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A Local Hypersingular Boundary Integral Equation
Method Using a Triangular Background Mesh

V. Vavourakis 1

Abstract: In this paper, a new meshless Local Hypersingular Boundary Integral
Equation method is presented for the analysis of two-dimensional elastostatic prob-
lems. The elastic domain is discretized by placing arbitrarily nodes on its boundary
and interior. Given this set of nodes, the corresponding map of background trian-
gles is constructed through a common triangulation algorithm. The local domain
of each node consists of the union of triangles that this point lies, thus, creating a
polygonal line of its local boundary. The local boundary integral equations of both
displacements and stresses of the conventional Boundary Elements Method are
taken into account. The interpolation of the unknown fields is performed by taking
each face of a triangle of the local domain of a source point as a one-dimensional
line element. The essential boundary conditions can be directly implemented eas-
ily because the interpolation functions possess the Kronecker delta-function prop-
erty. After constructing the final linear system of equations, the only unknowns are
displacements and stresses of all nodal points. Thus, leading to a banded stiffness
matrix as in the Finite Element Method. The effectiveness and efficiency of the pro-
posed method is demonstrated with three elastostatic problems in two-dimensions.
Excellent agreement between the numerical results and the exact solutions is found.
The numerical examples also show that the accuracy of the proposed method is as
good as that of the Boundary Elements Method.

Keyword: local hypersingular boundary integral equation, boundary elements,
background triangles, meshless, elastostatics

1 Introduction

In the past two decades, mesh-free numerical methods for solving partial differen-
tial equations seem to attract more attention. The main reason why these methods
attracted so much interest is that the task of meshing complex three-dimensional
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geometries can be time-consuming, computationally cumbersome and expensive.
The pioneering meshless methods are the Smooth Particle Hydrodynamic [Gingold
and Moraghan (1977)], the Element-Free Galerkin (EFG) method [Belytschko, Lu,
and Gu (1994)], the Reproducing Kernel Particle method [Liu, Jun, and Zhang
(1995)], the Partition of Unity [Melenk and Babuška (1996)], the Meshless Lo-
cal Petrov-Galerkin (MLPG) method [Atluri and Zhu (1998)], the Local Boundary
Integral Equation (LBIE) method [Zhu, Zhang, and Atluri (1998)], the Natural El-
ement Method (NEM) [Sukumar, Moran, and Belytschko (1998)], and the Point
Interpolation Method [Wendland (1999)].

Some major advantages of the mesh-free methods are: (i) h-adaptivity is simpler
to incorporate in these methods than in the Finite Element Method (FEM) [Duarte
and Oden (1996)], (ii) moving discontinuities and phase transformations are treated
with less effort, (iii) large-deformation analysis can be performed more efficiently
[Chen, Pan, Wu, and Liu (1996)], (iv) higher-order continuous shape functions can
be incorporated with the Moving Least Square (MLS) [Lancaster and Salkauskas
(1981)] and Radial Basis Functions (RBF) [Wu (1995)], (v) non-local interpolation
character and (vi) no mesh alignment sensitivity.

However like all other mesh-based numerical methods, meshless methods have
their limitations. For instance, in the most widely used EFG and MLPG meth-
ods, the computational cost of evaluating the shape functions and their derivatives
is much higher than that of the conventional FEM and Boundary Elements Method
(BEM). The numerical evaluation of all boundary and volume integrals requires
special care, due to the rational form of the shape functions and the complexity of
the non-element interpolation. In addition, the essential boundary conditions can-
not be enforced directly because the shape functions of MLS approximations do not
posses the Kronecker delta-function property. Furthermore, the afore-mentioned
meshless methods generate a sparse stiffness matrix and not a banded one as in
FEM. In general, the time cost of meshless methods is higher than that of FEM and
BEM.

The Local Boundary Integral Equation method has been implemented in various
fields. The most representative works are found in potential problems [Zhu, Zhang,
and Atluri (1998); Zhu (1999)], in two-dimensional linear elasticity [Atluri, Sladek,
Sladek, and Zhu (2000); Sladek, Sladek, and Keer (2000); Han and Atluri (2003b);
Sellountos and Polyzos (2005b); Bodin, Ma, Xin, and Krishnaswami (2006)], in
thermoelasticity [Sladek, Sladek, and Atluri (2001)], in micropolar elasticity [Sladek
and Sladek (2003)], in 2D elastodynamic problems [Sladek, Sladek, and Keer
(2003); Sladek, Sladek, and Mang (2003); Sellountos and Polyzos (2003, 2005a)]
and in 3D heat conduction and elasticity with geometry axisymmetry [Sladek,
Sladek, Krivacek, and Zhang (2003); Vavourakis and Polyzos (2006)]. Recently,
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the two papers of [Atluri, Han, and Rajendran (2004); Vavourakis and Polyzos
(2007)] in two-dimensional linear elasticity, present mixed-type formulations in
the MLPG and LBIE methods, respectively.

