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The Artificial Boundary Method for a Nonlinear Interface
Problem on Unbounded Domain

De-hao Yu1 and Hong-ying Huang2

Abstract: In this paper, we apply the artificial boundary method to solve a three-
dimensional nonlinear interface problem on an unbounded domain. A spherical
or ellipsoidal surface as the artificial boundary is introduced. The exact artificial
boundary conditions are derived explicitly in terms of an infinite series and then
the well-posedness of the coupled weak formulation in a bounded domain, which
is equivalent to the original problem in the unbounded domain, is obtained. The
error estimate depends on the mesh size, the term after truncating the infinite series
and the location of the artificial boundary. Some numerical examples are presented
to demonstrate the effectiveness and accuracy of this method.
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1 Introduction

In many fields of scientific and engineering computing, the boundary value prob-
lems of the partial differential equations on some unbounded domains are often
met. The boundlessness of the domains brings the essential difficulties for solving
these problems numerically. There are several methods for solving these problems.
The artificial boundary method is one of them. It is particularly attractive for exte-
rior problems or problems in domains extending to infinity.

The artificial boundary method reduces the original problem in an unbounded do-
main to an equivalent problem in a bounded domain with some suitable boundary
conditions on the artificial boundary. The standard procedure of the method may
be simply described as follows. First, one divides the domain into two subregions,
a bounded inner region and an unbounded outer region by introducing an auxil-
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iary common boundary. Next, the problem is reduced to an equivalent one in the
bounded inner region. This reduction will be accomplished by deriving either a lo-
cal natural boundary condition or a nonlocal boundary condition, which relates the
Cauchy data of the solution on the common boundary. Because of the necessity of
deriving this boundary condition on the common boundary, one needs generally to
apply boundary integral methods to the unbounded outer region. This reduction to
an equivalent problem is by no means a unique process. The first significant result
concerning the theoretical justification of a coupling procedure of this type seems
due to Brezzi and Johnson (1979) and Johnson and Nedelec (1980). It is based
on the classical direct boundary integral method. Further theoretical developments
with respect to various coupling procedures may be found in Wendland (1986),
Costabel (1987), Feng (1983), Han (1990), Hsiao and Proter (1986), MacCamy
and Marin (1980). Most of these coupling methods are not direct and natural. A
direct and natural coupling of the finite and boundary elements was suggested first
by Feng and Yu (1983), where the imposed boundary condition on the artificial
boundary is exact, non-reflective and nonlocal. The method leads to a symmet-
ric and coercive bilinear form and then this method is called the natural coupling
method of FEM and BEM, or the exact artificial boundary method. Because the
exact artificial boundary condition is just the Dirichlet to Neumann mapping on the
artificial boundary, this method is also called the DtN method [Keller and Givoli
(1989), Grote and Keller (1995)].

Yu (2002) has given many kinds of equivalent forms of the natural boundary inte-
gral operator, i.e., the exact artificial boundary condition for the two-dimensional
elliptic problems, Stokes equations and linear elastic equations on the circle artifi-
cial boundary. Wu and Yu (2000) obtained the exact artificial boundary condition
based on the elliptic boundary while Wu (1999), Grote and Keller (1995) attained
the exact artificial boundary one on the spherical boundary. More recently, Huang
and Yu (2007) derive the exact artificial boundary one on the spheroidal boundary
and general ellipsoidal boundary. The exact artificial boundary condition is gener-
ally expressed explicitly in terms of an infinite series. However, in the numerical
computation, the infinite series need to be truncated and then this will result in
the truncation error. The error estimate of the numerical approximation solution
which has first been given by Yu (1985) showed how the error depend on the mesh
size, the position of the artificial boundary and the term after truncating the infi-
nite series. The artificial boundary method, originally designed for treating linear
problems [Yu (2002)], works equally well for the case of the evolution equation
by Du and Yu (2000, 2001), the electromagnetic problems by Liu (2007), an ade-
quate combination of linear and nonlinear partial differential equations by Hu and
Yu (2001).
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For the three-dimensional exterior problems, a spherical surface [Grote and Keller
(1995), Wu (1999)] is usually selected as the artificial boundary. However, for a
cigar-shaped or flying saucer-shaped obstacles, a prolate or oblate spheroidal sur-
face [Huang (2007), Huang and Yu (2006)] is used as the artificial boundary very
efficiently, since it leads to the smaller computational domain, as shown in Fig. 1,
and doesn’t result in the increase in the computational complexity of the stiff matrix
from the boundary reduction with the spheroidal artificial boundary. On the other
hand, an anisotropic exterior problem with constant coefficients with a spherical ar-
tificial boundary can be reduced to an isotropic problem with an ellipsoid artificial
boundary. For the general ellipsoidal artificial boundary, the exact artificial bound-
ary pertains to the Lamé functions and the ellipsoidal harmonic functions which are
too complicated, but the computation complexity of the ellipsoidal harmonic func-
tions is not greater than ones of the spherical harmonic functions when the term of
the series amounts to a certain value [Huang (2007)].

