{

L∗
k

}
g′k(τk) Imz < 0

(20)
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The stress distribution along the nth crack faces takes the form [Muskhelishvili
(1975)]

2ReΦ±
0 (T ′

n)+
dT ′

n

dT ′
n
[T ′

nΦ′±
0 (T ′

n)+Ψ±
0 (T ′

n)] = N±
n

(
T ′

n

)
+ iT±

n

(
T ′

n

)
, T ′

n ∈ Ln (21)

Define

Nn + iTn =
1
2

[
N+

n +N−
n + i(T +

n +T−
n )
]

(22)

Substituting complex potentials (11), (12), (19) and (20) into Eq. (21), resulting

Nn(tn)+ iTn(tn) =
1
π

[Ωn(tn)−Pn(tn)], tn ∈ Ln (23)

where

T ′
n = tneiαn + z0

n (24)

Ωn(tn) =
N

∑
k=1

Dn{Lk}g′k(τk) (25)

Dn{Lk}ψk(τk) =
∫

Lk

[Rnk(τk, tn)ψk(τk)dτk +Snk(τk, tn)ψk(τk)dτ̄k] (26)

Pn(tn) =
∫

γ0

(−K31 (ζ , tn)+K32 (ζ , tn))p(ζ )dζ (27)

where the operator Rnk(τk, tn),Snk(τk, tn), K31 (ζ , tn) and K32 (ζ , tn) are given in Ap-
pendix.

Considering boundary conditions (16) in view of Eq. (23), we obtain a system of
N singular integral equations of the first kind

Ωn(tn)−Pn(tn) = 0, tn ∈ L∗
n,n = 1, · · · ,N (28)

for the functions g′n(tn) on the open parts a∗nr,b∗nr(n = 1, · · ·N, r = 1, · · · ,Rn) of the
crack and the pressure p(t). Here,

Ωn(tn) =
N

∑
k=1

Dn{L∗
k}g′k(τk) (29)

With respect to t, we write derivative of complex combination of displacements on
the bonded plane material edge as [Muskhelishvili (1975)]

2μ1[
du(t)

dt
+ i

dv(t)
dt

] = κ1Φ−
0 (t)−Φ−

0 (t)− [tΦ′−
0 (t)+Ψ−

0 (t)] (30)
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Now, substituting the complex potentials (11), (12), (19), (20) into Eq. (30), we
obtain the right hand part of Eq. (30)

2μ1[
du(t)

dt
+ i

dv(t)
dt

] =
k1 +1

2
(1−A)p0(t)+

1
2π

W1(t)+
i

2π
W2(t) (31)

where

W1(t) =
N

∑
k=1

u{L∗
k}g′k(τk) (32)

W2 (t), u{Lk} are given in Appendix.

Considering the first of the boundary conditions (6), we obtain a singular integral
equation of the second kind

ImW1(t)+ReW2(t)−π · k1 · (1−A) ·ρ · p(t) = 4πμ1[ f ′(t)+ε ], t ∈ r0 (33)

To complete the system of equations (28), (31) , it is necessary to add the displace-
ment continuity conditions at the ends of the open parts∫

a∗nrb∗nr

g′n(τn)dτn = 0, n = 1, · · · ,N, r = 1, · · · ,Rn (34)

and the conditions of punch equilibrium conditions (1), (2).

The singular integral equations (28), (31) and conditions (1), (2), (34) allow to find
the unknown functions g′n(τn) (n = 1, · · · ,N), p(t) and ε .

On the basis of the obtained solution considering Eqs. (17) and (23), we can obtain
a formulae to determine contact stresses on the contact parts of the crack faces as

Nn(tn)+ iTn(tn) =
1
π

[Ωn(tn)−Pn(tn)], tn ∈ LN/L∗
N (35)

Using the solution of the singular integral equations constructed, we can calculate
the stress intensity factors (SIF) at the crack tips and at the points where the crack
faces begin to contact by

KIn(tnr)− iKIIn(tnr) = ∓ lim
tn→tnr

[√
2π (tn − tnr)g′n(τn)

]
tnr = a∗nrb

∗
nr,

n = 1, · · · ,N, r = 1, · · · ,Rn (36)

The upper sign (-) conforms to the points a∗nr, while the lower sign (+) conforms to
the points b∗nr.