In this paper, a Local Hypersingular Boundary Integral Equation (LHBIE) method
is proposed for elastostatics in two dimensions. The local form of the boundary
integral representations, taken from the BEM, of displacements and stresses is uti-
lized. The analyzed domain is discretized by a distribution of nodes. From this set
of nodes it is defined a “background” mesh of triangular cells. The local domain
of a node is considered to be the union of its neighbourhood triangles. In this sub-
domain, all local boundary integrals are evaluated. Thus, a discretized system of
equilibrium equations is obtained. Some examples in two-dimensional elastostatics
are solved, in order to validate and verify the proposed LHBIE method. The nu-
merical results obtained by the LHBIE method demonstrate that the accuracy and
stability of this formulation is as good as that of the BEM.

2 The Local Hypersingular Boundary Integral Equation method

In this section, a thorough presentation of the Local Hypersingular Boundary Inte-
gral Equation (LHBIE) method in elastostatics for the special case of two dimen-
sions is given. In the first subsection, the integral equations of displacements and
stresses are given and the local form of the afore-mentioned integral equations is
produced. Given that the elastic body is discretized with a distribution of nodes, a
set of discrete equations that form the final linear system is derived. In the second
subsection, the numerical implementation of the LHBIE method is discussed and
some comments regarding critical numerical issues on the proposed methodology
are made.

2.1 The LHBIE method in two-dimensional elastostatics

Consider an elastic body of volume Ω, bounded by surface Γ, as seen in Fig. 1.
Equilibrium at a point x ∈ Ω of the continuous medium is described by the follow-
ing Navier-Cauchy partial differential equation [Timoshenko and Goodier (1970)]:

μ ui, j j (x)+(λ + μ)u j, ji (x) = fi (x) , i, j = 1,2 , (1)

where λ , μ are the Lamè elastic constants, ui the displacement vector field and
fi the body forces (i.e. gravity or centrifugal load). For the present analysis the
influence of vector fi is neglected.

The boundary-value problem is fully described by the set of boundary conditions
below

ui (x) = ūi, ∀x ∈ Γu , (2a)
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Figure 1: Elastic domain Ω bounded by surface Γ having scattered nodal points
inside and on its boundary.

ti (x) = t̄i, ∀x ∈ Γt , (2b)

where Γ = Γu ∪Γt, and ūi, t̄i represent the prescribed displacement and traction
vectors.

The integral representation of the above described problem at a discrete source
point x(κ) ∈ Ω is [Banerjee (1994); Brebbia and Dominguez (1998); Guiggiani,
Krishnasamy, Rudolphi, and Rizzo (1992)]

αi j

(
x(κ)

)
u j

(
x(κ)

)
=

lim
Vε→0

{∫
Γ−Γ(κ)ε

[
u∗i j

(
x(κ),y

)
t j (y)− t∗i j

(
x(κ),y

)
u j (y)

]
dSy

}
. (3)

Array αi j is described in Eq. (25) of the Appendix, and the fundamental solution
kernels u∗i j, t∗i j are given in Appendix A. The presence of the limit is due to the
singular behaviour of the kernels as field point y approaches the singular source
point. If someone takes an arbitrary small subdomain Vε arround x(κ) (see Fig. 2),
then the second Green’s identity can be written and after some algebra the final
form of the boundary integral Eq. (3) can be produced.

In the special case when source point x(κ) lies on a smooth boundary or it is located
inside the analyzed body then Eq. (3) takes the form

αi j

(
x(κ)

)
u j

(
x(κ)

)
=
∫

Γ

[
u∗i j

(
x(κ),y

)
t j (y)− t∗i j

(
x(κ),y

)
u j (y)

]
dSy , (4)

and the free-term coefficient αi j is calculated analytically, where for smooth bound-
ary points it is equal to δi j/2 and δi j for internal ones.
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Figure 2: Boundaries of exclusion for a singular boundary point x(κ) by a vanishing
neighbourhood Vε .

Taking the gradient on Eq. (3) and applying successively Hooke’s law, then it
can be derived the corresponding hypersingular boundary integral representation
of stresses

ai jln

(
x(κ)
)

σln

(
x(κ)
)

+bi jk

(
x(κ)

)
uk

(
x(κ)

)
=

lim
Vε→0

{∫
Γ−Γ(κ)ε

[
u∗i jk

(
x(κ),y

)
tk (y)− t∗i jk

(
x(κ),y

)
uk (y)

]
dSy

}
, (5)

where σln is the stress tensor. The third-order tensors u∗i jk, t∗i jk are given in Appendix
A, as well as the expressions for the forth- and third-order tensors of the free-term
coefficients can be found in Appendix B.

However, it is interesting to refer to the works [Okada, Rajiyah, and Atluri (1989);
Han and Atluri (2003a,b, 2007)], where a direct derivation of the strongly-singular
boundary integral equations of displacement gradients is adopted. In this paper,
only the classical hypersingular boundary integral Eq. (5) of stresses is taken into
account.

