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Analysis of Dynamic Fracture with Cohesive Crack
Segment Method
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Abstract: In the meshfree cohesive crack method, the discrete crack is modeled
by a set of cohesive crack segments which can be arbitrarily oriented. Propagation
of the crack is achieved by activation of crack surfaces at individual nodes, so no
representation of the crack surface is needed. The crack is modeled by a local
enrichment of the test and trial functions with sign function, so that discontinuities
are along the direction of the crack. A set of cracking rules is developed to avoid
spurious cracking.
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1 Introduction

Besides the existence of numerous powerful computational methods for crack prob-
lems Ortiz, Leroy, and Needleman (1987); Belytschko and Lu (1995); Belytschko,
Lu, and Gu (1995); Belytschko and Tabbara (1996); Belytschko and Fleming (1999);
Macri and De (2008); Volokh (2004); Ostachowicz (2008), the simulation of a large
set of evolving cracks by computational methods still poses substantial difficulties.
The most pertinent difficulty is tracking the crack path that becomes especially
cumbersome for a large set of evolving cracks. Meshfree methods are particularly
suited for crack problems since they do not rely on a mesh that needs to be ad-
justed once a crack propagates. Meshfree methods especially emerged in the 90s.
Most popular meshfree methods are the Meshless Local Petrov Galerkin (MLPG)
method Atluri and Zhu (1998, 2000); Atluri and Shen (2002), the element-free
Galerkin (EFG) method Belytschko, Lu, and Gu (1994a) and the Reproducing
Kernel Particle Method (RKPM) Liu, Jun, and Zhang (1995). Besides of appli-
cations involving fracture, see e.g. Liu, Hao, and Belytschko (1999); Nishioka,
Tchouikov, and Fujimoto (2006); Sladek, V. Sladek, and Zhang (2007); Rabczuk
and Zi (2007); Rabczuk, PMA, and Belytschko (2007); Rabczuk and Belytschko
(2007); Zi, Rabczuk, and Wall (2007); Hao, Liu, and Chang (2000); Hao, Liu, and
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Qian (2000); Rabczuk, Areias, and Belytschko (2007); Chen and Chen (2005); Xu,
Dong, and Zhang (2008); Hao, Liu, Klein, and Rosakis (2004); Wen, Aliabadi,
and Lin (2008); Guo and Nairn (2006a); Rabczuk and Areias (2006a); Miers LS
(2006); Gao, Liu, and Liu (2006a); Guo and Nairn (2006b); Ma, Lu, and Wang
(2006); Fujimoto and Nishioka (2006); Chen, Gan, and Chen (2008); Nishioka
(2005); Andreaus, Batra, and Porfiri (2005); Nairn (2003); Rabczuk and Belytschko
(2006); Maiti and Geubelle (2004); Liu, Long, and Li (2008); ?, their advantages
were exploited in various other applications in fluid and solid mechanics Idelsohn,
Onate, and Pin (2004); Nishioka, Kobayashi, and Fujimoto (2007); Chen, Gan,
and Chen (2008); Vavourakis and Polyzos (2007); Han and Atluri (2004); Nguyen-
Van, N, and Tran-Cong (2008); Rabczuk, Belytschko, and Xiao (2004); Hao and
Liu (2006); Guz, Menshykov, and Zozulya (2007); Mai-Duy, Khennane, and Tran-
Cong (2007); Rabczuk and Areias (2006b); Wu and Liu (2007); Wen and Hon
(2007); Wu and Tao (2007); Wu and Liu (2007); Sladek, Sladek, and Zhang (2007);
Hagihara, Tsunori, and Ikeda (2007); Rabczuk and Belytschko (2005); Guo and
Nairn (2006b); Fujimoto and Nishioka (2006); Gao, Liu, and Liu (2006b); Sladek,
Sladek, and Krivacek (2005); Nishioka, Tchouikov, and Fujimoto (2006); Le, Mai-
Duy, and Tran-Cong (2008); Liu, Long, and Li (2008). An excellent book of mesh-
free methods is the one by Atluri (2002).