Γ
0
 

Ω 

Ωc 

Figure 1: Cross-section of Cigar-shaped, ellipsoid and sphere.

Nonlinear interface problems widely occur in fluid mechanics [Feistauer (1985,
1987)] and elasticity [Carstensen and Gwinner (1997), Costabel and Stephan (1990)].
In this paper, we apply the artificial boundary method to solve a three-dimensional
nonlinear interface problem in R

3. Specifically, the boundary value problem con-
sists of a nonlinear second order elliptic equation in divergence form in a bounded
inner region, and the Laplace equation in the corresponding unbounded exterior
region, in addition to appropriate boundary and transmission conditions. In Sect.
3, a spherical, spheroidal or general ellipsoidal surface as the artificial boundary is
introduced. The exact artificial boundary conditions are derived explicitly in terms
of an infinite series and then the well-posedness of the coupled variational problem
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is obtained. In Sect. 4, we give existence and uniqueness of the solution of the
discrete problem and derive asymptotic error estimate. The error estimate shows
the error depends on the mesh size, the term after truncating the infinite series and
the location of the artificial boundary. Some numerical examples are presented in
Sect. 5 to demonstrate the effectiveness and accuracy of this method. Finally, we
state the conclusions in Sect. 6.

2 The problem described

We consider a nonlinear elliptic differential equation in a bounded Lipschitz do-
main Ω ⊂ R

3 and a linear elliptic differential equation in Ωc := R
3\(Ω∪∂Ω) and

their solutions are connected by conditions on the interface boundary Γ0 = ∂Ω. For
given f ∈ L2(Ω),u0 ∈ H1/2(Γ0), t0 ∈ H−1/2(Γ0) , the interface problem reads: find
u1 ∈ H1(Ω), u2 ∈ H1

loc(Ωc) such that

−div(p(|∇u1|) ·∇u1)+u1 = f , in Ω, (1)

−Δu2 = 0, in Ωc, (2)

with the transmission conditions

u1 = u2 +u0, p(|∇u1|)∂u1

∂n
=

∂u2

∂n
+ t0 on Γ0, (3)

and the radiation condition at infinity

u2(x) = O(
1
|x|) for |x| → ∞, (4)

where p(t) ∈ C1({0}∪R
+) satisfies the condition p0 ≤ p(t) ≤ p1 < ∞ and α ≤

p(t)+ t p′(t)≤ β for constants p0, p1,α ,β > 0 [see Stephan (1992)] and n denotes
the unit normal vector on Γ0 defined almost everywhere pointing from Ω into Ωc.

Let Hs(Ω),Hs(Γ0) and H−1/2(Γ0) denote the usual Sobolev spaces [Lions and Ma-
genes (1972)] and H1

loc(Ωc) = {v : v|O ∈ H1(O) for any O = Ωc ∩ B with Ω ⊂⊂
B ⊂⊂ R

3}, where B is any ball. According to the radiation condition Eq. 4 and
the essential boundary conditions Eq. 3, define the set of admissible functions Ĉ :=
{(v1,v2)∈H1(Ω)×H1

loc(Ωc) : v1|Γ0 = v2|Γ0 +u0,and v2 satisfies Eq.4} and the set of
trial functions Ĉ∗ := {(v1,v2)∈H1(Ω)×H1

loc(Ωc) : v1|Γ0 = v2|Γ0, and v2 satisfies Eq.4}.
Obviously, Ĉ is a nonempty convex set.