Given that the stress tensor is symmetric for isotropic linear elastic media (σ12 =
σ21), then someone can make use of a new stress vector: τ = {σ11 σ22 σ12}T .
Subsequenctly, in the special case of internal nodes or nodes lying on a smooth
boundary, Eq. (5) can take a new form

ci j

(
x(κ)
)

τ j

(
x(κ)
)

=
∫

Γ

[
U∗

i j

(
x(κ),y

)
t j (y)−T ∗

i j

(
x(κ),y

)
u j (y)

]
dSy , (6)

where the 3×3 array ci j takes the same values like αi j and the second free-term of
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Eq. (5) vanishes. The new kernels U∗
i j and T ∗

i j are arrays having the form

U∗
i j =

⎡
⎢⎣u∗111 u∗112

u∗221 u∗222
u∗121 u∗122

⎤
⎥⎦ and T ∗

i j =

⎡
⎢⎣t∗111 t∗112

t∗221 t∗222
t∗121 t∗122

⎤
⎥⎦ (7)

As it is known from the literature, both boundary integral equations (4) and (6)
become singular and hypersingular, respectively, only when the field point y gets
close to the source point x(κ). Therefore someone can write both integral represen-
tations into a local form

αi j

(
x(κ)

)
u j

(
x(κ)

)
+
∫

Γ(κ)∪∂Ω(κ)

t∗i j

(
x(κ),y

)
u j (y) dSy =
∫

Γ(κ)∪∂Ω(κ)

u∗i j

(
x(κ),y

)
t j (y) dSy , (8)
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)
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)
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i j
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x(κ),y

)
u j (y) dSy =
∫

Γ(κ)∪∂Ω(κ)

U∗
i j

(
x(κ),y

)
t j (y) dSy , (9)

where ∂Ω(κ) and Γ(κ) are illustriated in Fig. 1.

The surface traction vector t j is associated with the stress vector τk through the
relation

t j (y) = Njk (y) τk (y) =

[
n̂1 0 n̂2

0 n̂2 n̂1

]
τk (y) , (10)

and n̂i is the outward unit normal vector component at y ∈ ∂Ω(κ).

Replacing the traction vector of the internal local-boundary integrals over ∂Ω(κ)
via Eq. (10) in the previous set of integral equations, then someone can write

αi j

(
x(κ)

)
u j

(
x(κ)

)
+
∫

Γ(κ)∪∂Ω(κ)

t∗i j

(
x(κ),y
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u j (y) dSy =

∫
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(
x(κ),y
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t j (y) dSy +

∫
∂Ω(κ)

u∗i j

(
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)
Njk (y)τk (y) dSy , (11)
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∫
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u j (y) dSy =
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∫
Γ(κ)

U∗
i j

(
x(κ),y

)
t j (y) dSy +

∫
∂Ω(κ)

U∗
i j

(
x(κ),y

)
Njk (y)τk (y) dSy . (12)

The above mentioned two-dimensional elastostatic body has been discretized so
far by placing arbitrarily nodes in the domain. However from the specified set of
nodes someone can construct a “background” mesh of triangles, as seen in Fig. 3.
It is easy to notice from this figure the local domains of each node (shaded areas),
which are formed by the union of triangles that node x(κ) belongs. In Fig. 3, the
local boundaries Γ(κ) and ∂Ω(κ) for boundary and internal nodal points x(κ) are
depicted, which have a poly-line shape.

In the present formulation no Moving Least Squares approximation or Radial Basis
Functions interpolation scheme is employed. However, each side of the afore-
mentioned triangles is treated as a common one-dimensional element. The nodes
that define this element is the pair of vertices of the triangle on its corresponding
side.
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Figure 3: Discretized elastic domain with boundary and internal nodes, and the
corresponding underlying triangles. The local boundaries ∂Ω(κ) and Γ(κ) of the
respective points x(κ) are shown in detail.

Thus, for the intepolation of the unknown field variables the well-known shape
functions of the line elements are utilized [Brebbia and Dominguez (1998)]. In
addition, the displacement and stress vector are treated as independent variables.
The intepolation relations are the ones below

u j = Φ jl ǔl , (13a)

t j = Φ jl ťl , (13b)

τk = Θkn τ̌n , (13c)

where Φ jl for a two-node element is a 2× 4 matrix, and Θkn is a 3× 6 matrix,
both arrays containing the same intepolation functions of the element [Brebbia and
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Dominguez (1998)]. Vectors ǔl, ťl and τ̌n represent the nodal values of the element
of the respective fields.