The visibility method Belytschko, Lu, and Gu (1994b) or improvements of the vis-
ibility method Organ, Fleming, Terry, and Belytschko (1996) are commonly used
for problems involving cracks. Recently, level set methods have been used by some
meshfree methods for crack problems Ventura, Xu, and Belytschko (2002). Though
no remeshing is needed in meshfree methods, the need to track the crack path re-
mains. Recently, meshfree methods were developed that do not need to track the
crack path Rabczuk and Belytschko (2004, 2007). In these methods, the crack
is modeled by a set of cracked nodes. These can be arbitrarily oriented, but the
growth is represented discretely by activation of crack surfaces at individual nodes,
so no representation of the crack surface is needed. The crack is modeled by a local
enrichment of the test and trial functions with a sign function, so that the disconti-
nuities are along the direction of the crack. The discontinuity consists of cohesive
crack segments that pass through the entire domain of influence at the node. One
major advantage of the method is that it can handle crack propagation and crack
nucleation in the same manner. However, the approach presented in Rabczuk and
Belytschko (2004) often leads to spurious cracking adjacent to existing crack and
henceforth to an overestimation of the cohesive fracture energy similar to interface
elements Ortiz, Leroy, and Needleman (1987); Xu and Needleman (1994).

We present a modification of the method in Rabczuk and Belytschko (2004). The
major goal is to remove spurious cracking and simultaneously maintain the sim-
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plicity of the method. This is accomplished by defining a set of cracking rules.
Since spurious cracking occurs only at crack propagation, crack propagation has
to be distinguished from crack nucleation. In other words, the cracking rules pre-
sented later are only used for propagating cracks. We show by some numerical
experiments that we are able to capture complicated crack patterns. We also show
that we are able to avoid spurious cracking and get convergence in the cohesive
fracture energy even for complicated crack problems.

The paper is outlined as follows: We first describe the element-free Galerkin (EFG)
method and the new cracking method. Then, the discrete equations are derived from
the weak form. The cracking criterion and the cohesive model is described next.
At the end, we will show three examples before we conclude our paper.

2 Element-free Galerkin method

The new cracking method is incorporated in a version of the element-free Galerkin
(EFG) method Belytschko, Lu, and Gu (1994a). The EFG method is based on
Moving Least Square (MLS) approximation written in terms of a polynomial basis
p(X) and unknown coefficients a(X):

ucon(X, t) = ∑
I∈W

pI(X) aI(X) = PT (X) a(X) (1)

where W is the total set of nodes; pT (X) = (1,X ,Y). Minimization of discrete
weighted L2 error norm E with respect to the unknown coefficients a

E = ∑
I∈W

(
PT (XI) a(XI)−uI

)2
w(X−XI ,h) (2)

leads to the final EFG approximation

ucon(X, t) = ∑
I∈W

NI(X)uI(t) (3)

with

NI(X) = pT (X) A−1(X) DI(X) (4)

and

DI(X) = w(X−XI ,h)pT (XI)
AI(X) = ∑

I∈W

w(X−XI ,h) p(XI) pT (XI) (5)

The superimposed con in eq. (3) denotes the continuous displacement field; w(X−
XI ,h) is the weighting function and h is the interpolation radius of this weighting
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function. For dynamic fracture, it is important to express the weighting function in
term of material coordinates since kernel functions expressed in spatial coordinates
can lead to instabilities and numerical fracture as shown by e.g. Belytschko, Guo,
Liu, and Xiao (2000).

3 Displacement Field

Consider a displacement field which is continuous in the entire domain except at
the crack where a discontinuity occurs in the displacement field. To describe this
discontinuity, the displacement is decomposed into continuous and discontinuous
parts:

u(X) = ucon(X)︸ ︷︷ ︸
continuous

+ udis(X)︸ ︷︷ ︸
discontinuous

(6)

In Rabczuk and Belytschko (2004), the crack is modeled by a set of discrete cracks
that cross the entire domain of influence of a node. These discrete cracks are re-
stricted to lie on a plane passing through this node, see figure 1. The major advan-
tage is that no representation for the geometry of the crack is needed.