The weak form of problem Eq. 1-Eq. 4 is to find u = (u1,u2) ∈ Ĉ such that for any
v = (v1,v2) ∈ Ĉ∗∫

Ω
(p(|∇u1|)∇u1 ·∇v1 +u1v1)dx

+
∫

Ωc
∇u2 ·∇v2 dx = L(v),

(5)
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where dx = dx1 dx2 dx3,

L(v) :=
∫

Ω
f v1 dx+

∫
Γ0

t0v2 dS. (6)

Obviously, L : H1(Ω)×H1
loc(Ωc) → R is a bounded linear functional.

3 The coupled problem and its well-posedness

In terms of the special shape of the domain Ω, we choose the different boundary
Γ (e.g., the spherical, prolate spheroidal, oblate spheroidal or general ellipsoidal
surface) as the artificial boundary and Γ ⊂ Ωc. Then Γ divides Ωc into two sub-
regions: a bounded inner region Ω1 and an unbounded outer region Ω2 such that
Ω1 ∩Ω2 = /0. Let Ω0 = Ω∪Ω1 ∪Γ0, u21 = u2|Ω1 and u22 = u2|Ω2. According to
the natural boundary reduction principle [Yu (2002)], if w ∈ D1 := {v ∈ H1

loc(Ω2) :
v such that Eq.4}, then for any v ∈ D1

< K (w),v >Γ= −
∫

Γ

∂w
∂n

vdS =
∫

Ω2

∇w ·∇vd x.

Here, the operator K : H
1
2 (Γ)→H− 1

2 (Γ)(i.e., Dirichlet to Neumann map or Steklov-
Poincare operator) is the natural integral operator [Yu (2002)]. K (u2) is also the
exact boundary condition on the artificial boundary Γ. In the following, we will
give the explicit expression of the operator K .

When Γ is a spherical surface, let (R,θ ,ϕ) denote its spherical coordinate. From
Wu (1999), the solution of the Laplace equation over the unbounded outer domain
Ω2 is for any u2 ∈ H1/2(Γ)

u2(r,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Rn+1

rn+1 UnmYnm(θ ,ϕ) (7)

and the normal derivative of u2 on Γ satisfies

∂u2

∂n
|Γ =

∞

∑
n=0

n

∑
m=−n

n+1
R

UnmYnm(θ ,ϕ),

where Unm =
∫ π

0

∫ 2π
0 u2|ΓY∗

nm(θ ,ϕ) sinθ dθ dϕ , Ynm(θ ,ϕ) are the spherical har-
monic functions and Y∗

nm is the conjugate complex number of Ynm. Let V ∗
nm =∫ π

0

∫ 2π
0 v|ΓYnm(θ ,ϕ) sinθdθdϕ , then

< K (u2),v >Γ= R
∞

∑
n=0

n

∑
m=−n

(n+1)V ∗
nmUnm. (8)
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When Γ is a spheroidal surface{(x1,x2,x3) : (x2
1 +x2

2)/a2+x2
3/b2 = 1}(If a > b, Γ is

oblate; If a < b, Γ is prolate.) and (μ1,θ ,ϕ) denotes its oblate or prolate spheroidal
coordinate, let

Tnm(μ) =

⎧⎪⎪⎨
⎪⎪⎩
−dQm

n (coshμ)/dμ
Qm

n (coshμ)
sinhμ , for Γ is prolate spheroidal surface

−dT m
n (sinhμ)/d μ
T m

n (sinhμ)
coshμ , for Γ is oblate spheroidal surface

where Qm
n (x) denote the associated Legendre functions of the second kind and

T m
n (x) = iexp(

iπn
2

)Qm
n (ix), i2 = −1.

From Huang (2007), for the prolate spheroidal surface, the solution of the Laplace
equation over the unbounded outer domain Ω2 is

u(μ ,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Qm
n (coshμ)

Qm
n (coshμ1)

UnmYnm (9)

and the normal derivative of u2 on Γ satisfies

∂u2

∂n
|Γ =

−
∞

∑
n=0

n

∑
m=−n

Tnm(μ1)UnmYnm

f0

√
cosh2 μ1 −cos2 θ

and for the oblate spheroidal surface, the solution of the Laplace equation over the
unbounded outer domain Ω2 is

u(μ ,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

T m
n (sinhμ)

T m
n (sinhμ1)

UnmYnm (10)

and the normal derivative of u2 on Γ satisfies

∂u2

∂n
|Γ =

−
∞

∑
n=0

n

∑
m=−n

Tnm(μ1)UnmYnm

f0

√
cosh2 μ1 − sin2 θ

.