Inserting intepolation Eqs. (13) into integral Eqs. (11) and (12), then someone can
obtain

αi j

(
x(κ)

)
u j

(
x(κ)

)
+
∫

Γ(κ)∪∂Ω(κ)

t∗i j
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(
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)
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∂Ω(κ)

u∗i j

(
x(κ),y

)
Njk (y)Θkn dSy τ̌n , (14)

and
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x(κ)
)

τ j

(
x(κ)
)

+
∫

Γ(κ)∪∂Ω(κ)

T ∗
i j

(
x(κ),y

)
Φ jl dSy ǔl =

∫
Γ(κ)

U∗
i j

(
x(κ),y

)
Φ jl dSy ťl +

∫
∂Ω(κ)

U∗
i j

(
x(κ),y

)
Njk (y)Θkn dSy τ̌n . (15)

After the numerical evaluation of all integrals, a set of linear equations is deduced

Hi j ǔ j = Gik ťk +Sil τ̌l , (16)

where matrix Hi j contains the left-hand side boundary integrals of Eqs. (14), (15)
and the free-term of Eq. (14). Matrix Gik contains the right-hand side boundary in-
tegrals where the traction vector ťk is unknown. Matrix Sil contains the correspond-
ing boundary integrals where the stress vector τ̌l is unknown, plus the free-term
of Eq. (15). The size of the above matrices varies according to the neighbour-
hood nodal points of x(κ). In the general case when x(κ) has Ne neighbourhood
nodes then arrays Hi j, Gik have size equal to 5×2(Ne +1) and Sil has size equal to
5×3(Ne +1).

Collocating for all N nodes of the mesh, a system of N linear equations is created
in the form of Eq. (16). The next step is to insert the Boundary Conditions (BCs)
of Eq. (2) in the set of equations (16). By definition, the interpolation functions
that are utilized in this formulation posses the Kronecker delta-function property.
Therefore, essential BCs can be imposed directly, as in BEM and FEM. For bound-
ary nodes whose tractions are prescribed, BCs are inserted straightforwardly in
vector ťk (≡ t̄k). On the other hand, when displacements are prescribed, BCs are in-
serted accordingly in vector ǔ j (≡ ū j) and the corresponding traction components
are replaced by stresses through Eq. (10). Thus, the only unknown quantities are
displacement or tractions and stresses for boundary nodes, and for internal nodes
the unknown values are displacements and stresses. After splitting known from
unknown nodal values, then someone can be led to a final system of equations

Ai j χ j = βi , (17)
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where matrix Ai j is a 5N × 5N banded matrix and the right-hand side vector βi

contains the local boundary integrals with prescribed boundary conditions.

2.2 Numerical Implementation

As reported in Section 1, the two-dimensional elastic region is discretized by plac-
ing arbitrarily boundary and internal nodes. The pattern of the distribution of nodes,
as it will be shown in the following numerical examples, is not particular. Someone
can adopt a uniform or a non-uniform distribution of nodes. Given the set of nodes
and an explicit definition of the boundary that describes the surface geometry (see
Fig. 1), a triangular “background” mesh is produced (see Fig. 3). In Subsection 2.1
it is stated that these triangles do not play an important role, by means of interpo-
lating the field values. They only give information about the shape and size of the
local domain of integration (∂Ω(κ) and Γ(κ)) of a source point x(κ). However, as
depicted in Fig. 4, the size of the local domain can be chosen at will. In this paper,
the local domain is primarily the union of triangles that contain the node of interest
(see Fig. 4(a)). In case when an extended size of the local domain is desirable then
some more neighboring triangles are taken into account too. From now on the local
domain described by the stensils of Figs. 4(a), 4(b), 4(c) will be referred as Type-1,
Type-2 and Type-3, respectively. Obviously, if the size of the local domain extends
in a way that it covers the whole domain Ω of the body then this method is identical
to the BEM.

In the above-mentioned local boundary integral Eqs. (11), (12) all boundary nodes
are assumed to lie on a smooth boundary Γ, which leads to a direct adoption of free-
term coefficient matrices αi j and ci j , respectively, equal to δi j/2. In the framework
of the present paper, it was tested firstly to make use of corner nodes in the numer-
ical analysis. Thus, the numerical evaluation of the free-term coefficient matrices,
as reported in [Guiggiani (1995)], was investigated. After solving a few elastostatic
benchmark problems, the results were not that satisfactory. The numerical results
showed low accuracy levels, due to the hypersingularity of the kernels involved.
The second step, was to simply displace corner nodes from the local discontinuity
of the geometry (see Fig. 5), as in the conventional BEM [Banerjee (1994)]. Al-
though this measure increases the total number of nodes in the mesh, the obtained
numerical results were of very good quality, as it will be demonstrated in the next
section.

Major role in the accuracy and stability of the BEM and the proposed LHBIE
method is the numerical evaluation of singular and hypersingular boundary inte-
grals. For the evaluation of these integrals someone can reference papers [Guig-
giani, Krishnasamy, Rudolphi, and Rizzo (1992); Guiggiani (1994, 1995); Frangi
and Guiggiani (2000); Sladek, Sladek, and Keer (2000)]. Especially in papers
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Figure 4: Local domain of source point x(κ) defined by a stensil of (a) six, (b)
twelve and (c) eighteen neighboring nodes, where the corresponding “background”
triangular cells are shown in detail.