156 Copyright © 2008 Tech Science Press CMES, vol.36, no.2, pp.147-172, 2008

4 Smooth of the crack faces in contact

The boundary conditions on the crack faces in case of smooth are as follows:

N±
n (tn)+ iT±

n (tn) = 0, tn ∈ L∗
n, n = 1, · · · ,N (37)

T±
n (tn) = 0, v+

v (tn)−v−v (tn) = 0, tn ∈ Ln\L∗
n, n = 1, · · · ,N (38)

N+
n (tn)−N−

n (tn) = 0, tn ∈ Ln\L∗
n, n = 1, · · · ,N (39)

In this case, the unknown functions g′n(tn) (n = 1, · · · ,N) in Eq. (15) can be repre-
sented as sums of two functions [Savruk (1981)]

g′n(tn) = g′1n(tn)+g′2n(tn) (40)

These functions are expressed by discontinuity of the normal Vν and tangential Vs

components of displacement vector to the crack contour Ln by

g1n (tn) =
2μ2

1+κ2

[
v+

v (tn)−v−v (tn)
] dtn

dsn
(41)

g2n (tn) = − 2iμ2

1+κ2

[
v+

s (tn)−v−s (tn)
] dtn

dsn
(42)

where sn is the arc abscissa of a point tn on the contour Ln. Considering the second
group of the boundary conditions (38), the complex potentials Φ2(z), Ψ2(z) can be
rewritten as

Φ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
[A1{L∗

k}g′1k(τk)+A1 {Lk}g′2k(τk)] 0 < Imz ≤ b

N
∑

k=1
[A2{L∗

k}g′1k(τk)+A2 {Lk}g′2k(τk)] Imz < 0
(43)

Ψ2(z) =

⎧⎪⎪⎨
⎪⎪⎩

N
∑

k=1
[B1{L∗

k}g′1k(τk)+B1 {Lk}g′2k(τk)] 0 < Imz ≤ b

N
∑

k=1
[B2{L∗

k}g′1k(τk)+B2 {Lk}g′2k(τk)] Imz < 0
(44)

Substituting the complex potentials (11), (12), (43), (44) into the boundary condi-
tions (37), (38) in view of Eq. (21), we obtain a system of 2N singular integral
equations as follows

Re [Ωn(tn)−Pn(tn)] = 0, tn ∈ L∗
n, n = 1, · · · ,N (45)

Im [Ωn(tn)−Pn(tn)] = 0, tn ∈ Ln, n = 1, · · · ,N (46)
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Here

Ωn(tn) =
N

∑
k=1

[Dn{L∗
k}g′1k(τk)+Dn {Lk}g′2k(τk)] (47)

The operator Dn{Lk} is determined by Eq. (26), and the quantity Pn(tn) is deter-
mined by Eq. (27).

To complete the system of equations (45), (46), it is necessary to add equations

Im[g1n(tn)
dtn
dsn

] = 0, tn ∈ L∗
n, n = 1, · · · ,N (48)

Re[g2n(tn)
dtn
dsn

] = 0, tn ∈ Ln, n = 1, · · · ,N (49)

and the equation (33) is also necessary, which can be simplified as

ImW1(t)+ReW2(t) = 4πμ1[ f ′(t)+ε ], t ∈ r0 (50)

where

W1(t) =
N

∑
k=1

[u{L∗
k}g′1k(τk)+u{Lk}g′2k(τk)] (51)

The expression of the function W1(t) can be obtained by analogy with the previous
case on the basis of the first of the boundary condition (6) using Eqs. (11), (12),
(43) and (44).

The displacement continuity conditions at the ends of the open parts∫
a∗nrb∗nr

g′1n(τn)dτn = 0, n = 1, · · · ,N, r = 1, · · · ,Rn (52)

∫
Ln

g′2n(τn)dτn = 0, n = 1, · · · ,N (53)

must be satisfied.