Thus, we obtain

< K (u2),v >Γ= f0

∞

∑
n=0

n

∑
m=−n

Tnm(μ1)V ∗
nmUnm, (11)
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where f0 =
√
|a2−b2|, Ynm, Unm and V ∗

nm are the same as the above definition for
the spherical surface.

When Γ is a general ellipsoidal surface {(x1,x2,x3) : x2
1/a2+x2

2/b2+x2
3/c2 = 1, a >

b > c > 0} and (a,λ2,λ3) denotes its ellipsoidal coordinate. From Huang (2007),
the solution of the Laplace equation over the unbounded outer domain Ω2 is

u(λ1,λ2,λ3) =
∞

∑
n=0

2n+1

∑
p=1

F p
n (λ1)

F p
n (a)

U p
n E p

n (λ2)E p
n (λ3) (12)

and the normal derivative of u2 on Γ satisfies

∂u2

∂n
|Γ =

∞

∑
n=0

2n+1

∑
p=1

dF p
n (a)/dλ1

F p
n (a)

bcU p
n E p

n (λ2)E p
n (λ3)√

(a2−λ 2
2 )(a2−λ 2

3 )
,

and

< K (u2),v >Γ= −bc
∞

∑
n=0

2n+1

∑
p=1

dF p
n (a)/dλ1

F p
n (a)

U p
n V p

n , (13)

where E p
n (λ ) denote the n order Lamé functions of the first kind with the eigenvalue

p, F p
n (λ ) denote the Lamé functions of the second kind,

U p
n =

∫
Γ

u(a,λ2,λ3)
E p

n (λ2)E p
n (λ3)√

(a2−λ 2
2 )(a2−λ 2

3 )

dS√
γ p

n

,

γ p
n =

∫
Γ

(
E p

n (λ2)E p
n (λ3)

)2
dS√

(a2 −λ 2
2 )(a2−λ 2

3 )

and

dS =

√
(a2 −λ 2

2 )(a2−λ 2
3 )(λ 2

2 −λ 2
3 )dλ2 dλ3√

(k2−λ 2
2 )(λ 2

2 −h2)
√

(k2 −λ 2
3 )(h2−λ 2

3 )
,

E p
n (λ2)E p

n (λ3) =
E p

n (λ2)E p
n (λ3)√

γ p
n

.

Here, k2 = a2 −c2,h2 = a2 −b2.

In numerical computing, we replace the series ∑∞
n=0 with the Nth partial sum ∑N

n=0.
Let < KN(u2),v >Γ denote the Nth partial sum of the series < K (u2),v >Γ.
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Lemma 1 [Huang (2007)] The bilinear forms < K (u),v >Γ and < K (u)N,v >Γ
on H1/2(Γ)×H1/2(Γ) have the following properties:
1). Two bilinear forms are symmetric about u,v.
2). For any u,v ∈ H1/2(Γ), there exist the positive constant C1 and C2 such that

| < K (u),v >Γ | ≤C1‖u‖H1/2(Γ)‖v‖H1/2(Γ),

| < KN(u),v >Γ | ≤C2‖u‖H1/2(Γ)‖v‖H1/2(Γ).

3). For any v ∈ H1/2(Γ), there exists a positive constant α such that

< K (v),v >Γ≥< KN(v),v >Γ> α
(∫

Γ
vdσ

)2

.

Let

V = {(v1,v2) ∈ H1(Ω)×H1(Ω1) : v1 = v2 +u0 on Γ0},

V ∗ = {(v1,v2) ∈ H1(Ω)×H1(Ω1) : v1 = v2 on Γ0}
with the norm

‖v‖V =
(
‖v1‖2

H1(Ω) +‖v2‖2
H1(Ω1)

) 1
2
.