[Guiggiani, Krishnasamy, Rudolphi, and Rizzo (1992); Guiggiani (1994)] a direct
approach for the numerical calculation of singular and hypersingular boundary in-
tegrals is described. For the present analysis only eight Gauss-Legendre quadrature
points were needed for the evaluation of integrals on Γ and Γ(κ). Furthermore, the
number of quadrature points required for the local boundary integrals on ∂Ω(κ) to
converge was defined by the explicit rule given in [Bu (1997)].

As it will be seen in the next section, the computational time consumed by the
BEM is much higher than that of the LHBIE method. It should be noted here
that the time consumed by the solver to solve the final system of Eq. (17) is lower
in the BEM than in the LHBIE method. For example, if someone assumes that
the elastic body is discretized with Nb boundary nodes and Ni internal ones then
matrix Ai j has size equal to 2Nb × 2Nb in the conventional BEM. On the other
hand, the size of the same matrix in the LHBIE method is 5(Nb +Ni)×5(Nb +Ni),
which is much higher than that of BEM. However for the assembly of Ai j in the
BEM only the boundary nodes take part and the field variables of the internal nodes
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Figure 5: Detail on corner node that has been tripled and displaced from the geo-
metrical discontinuity.

are obtained by solving Eq. (16) in post-process. In the LHBIE method instead,
as stated before, all nodes take part in the derivation of matrix Ai j and the field
variables are obtained straightforwardly. The main reason why the BEM consumes
more computational time than the proposed methodology is that the evaluation of
boundary integrals on Γ in the former method is computationally cumbersome. The
LHBIE method however evaluates boundary integrals only on the local boundary
Γ(κ)∪∂Ω(κ), which is much smaller than that of the global boundary Γ. In addition,
in case when both methods end up to comparable degrees-of-freedom in the final
system, the BEM forms a fully-populated matrix Ai j, while the LHBIE forms a
banded matrix. Thus, faster solution of the final system can be achieved through
the proposed methodology.

In the framework of this paper, the well-established BEM is implemented in or-
der to compare the numerical results obtained by the LHBIE methodology. Details
on how the BEM formulation is implemented can be found in the comprehensive
books [Banerjee (1994); Brebbia and Dominguez (1998)]. In brief, for all bound-
ary nodes integral Eq. (4) is collocated and a set of linear equations is produced.
Inserting in this set of equations boundary conditions and splitting known from
unknown variables a final linear system is produced (same as in Eq. (17)). Only
unknown boundary displacements or/and tractions are evaluated numerically. Then
for all boundary and internal nodes the corresponding boundary integral equation
of stresses (see Eq. (6)) is solved in post-process so as to obtain the stress field.

3 Numerical Examples

In this section three two-dimensional elastostatic problems are solved, in order to
validate the Local Hypersingular Boundary Integral Equation method. Through
these examples, the accuracy, the convergence and stability of the proposed method-
ology is demonstrated as well.
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The LHBIE method is coded in the C++ programing language. The same computer
program is also designed to implement the Boundary Element Method. The trian-
gulations are obtained with the aid of Shewchuk’s program “Triangle” [Shewchuk
(1996, 2002)] written in ANSI-C. All numerical simulations are performed on a
Linux platform having an AMD Turion 64 ML-34 processor and 1GB RAM.

In order to estimate the numerical reults accuracy and convergence, the displace-
ment relative error L2 norm is evaluated, i.e.

L2u =
1
N

√√√√∑N
i=1

∥∥ŭ(i) −u(i)
∥∥2

∑N
j=1

∥∥ŭ( j)
∥∥2 , (18)

where N is the total number of nodes of the analyzed body, ŭ(i) is the analytic
results’ displacement vector of node i and u(i) is the respective numeric results’
vector of the same node. The corresponding L2τ relative error norm of the stress
vector τ has the same form like the one of Eq. (18) for the displacement vector.

3.1 Plate under uniform uniaxial load

Consider a 2m×2m metallic plate having elastic properties: E = 200GPa Young
modulus and ν = 0.29 Poisson ratio. This plate has been subject to uniform hori-
zontal load P = 10MPa and plane-stress conditions are assumed. Due to symmetry
only the upper right quadrant of the plate is analyzed. Thus, symmetry conditions
are applied to both the right and the bottom edge of the plate (u1 = 0 for x1 = 0
and u2 = 0 for x2 = 0 respectively). The quarter plate has been discretized by dis-
tributing evenly 25, 36, 49 and 64 nodes, as depicted in Fig. 6. For the BEM the
boundary of the square plate has been discretized with two-node linear elements.