The singular integral equations (45), (46), (50) and conditions (1), (2), (48), (49),
(52), (53) allow to find the functions g′1n(τn) along the open parts a∗nrb

∗
nr (n =

1, · · · ,N, r = 1, · · · ,Rn) of the cracks, the functions g′2n(τn) along the contours Ln

(n = 1, · · · ,N) and the pressure p(t).

On the solution of the obtained equations in view of Eqs. (38) and (21), we take a
relation

N(tn) =
1
π

Re [Ωn(tn)−Pn(tn)] , tn ∈ Ln\L∗
n (54)

to determine normal stress on the contact parts of the crack faces.

The SIF can be calculated by formulae Eq. (36).
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Figure 2: Bonded plane material with a vertical crack under punch action

5 Numerical results

5.1 Bonded plane material with a vertical crack under punch action

We consider a problem of indentation of a frictionless flat punch into an elastic
strip bonded to a half-plane with a near-interface vertical crack of length 2l. The
bonded plane material and the crack are related to the system of coordinates xOy,
x1O1y1, respectively. A vertical force P acts on the punch, whose line coincides
with the punch axis and Oy-axis. It is assumed that the punch does not rotate under
the loading (i.e. ε = 0).

Employing the algorithm proposed by Panasyuk, Datsyshyn, and Marchenko (2000),
it has been established the crack faces contact throughout its length for all the po-
sitions of the vertical crack near the punch foundation.

We investigate the case of smooth contact of the crack faces. Considering Eqs.
(45)-(47), (50) and (51), we get following singular integral equations can be ob-
tained∫ l

−l
Q(τ1, t1)ϕ(τ1)dτ1 +

∫ c

−c
U(ζ1, t1)p(ζ1)dζ1 = 0, |t1| < l (55)

∫ l

−l
V(τ1,x)ϕ(τ1)dτ1 −

∫ c

−c

[
k1(1−A)

ζ1 −x
−Re

A0

ζ1 −x+2bi

]
p(ζ1)dζ1 = 0, |x| ≤ c

(56)

where the kernels Q(τ1, t1), U(ζ1, t1), V (τ1,x) are given in Appendix. The unknown
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functions are

ϕ(t1) = −ig2(t1) = − 2μ2

1+κ2

[
u+(t1)−u−(t1)

]
, |t1| < l (57)

and p(t)(t = x+ i ·b, |x| ≤ c).

The additional conditions are needed to complete the system equations (55), (56)∫ l

−l
ϕ(τ1)dτ1 = 0 (58)

∫ c

−c
p(ζ1)dζ1 = P (59)

∫ c

−c
ζ1 p(ζ1)dζ1 = −M (60)

The moment M which restrains the punch from rotation can be determined by the
condition (60).

The singular integral equations (55), (56) can be solved by the methods given in
Savruk (1981) and Panasyuk, Datsyshyn, and Marchenko (2000). To reduce Eqs.
(55) and (56) to a standard form, the intervals are normalized by

τ1 = lξ , ζ1 = cξ , |ξ | ≤ 1,

t1 = lη, x = cη, |η| < 1
(61)

The solution of equations (55), (56) can be written as

ϕ(η) =
u(η)√
1−η2

, p(η) =
q(η)√
1−η2

(62)

The stress intensity factors at the crack tips can be defined as

K±
II = ±

√
π/lu(±1) (63)

The pressure in the contact area can be defined as

p(η) = − TN(η)

N
√

1−η2

N

∑
k=1

(−1)k

√
1−ξ 2

k

η −ξk
q(ξk), |η| < 1 (64)

In Eq. (63), the upper sign (+) concerns the right crack tip, while the lower sign (-)
concerns the left crack tip, and the function u(ξ ) at the points ξ = +1,−1 takes the
values

u(1) = − 1
N

N

∑
k=1

(−1)k cot(
2k−1

4N
π)u(ξk) (65)
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u(−1) =
1
N

N

∑
k=1

(−1)k+N tan(
2k−1

4N
π)u(ξk) (66)

Here, ξk are the zeros of the Chebyshev polynomials of the first kind, TN(ξ ) =
cos(N cos−1 ξ ).