Denote

B(u;v) =
∫

Ω
(p(|∇u1|)∇u1 ·∇v1 +u1v1)dx+

∫
Ω1

∇u2 ·∇v2 dx+ < K (u2),v2 >Γ

and

BN(u;v) =
∫

Ω
(p(|∇u1|)∇u1 ·∇v1 +u1v1)dx+

∫
Ω1

∇u2 ·∇v2 dx+ < KN(u2),v2 >Γ,

then the problem Eq. 5 is equivalent to the following weak formulation to find
u = (u1,u2) ∈V such that

B(u;v) = L(v), ∀v = (v1,v2) ∈V ∗. (14)

By truncating the series < K (·), ·>, the weak formulation is to find uN = (uN
1 ,uN

2 )∈
V such that

BN(uN ;v) = L(v), ∀v = (v1,v2) ∈ V ∗. (15)
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In order to obtain the existence and uniqueness of solution of the original interface
problem, we must give the Euler equations of the problem Eq. 14 and Eq. 15.
Define Φ : V → R by

Φ(u) :=
∫

Ω
(g(|∇u1|)+

1
2
|u1|2)dx+

1
2

∫
Ω1

|∇u2|2 dx+
1
2

< K (u2),u2 >Γ −L(u),

where

g : [0,∞) → [0,∞), t −→ g(t) =
∫ t

0
sp(s)ds.

Clearly, 1
2 p0t2 ≤ g(t)≤ 1

2 p1t2. Thus, for any u ∈ H1(Ω),

G(u) :=
∫

Ω
g(|∇u|)dx

is bounded. Let

ΦN(u) = G(u1)+
∫

Ω

1
2
|u1|2 dx+

1
2

∫
Ω1

|∇u2|2 dx+
1
2

< KN(u2),u2 >Γ −L(u),

then the coupled minimization problem is to find u = (u1,u2) ∈V such that

Φ(u) = inf
v∈V

Φ(v). (16)

The approximate minimization problem is to find uN = (uN
1 ,uN

2 ) ∈ V such that

ΦN(uN) = inf
v∈V

ΦN(v). (17)

In the following, we refer to Carstensen and Gwinner (1997) and discuss the well-
posedness of the problem Eq. 16 and Eq. 17.

Lemma 2 For any u ∈ V and v ∈ V ∗, the following conclusions hold.
1). The Gateaux derivative of Φ is

DΦ(u;v) = B(u;v)−L(v). (18)

2). DΦ is strongly monotone and Lipschitz-continuous for the bounded arguments
with respect to the norm ‖ · ‖V [see Ciarlet (1978)].

Proof. For any u ∈V and v ∈V ∗, p(t) ∈ C1({0}∪R
+) implies

lim
t→0

Φ(u+ tv)−Φ(u)
t

=
∫

Ω
p(|∇u1|)∇u1 ·∇v1 dx+

∫
Ω

u1v1 dx+
∫

Ω1

∇u2 ·∇v2 dx

+ < K (u2),v >Γ −L(v).



236 Copyright © 2008 Tech Science Press CMES, vol.35, no.3, pp.227-252, 2008

Since∣∣∣∣
∫

Ω
p(|∇u|)∇u ·∇vdx

∣∣∣∣≤ p1

∫
Ω
|∇u||∇v|dx ≤ p1‖∇u‖L2(Ω)‖v‖H1(Ω),

for a fixed u, DΦ(u;v)−L(v) is a bounded linear functional on V ∗. This solves 1).
Similarly, we can obtain

D2Φ(u;v;w) =
∫

Ω

(
(∇v1)TE(∇u1)∇w1 +w1v1

)
dx

+
∫

Ω1

∇w2 ·∇v2 dx+ < K (w2),v2 >Γ

with the 3×3-unit matrix I3×3 and

E(t) := p(t)I3×3 + t p′(t)(sign t) · (sign t)T ∈ R
3×3,

where t ∈ R
3; t := |t|, signt is the unit vector with respect to the direction t. Three

eigenvalues of the matrix E(t) are t p′(t)+ p(t) and p(t) (double). Since t p′(t)+
p(t) > α > 0 and p(t) > p0 > 0, E(t) is symmetric positive definite. Then D2Φ(u;v;w)
with respect to w is still a bounded linear functional on V ∗. For all u,w ∈ V , there
is t1 ∈ (0,1) such that

DΦ(u;u−w)−DΦ(w;u−w) = D2Φ(w+ t1(u−w);u−w;u−w).

Thus, Friedrichs inequality and the properties of the matrix E(t) satisfy

DΦ(u;u−w)−DΦ(w;u−w) ≥C1‖u1−w1‖2
H1(Ω)

+|u2 −w2|2H1(Ω1) +C2

(∫
Γ
(u2 −w2)dσ

)2

≥C
(
‖u1 −w1‖2

H1(Ω) +‖u2 −w2‖2
H1(Ω1)

)

and for any bounded ball B(0;M) = {w ∈V : ‖w‖V ≤ M}, we have

DΦ(u;u−w)−DΦ(w;u−w) ≤C
(
‖u1−w1‖2

H1(Ω) +‖u2 −w2‖2
H1(Ω1)

)
.