This problem has been solved through the BEM and the LHBIE method for all mesh
distributions. In addition, the proposed methodology is also tested for three types
of the local domain. From now on we will denote LHBIE T-1 to the LHBIE method
with a local domain of size as illustriated in Fig. 4(a), the LHBIE T-2 corresponds
to a local domain of Fig. 4(b) and LHBIE T-3 to that of Fig. 4(c). Furthermore,
the accuracy and efficiency of the proposed methodology compared with the most
common Meshless Local Petrov-Galerkin (MLPG) and Local Boundary Integral
Equation (LBIE) formulations is examined. For these meshless methodologies, a
linear MLS approximation basis with a Gaussian weight function is utilized, and a
support domain equal to 1.43×δ for all nodes is set, where δ the mean distance of
two consecutive nodes (for details refer to paper [Zhu, Zhang, and Atluri (1998)]).

The displacement relative error norms obtained by the BEM, the LHBIE method,
the MLPG-1, MLPG-5 and MLPG-6 formulations [Atluri and Shen (2002)], the
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Figure 6: Distribution of 64 nodes on the quarter square plate and the underlying
triangular cells.

MLPG(LBIE) [Sellountos and Polyzos (2005b)] and the MLPG4(LBIE) formula-
tion [Vavourakis and Polyzos (2008)] are depicted in Fig. 7. Symbol h in Fig. 7 is
a mesh density factor that is defined by the mean mininum distance of nodes of the
mesh, whereas the lower its value the denser the mesh is. From this figure it can
be noticed that the newly proposed LHBIE method produces results of very high
accuracy compared to those of BEM and MLPG-5, and even better to those of the
LBIE formulations and MLPG-1 and MLPG-6. However it should be noted here,
as reported in [Atluri, Kim, and Cho (1999); Vavourakis, Sellountos, and Polyzos
(2006)], that the MLPG is sensitive to the support domain size as well as to the
weight function utilized in the MLS approximation scheme. Thus, the results de-
picted in Fig. 7 for the MLPG methodologies are not fully representative. On the
other hand, from Fig. 7 it is shown that the LHBIE method is less sensitive to the
local domain decision. The same conclusion will be drawn from the numerical
examples that follow.

3.2 Kirsch benchmark problem

The next benchmark problem that is to be solved is of a 2m long square plate having
a circular hole on its center. The radius of the hole is equal to R = 0.15m. As in
Subsection 3.1, the plate is subjected to a uniform tensile load of P = 10MPa and
plane-stress conditions are assumed. This problem is known in the literature as
the Kirsch problem. In book [Timoshenko and Goodier (1970)] someone can find
the analytical solutions to this problem. For this case various mesh densities were
assumed: 410, 575, 801 and 1025 nodes; evenly distributed on the right quadrant
of the perforated plate (see Fig. 8).

After numerically solving this benchmark problem the obtained results are com-
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Figure 7: Relative error norms of displacements for the linear patch test benchmark
problem obtained by various numerical methods.

Table 1: Convergence rates on numerical solutions of displacement and stress field
by the BEM and the LHBIE method on the Kirsch benchmark problem.

displacements stresses
BEM 2.14 2.58

LHBIE T-1 2.15 3.02
LHBIE T-2 2.19 2.89
LHBIE T-3 2.05 1.10

Figure 8: Uniform distribution of 575 nodes on a quarter of the plate for the Kirsch
benchmark problem.
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pared to the corresponding analytical ones. The relative error norm of displace-
ments and stresses is calculated through Eq. (18). In Fig. 9 the L2 norms for both
methods and for all four mesh densities are depicted. From Fig. 9(a) it can be drawn
the conclusion that the BEM and the LHBIE method produce almost the same ac-
curate results for the displacement field and they both converge in the same manner.
In Fig. 9(b) it can be noted that the BEM produces better solution of the stress field
compared with the LHBIE, but the latter method seams to converge faster than the
former.

(a) (b)

Figure 9: Relative error norms of (a) displacements and (b) stresses for the Kirsch
benchmark problem.

In Table 1 it is shown the convergence rates of displacements and stresses of both
numerical methods. From that table it can be drawn the conclusion that the pro-
posed LHBIE method has almost the same convergence rate (second order) with
the BEM in terms of the displacement field, and significantly better in terms of the
stress field (almost third order). It can be also seen from that table that if the local
domain is chosen to be of the third type (see Fig. 4(c)) then the convergence rates
tend to fall.

Table 2: Computational time consumed by various numerical methods for solving
the Kirsch benchmark problem for all mesh densities.