The numerical calculations of the normalized Mode II SIF, F±
II = K±

II
√

c/(P
√

π)
are conducted. The normalized Mode II SIF depends on relative distance d1/c of
the crack from the punch axis for different crack lengths and distances from the
x−axes. Plane stress state is considered here. Young’s moduleses of the strip and
half-plane are taken as E1 = 140Mpa, E2 = 280Mpa respectively. Poisson’s ratios
are taken as μ1 = 0.2, μ2 = 0.4, respectively.
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Figure 3: Normalized Model II stress intensity factors at the tips of vertical crack,
F±

II = K±
II

√
c/(P

√
π), b/c = 0.2, solid lines are ford2/c = 0.2, while dashed lines

are for d2/c = 0.5. (a) F+
II for the right tip, (b) F−

II for the left tip

Figure 3(a) and 3(b) indicate that the absolute value of the Mode II stress intensity
reach maximum when the crack approaches the punch edge d1/c ≈ 1.1. It is shown
the factors KII equal to zero at both of the crack tips when d1/c = 0 for the reason of
problem symmetry. The crack is no longer a stress concentrator and has no effects
on the pressure distribution under the punch when which is placed along the punch
axis.

Figure 4(c) and 4(d) illustrate the variation of the normalized Mode II SIF with
relative length2l/c for different relative strip thickness b/c at the most dangerous
crack position (d1/c = 1.1). It is assumed d1/c = 0.2. When increasing the relative
thickness b/c of the strip, the normalized Mode II SIF increases. Both F+

II and F−
II

in magnitude increase with the increasing of the value of 2l/c.

To verify the validity of the procedure, we compare the numerical values of the
pressure p(t) under the punch of the uncracked bonded material plane with close
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Figure 4: Influence of crack length on the normalized Mode II SIF F±
II =

K±
II

√
c/(P

√
π) for different strip thickness b/c. (c) F+

II for the right tip, (d) F−
II

for the left tip

solution provided by Liu (1992). From table 1, it’s observed that the present results
coincide with those of Liu (1992) well. In Table 1, the numerical values of the
pressure p(t) under the punch for the most dangerous crack positions are also given
when the SIF in magnitude are maximum. It is seen that in comparison with the
uncracked bonded material plane, the crack presence has an insignificant effect on
the value.

5.2 Bonded plane material with a horizontal crack under punch action

We consider another case of indentation of a frictionless flat punch into the bonded
plane material. There is a horizontal crack of length 2l in the half-plane, which is
placed symmetrically about the punch axis. Employing the algorithm proposed by
Panasyuk, Datsyshyn, and Marchenko (2000), it has been established that the crack
faces contact throughout its length, also.

For the case of smooth contact of the crack faces, the considering problem is finally
reduced to solving the singular integral equations (55), (56) with the kernels

Q(τ1, t1) =
1

τ1 − t1
− A−B

2
Reω−1(τ1, t1)+A ·Re

[
ω−1(τ1, t1)− 4h2

ω3(τ1, t1)

]

+ 2A · h · Im
1

ω2(τ1, t1)
, ω(τ1, t1) = τ1 − t1−2 · i · h (67)
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Table
1:

Pressure
cp(x)/P
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flatpunch
w

hich
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plane

m
aterials

w
ith

a
verticalcrack

2l/c
d

1 /c
d

2 /c
b
/c

x/c
=

−
0
.9

x/c
=
−

0
.5

x/c
=

0
x/c

=
0
.5

x/c
=

0
.9

L
iu’s

paper
0

-
-

-
0.7303

0.3676
0.3183

0.3676
0.7303

Presentpaper
0

-
-

-
0.7303

0.3676
0.3183

0.3676
0.7303

0.1
1.2

0.2
0.2

0.7303
0.3676

0.3183
0.3675

0.7302
0.1

1.2
0.5

0.2
0.7303

0.3676
0.3183

0.3675
0.7303

0.5
1.2

0.2
0.2

0.7308
0.3677
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0.3668

0.7302
0.5

1.2
0.5

0.2
0.7305

0.3675
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0.3670
0.7310
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0.7306

0.5
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0.7305
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U(ζ1, t1) = −Re
A0 −A