The approximation of the discontinuous displacement field is

udis(X) = ∑
I∈Wc

NI(X) H(X) qI (7)

where Wc are the set of cracked nodes, qI are additional unknowns and H(X) is
the step function that introduces the jump in the displacement field. Note that only

crack

(a) continuous crack (b) Discretization with crack segments

Figure 1: a) Continuous crack and b) representation of the crack with discrete
cohesive crack segments
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n

xI

Figure 2: Normal of the crack segment

cracked nodes are enriched that significantly simplifies the implementation of the
method. Only a small portion of the entire nodes are affected by the crack and the
crack surface is entirely determined by the position vector of the cracked node and
its normal that is obtained from the cracking criterion explained later, figure 2:

H(X) =
{

1 if n · (X−XI) > 0
−1 if n · (X−XI) < 0

(8)

The jump in the displacement field only depends on the additional unknowns q and
is given by

[[u]](X) = ∑
I∈Wc

2 NI(X) qI (9)

The test functions δu have a similar structure:

δu(X) = ∑
I∈W

NI(X)δuI(t)+ ∑
I∈Wc

NI(X) H(X) δqI (10)

As noted in the introduction, without further modification of the method, spurious
crack nucleation is obtained when the crack propagates. This will be demonstrated
later for some numerical examples. Therefore, we suggest the following modifica-
tions:

• A criterion is needed that distinguishes crack nucleation from crack propa-
gation.

• A criterion is needed for crack branching.



258 Copyright © 2008 Tech Science Press CMES, vol.35, no.3, pp.253-274, 2008

• A criterion is needed to avoid spurious cracking.

Crack nucleation is distinguished from crack propagation by searching for existing
cracked nodes in the vicinity of a newly inserted cracked node. The search domain
is a circle of radius α rm with rm being the interpolation radius of the weighting
function and α is a parameter. In all computations, the parameter α is set to 1.2
though results did not significantly change for larger parameters of α .

(a) (b)

Figure 3: a) Spurious cracking during crack propagation and b) crack propagation
without spurious cracking

Spurious cracking can occur adjacent to an existing crack, figure 3, or close to the
crack tip, figure 4. The first type of spurious cracking is avoided by an exclusion
zone that does not allow development of parallel cracks far away from the crack
tip, figure 3. The crack tip is defined as the last cracked node for the case "crack
propagation".

In most dynamic computations, cracking criterion is met at several material points
around the crack tip due to similar stress states, figure 3. This can lead to branch-
ing cracks. Allowing only one node in front of the crack tip to crack avoids crack
branching completely. Therefore, a criterion for crack branching has to be intro-
duced first. A crack is assumed to branch if the angle between an existing crack
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tip node and newly initiated cracks exceeds a certain value. Therefore, we compute
deviation in the crack direction, figure 4:

γmax = max︸︷︷︸
I∈W̃c

(nct ·nI) ∀ I ∈ W̃c (11)

γmin = min︸︷︷︸
I∈W̃c

(nct ·nI) ∀ I ∈ W̃c (12)

where W̃c ⊂Wc is the set of newly cracked nodes, i.e. between time step n and time
step n+1. If γmax−γmin ≥ T OL, the crack branches. In the current implementation,
we allow only two branches though this is not compulsory.

After deciding if crack branches or not, a criterion has to be implemented that
avoids spurious cracking. Let K = 1 or 2 denote the number of crack branches of
an associated advancing crack. Then, K number of cracked nodes are introduced
in front of an existing crack tip. The closest node(s) where the cracking criterion is
met, will be cracked. If K = 2, two crack tips (of the original 1 crack) will exist in
the next time step.

It is instructive to mention that generally cracking criterion is met at several material
points under crack initiation. In this case, we also allow only one node to crack at
a time. The position of the cracked node is obtained by an average procedure. The
closest node to the averaged position vector of all nodes that meet cracking criterion
is cracked.