# of Nodes BEM BEM∗ MLPG-1 MLPG-5 MLPG-6 MLPG(LBIE) MLPG4(LBIE) LHBIE T-1 LHBIE T-2 LHBIE T-3
410 715s 134s 602s 40s 578s 96s 160s 71s 73s 75s
575 1452s 285s 840s 62s 801s 129s 252s 146s 151s 152s
801 2835s 543s 1248s 101s 1196s 180s 436s 286s 289s 296s
1025 5492s 855s 1636s 146s 1570s 230s 648s 507s 511s 516s
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In Table 2 it is shown the computational time consumed by the BEM and the LHBIE
method to solve the Kirsch benchmark problem for various mesh densities. On the
third column of Table 2 it is shown the computational time consumed by the BEM,
where internal points were not taken into account in the analysis and the numerical
evaluation of stresses is omitted. In addition, it is shown the computational time
consumed by the MLPG-1, MLPG-5 and MLPG-6 formulations, the MLPG(LBIE)
and MLPG4(LBIE) methodologies. As explained in Subsection 2.2, the reason why
it takes more time for the BEM to perform its analysis is the numerical evaluation
of the integrals on the global boundary Γ. On the other hand, the LHBIE evaluates
integrals only on the local boundary Γ(κ) ∪∂Ω(κ) of a node, which is significantly
smaller to that of Γ. In addition, formulations MLPG-1 and MLPG-6 consume
excessive computational time due to the numerical evaluation of volume integrals.
The fastest numerical method of all seems to be the MLPG-5, where the Heaviside
step function is utilized as a test function over the computational domain and only
regular boundary integrals are evaluated.

3.3 Perforated plate under tension

The final numerical example is that of a plate that has five circular holes, as shown
in Fig. 10(a). The same material properties and magnitude of the tension load is
applied, like in the benchmark problem of Subsection 3.1. Due to symmetry of the
geometry and the boundary conditions only the upper right quadrant is analyzed, as
seen in Fig. 10(b). A non-uniform distribution of nodes is adopted, where a density
of 364, 445, 574 and 738 nodes is utilized on the quarter perforated plate.

(a) (b)

Figure 10: (a) Geometry of the perforated plate, (b) a non-uniform distribution of
738 nodes and “background” triangular cells.
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Due to the lack of an analytical solution to this example, the obtained numerical re-
sults of the LHBIE method are compared with the corresponding ones of the BEM.
In Figs. 11, 12 it is depicted the numerical results’ comparison of both methods
for various meshes at lines CD and AB (see Fig. 10(a)), respectively. From these
figures someone can notice that there is good agreement between those numerical
methods on the displacement field (see Figs. 11(a) and 12(a)) and on the evaluation
of the σ11, σ12 stresses (see Figs. 12(b), 12(c) and Figs. 11(b), 11(c)). On the other
hand, on the σ22 stress field the numerical results between the BEM and the LHBIE
method seem not to coincide. One reason why this happens is that the σ22 stress
field is approximately two orders lower than the corresponding maximum value of
the σ11 one.

(a) (b)

(c) (d)

Figure 11: Comparison of numerical results obtained by the BEM and the LHBIE
method at line AB for the perforated plate problem.

For demonstration purposes, in Figs. 13 and 14 the contour plots of the displace-
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(a) (b)

(c) (d)

Figure 12: Comparison of numerical results obtained by the BEM and the LHBIE
method at line CD for the perforated plate problem.

ment and stress field are depicted. The numerical results were obtained by the
LHBIE method, using a 738-node mesh (see Fig. 10(b)) and a Type-1 local domain
stensil.

In addition in Table 3 it is shown the computational time consumed by the conven-
tional boundary elements and the proposed meshless methodology. Once again it
can be noted that the BEM takes significantly more computational time than the
LHBIE method to accomplish its numerical analysis.

4 Remarks

The advantages and disadvantages of the LHBIE methodology, compared to the
conventional Boundary Elements Method and most Meshless Local Petrov-Galerkin
methods can be summarized as follows:
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(a) (b)

Figure 13: Contour plots of the displacement field obtained by the LHBIE method
for the perforated plate problem.

(a) (b)

(c)

Figure 14: Contour plots of the stress field obtained by the LHBIE method for the
perforated plate problem.
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Table 3: Computational time consumed by the BEM and the LHBIE method for
solving the problem of the perforated plate for various types of meshes and for
different size of the local domain.

# of Nodes BEM LHBIE T-1 LHBIE T-2 LHBIE T-3
364 759s 72s 73s 76s
445 1495s 105s 108s 112s
574 2979s 176s 180s 186s
738 5388s 304s 310s 313s

• The discretization of the analyzed domain is performed by placing boundary
and internal nodes. No special discretization rule is required so as to achieve
good solution to the problem.

• No MLS approximation or RBF interpolation schemes are utilized (as in
most meshless methodologies). The use of the trivial shape functions of one-
dimensional elements boosts numerical evaluation of boundary integrals. The
stability of the method is not depended by the decision of a weight function,
as in meshless interpolation schemes.

• The local domain of integration is constant and defined by the union of
”background” triangles. The obtained results of the LHBIE formulation do
not depend on any support domain radius decision, as reported in [Atluri,
Kim, and Cho (1999); Vavourakis, Sellountos, and Polyzos (2006)] for the
MLPG and LBIE methodologies.