2(ζ −T ′)
−Re

ζ −T ′
1

2
(

ζ −T ′
)2 +A ·b · Imζ +T ′

1 −2T ′
1

(ζ −T ′)3

ζ = ζ1 + i · b,T ′ = t1 − i · h (68)

V(τ1,x) = Re

[
k1(1−B)

T − t
− 1−A

T − t

]
+2Im

(1−A)h+b(1−B)(
T − t

)2

t = x + i · b,T = τ1 − i · h (69)

Figure 5: Bonded plane material with a horizontal crack under punch action

The influences of the value of relative crack length 2l/c and relative distance h/c of
the crack from the x-axis on the normalized Mode II SIF, F±

II = K±
II

√
c/(P

√
π)(F−

II =
−F+

II ) are shown in Figure 6. It can be found the values of F+
II in magnitude de-

crease with the increasing of the value of h/c. The values of F+
II in magnitude

increase with the increasing of crack length.

A It’s shown in Table 2, the existence of the crack has no effects on the pressure
distribution under the punch.

6 Conclusions

In this paper, the singular integral equation method has been applied to study the
contact problem of the bonded plane material with curvilinear cracks, which is
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Figure 6: Influence of strip height h/c on the normalized Mode II SIF, F±
II =

K±
II

√
c/(P

√
π) for b/c = 0.2 and different crack length 2l/c

Table 2: Pressure cp(x)/P under a frictionless flat punch, which is indented to
bonded plane materials with a horizontal crack

2l/c h/c b/c x/c = −0.9 x/c = −0.5 x/c = 0 x/c = 0.5 x/c = 0.9
0 - - 0.7303 0.3676 0.3183 0.3676 0.7303

0.1 0.05 0.2 0.7303 0 .3676 0.3183 0.3676 0.7302
0.2 0.05 0.2 0.7303 0 .3676 0.3183 0.3676 0.7302
0.3 0.05 0.2 0.7303 0 .3676 0.3183 0.3676 0.7302
0.4 0.05 0.2 0.7303 0 .3676 0.3183 0.3676 0.7302
0.5 0.05 0.2 0.7303 0 .3676 0.3183 0.3676 0.7302

under the action of a rigid punch with the foundation of convex shape. Kolosov-
Muskhelishvili complex potentials are constructed to satisfy the continuity of stresses
and displacements along the interface automatically. The crack faces may contact,
two limiting cases either stick or smooth contact on the contact parts is considered.
The considered problem is finally reduced to solving a system of complex Cauchy
type singular integral equations of the first and second kind. Numerical analysis has
been made for the particular cases of indentation of a frictionless punch with flat
foundation into the bonded plane material weakened by a vertical crack or a hor-
izontal crack. It has been established that for various positions of the considered
cracks, they are fully closed.

For the case of smooth contact of the crack faces, numerical results show: (i) The
thickness of the strip influences the Mode II stress intensity at the tips of the vertical
crack; (ii) The crack configuration has an sinificant effect on the Mode II stress
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intensity; (iii) The existence of the vertical crack or horizontal crack near the punch
foundation has an insignificant effect on the pressure distribution under the punch.
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Appendix

Expression of the bi-material constants A, A0 in Eq. (11) and Eq. (12)

A = 1− μ1(κ2 +1)
μ2 +κ2μ1

=
μ2 −μ1

μ2 +κ2μ1
, A0 =

κ1μ2(1−A)−μ1(A+κ2)
μ2 −μ1

(70)

Expressions of operators A1{Lk},A2{Lk},B1{Lk},B2{Lk} in Eq. (13) and Eq. (14)

A1{Lk}ψk(τk) =
1−B

2π

∫
Lk

1
Tk − z

eiak ψk(τk)dτk (71)

A2{Lk}ψk(τk) =
1

2π

∫
L

k

{[
1

Tk − z
− A

T k − z

]
eiαk ψk(τk)dτk

+
A ·2i · ImTk

(T k − z)2
e−iakψk(τk)dτ̄k

}
(72)

B1{Lk}ψk(τk) =
1

2π

∫
Lk

{−(1−A)T k − (A−B)Tk

(Tk − z)2 eiαk ψk(τk)dτk

+
1−A
Tk − z

e−iαk ψk(τk)dτ̄k

}
(73)