4 Weak Form and Discretization

The linear momentum equation is

∇ ·P+ρb = ρ ü, X ∈ Ω (13)

where P is the nominal stress tensor, ρ is the density, b are body forces and the
superimposed dots denote material time derivatives. The displacement and traction
boundary conditions are:

u = ū, X ∈ Γu (14)

nt ·P = t̄, X ∈ Γt (15)

nc ·P = tc([[u]]), X ∈ Γc (16)

where the index c refers to the crack, the index t refers to traction boundaries and the
index u refers to displacement boundaries. The weak form of the linear momentum
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nct

Figure 4: Crack with crack tip node (solid line) at time n and nodes that meet
cracking criterion at time n+1 (dashed line)

equation is: Find u ∈ U and δu ∈ U0 such that

δW = δWint −δWext +δWinertia +δWcoh = 0 (17)

with

δWint =
∫

Ω
∇δu : P dΩ

δWext =
∫

Γt

δu · t̄ dΓ+
∫

Ω
ρδu ·b dΩ

δWinertia =
∫

Ω
ρδu · ü dΩ

δWcoh =
∫

Γc

δ [[u]] · tc dΓ (18)

and U and U0 are the approximation spaces for the trial and test functions:

U =
{

u(X, t)|u ∈ H1, u = ū on Γu, u discontinuous on Γc
}

U0 =
{

δu|δu ∈ H1, δu = 0 on Γu, δu discontinuous on Γc
}

(19)
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The discretized equations are obtained by substituting the test and trial functions
into equation (17):

n

∑
J=1

∫
ΩJ

∇δuJ : P dΩ−
n

∑
J=1

∫
Γt,J

δu · t̄ dΓ−
n

∑
J=1

∫
ΩJ

ρδu ·b dΩ

+
∫

Γc,J

δ [[u]] · tc dΓ+
n

∑
J=1

∫
ΩJ

ρδu · ü dΩ = 0 (20)

The final system of equations in matrix form is given by:

[
Muu

IJ Muq
IJ

Mqu
IJ Mqq

IJ

]
·

[
üJ

q̈J

]
=

[
fu
I,ext − fu

I,int

fq
I,ext − fq

I,int

]
(21)

with

fu
I,ext =

∫
Γt

(Nu
I )

T tdΓ+
∫

Ω
(Nu

I )
T bdΩ (22)

fq
I,ext =

∫
Γt

(
Nq

I

)T tdΓ+
∫

Ω

(
Nq

I

)T bdΩ

+
∫

Γc

[[
(
Nq

I

)T ]] tcdΓ with Nq
I = NI Ψ(X) (23)

fu
I,int =

∫
Ω

(Bu
I )

T PdΩ (24)

fq
I,int =

∫
Ω

(
Bq

I

)T PdΩ with Bq
I = Ψ(X)∇NI (25)

Muu
IJ = Mqq

IJ =
∫

Ω
ρNI NT

J dΩ

Muq
IJ = Mqu

IJ =
∫

Ω
ρΨ(X) NI NT

J dΩ (26)

The integrals are evaluated by stress point integration as explained detailed in
Rabczuk and Belytschko (2004). We use explicit central difference time integra-
tion. To benefit from explicit time integration, one generally takes advantage of
lumped mass matrix. However, in the presence of additional degrees of freedom q,
standard mass lumping might lead to negative masses.

F.L., Colominas, Mosqueira, Navarrina, and Casteleiro (2004) showed that the
lumped mass matrix obtained via the volume of Voronoi cells (M = V · ρ where
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Figure 5: Cracked nodes with crack segments (solid lines) and Voronoi cells
(dashed line)

V is the volume of the Voronoi cell and ρ is the density of the material) is identical
to lumped mass matrix from standard row-sum technique. We therefore build the
lumped mass matrix from Voronoi cells. The mass of the (enriched) cracked node
is modified according to its area ratio, figure 5. Results by this method were sim-
ilar to the results obtained from using consistent mass matrix. Since the cracked
node always lies in the middle of the associated Voronoi cell, figure 5, the critical
time step is influenced only marginal. We use a Courant number of 0.5 and did not
observe any instabilities.