• Very fast numerical computation of boundary integrals compared to the cor-
responding integrals of the BEM (local integration on triangular faces and
not on global boundary Γ), and faster to most MLPG formulations proposed
so far.

• Displacements and stresses are treated as independent variables by using an
isoparametric interpolation, as seen in Eq. (13).

• Direct evaluation of stresses with relative accuracy as with displacements.

• Matrix Ai j is 5N ×5N instead of 2N ×2N in conventional BEM. Matrix is
banded and not fully-populated or sparse, which leads to significantly faster
solutions of the final linear system when comparable degrees-of-freedom
with the BEM is the case.
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• The proposed method is sensitive to near hypersingularities, met only in the
integrals over the local boundary ∂Ω(κ). Special treatment must be taken into
account [Bu and Davies (1995); Bu (1997); Yang (2000)].

• The same formulation can be carried out so as to solve time-harmonic prob-
lems with the use of volume integrals, as described in paper [Sellountos and
Polyzos (2003)].

• The Local Hypersingular Boundary Integral Equation method can be easily
expanded for solving three-dimensional problems. It can also be utilized to
solve incompressible and nearly incompressible elastic solids, as in paper
[Vavourakis and Polyzos (2008)].

• This methodology can be combined with the BEM, in case of multi-region
analysis problems with more than one numerical methods being implemented.

5 Conclusions

In the present paper a novel meshless numerical formulation for two-dimensional
elastostatics is proposed. The Local Hypersingular Boundary Integral Equation
method utilizes a local form of the integral representations of displacements and
stresses of the convetional BEM. The analyzed elastic domain is discretized by a
distribution of nodes. From this set of nodes it is defined a “background” mesh of
triangles. The local domain of each node is considered to be the union of its neigh-
bourhood triangles. In this sub-domain, all local boundary integrals are evaluated,
so as to obtain a discrete system of equilibrium equations.

The verification and validity of the proposed methodology is demonstrated by solv-
ing three two-dimensional elastostatic examples. The obtained numerical results
demonstrate the accuracy and stability of the LHBIE formulation, compared with
the BEM.

Acknowledgement: The support of Professors Demosthenes Polyzos and John
A. Ekaterinaris during the preparation of this paper is kindly acknowledged.
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Appendix A: Fundamental Solutions

In this section the fundamental solution to both the displacements and the stresses
boundary integral equations are given, as obtained by literature [Banerjee (1994);
Polyzos, Tsinopoulos, and Beskos (1998); Brebbia and Dominguez (1998)]

The fundamental solutions of the boundary integral Eq. (3) are the ones below

u∗i j =
1

2πμ
[
Ψδi j −X r,i r, j

]
, (19)

t∗i j =
1

2π

[(
dΨ
dr

− X
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∂ r
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δi j + n̂i r, j
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r,i r, j

]
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where μ is the shear modulus μ = E/(2(1 + ν)). The Euclidean distance vector
between source point x(κ) and field point y is denoted with r = y−x(κ), and r ≡‖r‖,
r,i = ri /r, ∂ r/∂ n̂ ≡ r,i n̂i.

The corresponding hypersingular fundamental solutions of Eq. (5) are
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The terms in kernels of Eqs. (19), (20) and Eqs. (21), (22) are the following

Ψ =
4ν̄ −3

4(1− ν̄)
ln(r) , X = − 1

4(1− ν̄)
, (23a)
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dr
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ν̄ −1
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where the modified Poisson ratio is

ν̄ =

{
ν , for plane-strain

ν
1+ν , for plane-stress

. (24)

Appendix B: Free-term coefficient arrays

In this section the analytical expressions of the free-term coefficient arrays of bound-
ary integral equations (3) and (5) are given in detail.

The symmetric matrix of the free-term coefficient of the singular boundary integral
Eq. (3) of displacements is [Guiggiani, Krishnasamy, Rudolphi, and Rizzo (1992);
Mukherjee and Mukherjee (2005)]

αi j = lim
Vε→0

{∫
Γ(κ)s

u∗i j

(
x(κ),y

)
dSy

}
, (25)

where the local boundary Γ(κ)s is depicted in Fig. 2.

The corresponding free-term coefficient tensors of the hypersingular boundary in-
tegral Eq. (5) of stresses are [Guiggiani (1995)]

ai jkl = lim
Vε→0

{∫
Γ(κ)s

[
t∗i jk

(
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)(
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l

)
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)
n̂l (y)

]
dSy

}
, (26)
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and

bi jk = lim
Vε→0

{∫
Γ(κ)s

t∗i jk

(
x(κ),y

)
dSy

}
. (27)

where n̂l is the component of the outward unit normal vector to Γ(κ)s, where field
point y lies.

In the special case when x(κ) lies on a smooth boundary or inside the domain Ω of
the analyzed body, then all elements of array bi jk are equal to zero.