B2{Lk}ψk(τk) =
1

2π

∫
Lk

{[
A

(T k − z)2
− 1

(Tk − z)2

]
Tkeiak ψk(τk)dτk

+
[

1
Tk − z

− B

Tk − z
−2AiImTk

Tk + z

(Tk − z)3

]
e−iαk ψk(τk)dτ̄k

}
(74)

where

Tk = τkeiαk + z0
k , B = 1− μ1(κ2 +1)

μ1 +κ1μ2
=

κ1μ2 −κ2μ1

μ1 +κ1μ2
(75)

Expressions of the Rnk(τk, tn),Snk(τk, tn) in Eq. (26){
Rnk = K11(τk, tn)−K12(τk, tn)
Snk = K21(τk, tn)−K22(τk, tn)

(76)

where

K11 (τk, tn) =
eiαk

2

[
1

T k−T ′
n
− A

T k−T ′
n

− 2A · i · ImT k(
T k−T ′

n

)2

]
(77)
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K12 (τk, tn) =
e−iαk

2

[
B

T k−T ′
n

− 1

T k−T ′
n

−2A · i · ImT k
T k +T ′

n −2T ′
n(

T k−T ′
n

)3

]
dtn
dtn

e−2iαn

(78)

K21 (τk, tn) =
e−iαk

2

[
1

T k−T ′
n

− A

T k−T ′
n

+2A · i · ImT k(
T k−T ′

n

)2

]
(79)

K22 (τk, tn) =
e−iαk

2

[
−A(T k−T ′

n)(
T k−T ′

n

) +
T k−T ′

n(
T k−T ′

n

)2

]
dtn
dtn

e−2iαn (80)

Expressions of K31 (ζ , tn) and K32 (ζ , tn) in Eq. (27)

K31 (ζ , tn) = Im
1+ i ·ρ
ζ −T ′

n
−2 ·A ·b ·Re

1+ i ·ρ
(ζ −T ′

n)2
(81)

K32 (ζ , tn) =

i

⎡
⎢⎣(A0−A) · (1+ i ·ρ)

ζ −T ′
n

+
(ζ −T ′

n) (1− i ·ρ)

2
(

ζ −T ′
n

)2 +
A ·b · i · (1+ i ·ρ)(ζ +T ′

n −2T ′
n)

(ζ −T ′
n)3

⎤
⎥⎦

dtn
dtn

e−2iαn (82)

Expressions of W2 (t) in Eq. (31)

W2 (t) =
∫

γ0

[
κ1 (1−A)

ζ − t
− A0

ζ − t

]
p0 (ζ )dζ (83)

Expressions of u{Lk} in Eq. (32)

u{Lk}ψk(τk) =
∫

Lk

[K41(τk, t)ψk(τk)dτk +K42(τk, t)ψk(τk)dτ̄k] (84)

where

K41 (τk, t) = eiαk

[
κ1 (1−B)

T k− t
− 1−A

T k− t

]
(85)

K42 (τk, t) = e−iαk 2 · i · (1−A)ImT k−b(1−B)(
T k− t

)2 (86)
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Expressions of Q(τ1, t1), U(ζ1, t1), V (τ1,x) in Eq. (55) and Eq. (56)

Q(τ1, t1) =
1

τ1 − t1
+

A+B
2

1
τ1 + t1 +2h

− 2A(τ1 +h)
(τ1 + t1 +2h)2 +

4A(τ1 +h)(t1 +h)
(τ1 + t1 +2h)3

(87)

U(ζ1, t1) = Re
A0−A

2(ζ −T ′
1)

+Re
ζ −T ′

1

2
(

ζ −T ′
1

)2 −A ·b · Imζ +T ′
1 −2T ′

1

(ζ −T ′
1)3

T ′
1 = d1 + i · (t1 + h) ζ = ζ1 + i · b (88)

V(τ1,x) = Im

[
k1(1−B)

d1 −x− i(τ1 +h+b)
− 1−A

d1 −x+ i(τ1 +h+b)

]

+ 2Re
(1−A)(τ1 +h)+b(1−B)
[d1−x+ i(τ1 +h+b)]2

(89)