Theorem 1 The functional Φ has a unique minimizer on V and the minimizer is
just the unique solution of the weak formulation Eq. 14. The functional ΦN has a
unique minimizer on V and the minimizer is just the unique solution of the weak
formulation Eq. 15.
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Proof. Given u0 ∈ H1/2(Γ0), there exists u1 ∈ H1(Ω) with u1|Γ0 = u0. Taking
u2 = 0 in H1(Ω1), we obtain u = (u1,u2) ∈ V and Φ(u) < ∞, that is to say V �= /0
and if Φ has a minimizer on V , then the minimizer must be finite. Obviously,
V is also closed and convex. In the following, we prove that Φ is weakly lower
semicontinuous in V . For all u ∈ V , if the sequence {un}∞

1 weakly converge to u ,
then the monotonicity of DΦ and the Taylor formula of Φ imply that there exists a
t ∈ (0,1), such that

Φ(un)−Φ(u) = DΦ(u+ t(un−u);un −u) ≥ DΦ(u;un−u).

Since DΦ(u;w) with respect to w is a linear bounded functional on V ∗, we have
DΦ(u;un−u) → 0 and then Φ is weakly lower semicontinuous in V . On the other
hand, for any v = (v1,v2)∈V , Frierichs inequality and the properties of p(t) satisfy

Φ(v)≥ C1‖v1‖2
H1(Ω) +C2‖v2‖2

H1(Ω1) −‖ f‖L2(Ω)‖v1‖L2(Ω)−‖t0‖H−1/2(Γ0)‖v2‖H1/2(Γ0).

Thus,

lim
‖v‖V →∞

v∈V

Φ(v) = +∞.

i.e., for given w ∈V , there exists a positive constant M such that

‖v‖V > M ⇒ Φ(v) ≥ Φ(w), ∀v ∈V.

According to the concerned conclusions [Ciarlet (1978)], Φ has at most one min-
imizer on V . Let u = (u1,u2) ∈ V is the minimizer of Φ on V , for any ±v ∈ V ∗,
lemma 2 implies that

0 ≤ lim
t→0+

Φ(u± tv)−Φ(u)
t

= ±(B(u;v)−L(v)).

Thus, u = (u1,u2) must be the solution of the weak formulation Eq. 14. Conversely,
if u = (u1,u2) is the solution of the weak formulation Eq. 14, then for all w ∈ V ,
Gateaux differential of Φ and the strong monotonicity of DΦ(w;v) with respect to
w imply that there exists t ∈ (0,1) such that

Φ(w)−Φ(u) = DΦ(u+ t(w−u);w−u) ≥ DΦ(u;w−u) = 0.

Hence, u is the minimizer of Φ on V . Finally, we prove the uniqueness. Suppose
that u,w are both the solution of the weak formulation Eq. 14, then we have

B(u;u−w)−B(w;u−w) = 0.
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u = w follows from the strong monotonicity of DΦ. This proves that the functional
Φ has a unique minimizer on V and the minimizer is just the unique solution of
the variational problem Eq. 14. Similarly, we obtain that the functional ΦN has a
unique minimizer on V and the minimizer is just the unique solution of the varia-
tional problem Eq. 15.

Let Γ1 take the spherical surface (R2,θ ,ϕ), the spheroidal surface (μ2,θ ,ϕ) or the
general ellipsoidal surface (a2,λ2,λ3) such that Γ1 ⊂ Ω1. Set

Sm
n (Γ1,Γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rn+1
2

Rn+1 for Γ1 is spherical surface,

Qm
n (coshμ1)

Qm
n (coshμ2)

for Γ1 is prolate spheroidal surface,

T m
n (coshμ1)

T m
n (coshμ2)

for Γ1 is oblate spheroidal surface,

F p
n (a)

F p
n (a2)

for Γ1 is general ellipsoidal surface.