5 Cracking criterion and cohesive law

Rankine criterion determines the onset of cracking and crack propagation. The
crack is introduced perpendicular to the direction of the maximum principal stress.
The traction acting across the crack surface are related to the jump in the displace-
ment, equation (9). It can be decomposed into a normal and tangential part:

δn = [[u]] ·n (27)

δt = |[[u]]s = |[[u]]−δnn| (28)

We use the cohesive law proposed by Pandolfi, Krysl, and Ortiz (1999) that makes
use of effective crack opening displacement

δ =
√

β 2δ 2
t −δ 2

n (29)

where the parameter β defines the ratio between tangential and normal critical trac-
tion. The effective traction-separation law is given by

t =
tmax

δmax
δ if δ ≤ δmax or δ̇ < 0 (30)
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The traction vector is then computed by

t =
t
δ

(
β 2[[u]]s +δnn

)
(31)

More details are given in Pandolfi, Krysl, and Ortiz (1999).

40m
m

1MPa

1MPa

50mm

100mm

20m
m

Figure 6: Plate with a horizontal initial notch under tensile tractions

6 Results

6.1 Crack branching

The first example is the pre-notched specimen under tensile loading, σ = 1MPa,
shown in figure 6. Numerical results for this problem are reported in Xu and
Needleman (1994) and experimental results with different dimensions are available
in Ravi-Chandar (1998); Sharon, Gross, and Fineberg (1995); Fineberg, Sharon,
and Cohen (2003). The Young’s modulus is E = 32,000MPa and Poisson’s ratio
is ν = 0.20. The initial Rayleigh wave speed is cR = 2119.0m/s. This problem
is studied with different refinements. The tolerance angle deciding about crack
branching was 30 degree. We also studied this problem without the set of cracking
rules proposed in the previous sections.

The pattern of crack propagation at different stages of the simulation is shown in
figure 7. Without avoiding spurious cracking, the crack pattern is fringy and the
width of the crack varies. These observations agree with the results in Rabczuk and
Belytschko (2004). The speed of the crack tip is shown in figure 8. The spurious
cracks do not seem to have any influence on the crack speed. This suggests that
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(a) 4141 nodes; with spurious cracking (b) 16281 nodes; with spurious cracking

(c) 4141 nodes; without spurious crack-
ing

(d) 16281 nodes; without spurious
cracking

Figure 7: Crack pattern for the crack branching problem
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Figure 8: Crack tip speed for the crack branching problem
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the spurious cracks occur adjacent to the crack far away from the crack tip. We
also observe increase in the crack speed before the crack branches. Afterwards, the
crack speed decreases. This is in agreement with results reported by other authors
Sharon, Gross, and Fineberg (1995); Fineberg, Sharon, and Cohen (2003); Ravi-
Chandar (1998).

The cohesive fracture energy is reported in figure 9. It is lower when spurious
cracking is avoided. The cohesive fracture energy diverges or converges very
slowly when spurious cracking is not suppressed.

6.2 Kalthoff experiment

JF and Winkler (1987) reported experimental results in which a plate with two ini-
tial edge notches is impacted by a projectile. The experimental set-up is shown in
figure 10. The impact velocity is 20m/s. In the experiment, a crack propagated with
angle of about 70 degrees versus the horizontal axis. We study this problem. Only
the upper part of the plate is modeled due to symmetry. The material properties of
the steel used in the experiment JF (2000) are Young’s modulus E = 190GPa, den-
sity ρ = 8000kg/m3 and Poisson’s ratio ν = 0.3. The crack path at the end of the
simulation is illustrated in figure 11 and agrees well with the experimental results.
The crack speed is shown in figure 12a. It is not influenced by spurious crack-
ing. However, the cohesive fracture energy is significantly higher when spurious
cracking is not suppressed, figure 12.

7 Conclusions

We presented a set of cracking rules to avoid spurious cracking in a simplified
meshless method with embedded discontinuities. The simplified method is based
on local partition of unity and introduces discrete cracks at nodes. The crack is
represented by a set of discrete cracked nodes. No representation of crack surface
is needed that makes the method appealing for many cracks.

We showed that the method can handle complicated problems with many cracks
and also branching cracks. We showed improvements in the crack pattern and
showed that with the cracking rules, convergence in the cohesive fracture energy is
obtained.
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cracking

Figure 11: Final crack path of the Kalthoff problem
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