Hn(Γ1,Γ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rn+1
2

Rn+1 for Γ1 is spherical surface,

(coshμ2)n+1

(coshμ1)n+1 for Γ1 is spheroidal surface,(
a(a2

2 +k2)
a2 (a2 +k2)

)n+1

for Γ1 general ellipsoidal surface.

T m
n (Γ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n+1
R

for Γ is spherical surface,

f0Tnm(μ1) for Γ is spheroidal surface,

−bc
dF p

n (a)/dλ
F p

n (a)
for Γ is general ellipsoidal surface.

Theorem 2 Assume that u = (u1,u2) and uN = (uN
1 ,uN

2 ) are the solutions of the
weak formulation Eq. 14 and Eq. 15 respectively. If u∈ H3/2(Γ1), then there exists
a positive constant C independent of the term N after truncating the series such
that

‖u−uN‖H1(Ω1) ≤
C

N +2
HN+1(Γ1,Γ)‖u‖H3/2(Γ1). (19)
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Proof. Because u = (u1,u2) and uN = (uN
1 ,uN

2 ) are the solutions of Eq. 14 and Eq.
15 respectively, for any v ∈ V ∗, we have

B(u;v)−BN(uN;v) = 0.

From lemma 2 and lemma 1, there exists a positive constant C1 independent of N
such that

C1‖u−uN‖2
V ≤ BN(u;u−uN)−BN(uN ;u−uN)

= BN(u;u−uN)−B(u;u−uN)
= < KN(u)−K (u),u−uN >Γ .

Let Fnm, Unm and Pnm are the generalized Fourier coefficient of (u−uN)|Γ, u|Γ and
u|Γ1, respectively, then we have

< KN(u),u−uN >Γ − < K (u),u−uN >Γ

≤
∞

∑
n=N+1

n

∑
m=−n

T m
n (Γ)|Unm||Fnm|

≤C‖u−uN‖H1/2(Γ)

(
∞

∑
n=N+1

n

∑
m=−n

(n+1)|Unm|2
) 1

2

The formula Eq. 7, Eq. 9, Eq. 10,

Unm = Sm
n (Γ1,Γ)Pnm.

Therefore,

‖u−uN‖V ≤ C

(
∞

∑
n=N+1

n

∑
m=−n

(n+1)|Unm|2
) 1

2

≤ C

(
∞

∑
n=N+1

n

∑
m=−n

(n+1)3

(N +2)2 (Sm
n Γ1,Γ)2|Pnm|2

) 1
2

≤ C
N +2

HN+1(Γ1,Γ)‖u‖H3/2(Γ1).

Here, C is independent of N.

4 Discrete problem and error estimate

To describe a discrete formulation of Eq. 16 and Eq. 17, we divide Ω and Ω1

into quasi-uniform regular tetrahedral meshes with mesh size h, such that the nodes
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on Γ0 are matching (i.e., coincident) and these tetrahedrons nearby Γ are curved.
The conforming linear finite element spaces associated with Ω and Ω1 are denoted
by Vh(Ω) and Vh(Ω1) respectively. Usually, the curved tetrahedrons are approxi-
mated by the straight edge tetrahedrons which have the same nodes as the curved
tetrahedrons. This approximate only generates small error. Letting Nh denote
the set of nodes in the domain Ω∪Ω1 ∪∂Ω∪∂Ω1, we let Uh = {vh = (vh

1,vh
2) ∈

Vh(Ω)×Vh(Ω1) : ∀b ∈ Nh ∩Γ0,vh
1(b) = vh

2(b) + u0(b)}, U∗
h = {vh = (vh

1,vh
2) ∈

Vh(Ω)×Vh(Ω1) : ∀b ∈ Nh ∩Γ0,vh
1(b) = vh

2(b)}. Then, we have U∗
h ⊂V ∗.

The discrete formulation of the problem Eq. 14 is to find uh = (uh
1,uh

2) ∈ Uh such
that

B(uh;vh) = L(vh), ∀vh ∈ U∗
h . (20)

The discrete formulation of the problem Eq. 15 is to find uNh = (uNh
1 ,uNh

2 ) ∈ Uh

such that

BN(uNh;vh) = L(vh), ∀vh ∈U∗
h . (21)

Theorem 3 The discrete problem Eq. 20 and Eq. 21 both exist a unique solution.

The proof is similar with the proof of theorem 1.

Suppose that the interpolation operator Πh : H2(Ω∪Ω1∪Γ0) →Uh such that inter-
polation error

|v−Πhv|H1(Ω) ≤ Ch|v|H2(Ω), ∀v ∈ H2(Ω)

and

|v−Πhv|H1(Ω1) ≤Ch|v|H2(Ω1), ∀v ∈ H2(Ω1).

Theorem 4 Assume that u and uNh are the solution of the problem Eq. 14 and Eq.
21 respectively, and u ∈ H2(Ω)×H2(Ω1) and u|Γ1 ∈ H3/2(Γ1), then there exists a
positive constant C independent of the mesh size h and the term N after truncating
the series such that

‖u−uNh‖V ≤C
(

h‖u‖H2(Ω)×H2(Ω1) +
(

1
N +2

HN+1(Γ1,Γ)‖u‖H3/2(Γ1)

)
.

Proof. Let uN = (uN
1 ,uN

2 ) is the solution of the problem Eq. 15. Owing to U∗
h ∈V ∗,

we have

BN(uN ;vh)−BN(uNh;vh) = 0, ∀vh ∈U∗
h .
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For any wh ∈Uh, wh −uNh ∈U∗
h . The strong monotonicity and Lipschitz continuity

about the bounded variable of DΦ satisfy

C1‖uN −uNh‖2
V ≤ BN(uN −uNh;uN −uNh)

= BN(uN −uNh;uN −wh)
≤ C2‖uN −uNh‖V‖uN −wh‖V

Namely,

‖uN −uNh‖V ≤C inf
wh∈Uh

‖uN −wh‖V .

Thus, theorem 2 implies that

‖u−uNh‖V ≤ ‖u−uN‖V +‖uN −uNh‖V

≤ ‖u−uN‖V +C‖uN −Πhu‖V

≤ (1+C)‖u−uN‖V +C‖u−Πhu‖V

≤ C

(
h‖u‖H2(Ω)×H2(Ω1) +

1
N +2

HN+1(Γ1,Γ)‖u‖H3/2(Γ1)

)
.

Remark. The above error estimate indicates that Nopt = ln(h)/ ln(coshμ2/cosh μ1)−
2 may be chosen as the optimal truncation term with respect to the norm in H1,
when the mesh size is fixed.

5 Numerical examples

In numerical computation, we first do harmonic extension of u0 to Ω1. Let vh
0 ∈

Vh(Ω1) be the weak solution of the following problem⎧⎨
⎩

Δvh
0 = 0, in Ω1,

vh
0 = u0, on Γ0,

vh
0 = 0, on Γ.

Set

L̃(vh) = L(vh)+
∫

Ω1

∇vh
2 ·∇vh

0 dx.

Clearly, L̃(vh) is still the bounded linear functional on U∗
h . Thus, solve numerically

the following problem: find wNh = (uNh
1 ,wNh

2 ) ∈U∗ such that

BN(wNh;vh) = L̃(vh), ∀vh ∈ U∗. (22)
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If wNh = (uNh
1 ,wNh

2 ) is the unique solution of the problem Eq. 22, then uNh =
(uNh

1 ,wNh
2 −vh

0) must be the unique solution of the problem Eq. 21. Conversely, the
conclusion is also hold.

To solve the nonlinear problem Eq. 22, we apply Newton iteration. Let e1(h,N) =
‖uNh −u‖H1(Ωs), e0(h,N) = ‖uNh −u‖L2(Ωs), e∞(h,N) = ‖uNh −u‖L∞(Ωs). Here, if
s = 0, the domain Ωs denotes Ω; if s = 1, the domain Ωs denotes Ω1. iters, nodes
and tetra denote the times of Newton iteration, the total number of the nodes in Ωs

and the total number of the tetrahedrons elements, respectively. Error in Fig. 8
and Fig. 14 denotes the norm of uNh−u50h in three spaces as the mesh size is fixed
while Error in Fig. 19 denotes the norm of uNh − u20h in three spaces. In other
figures, Error denotes the norm of u−uNh. According to the special shape of the
inner domain Ω, we apply the different artificial boundary, e.g., a spherical, prolate
spheroidal, oblate spheroidal and general ellipsoidal surface.

Example 1 Let Ω = {(x1,x2,x3)∈R
3 : r =

√
x2

1 +x2
2 +x2

3 < 1}, the artificial bound-

ary Γ = ∂Ω, u0 = 0 and t0 = 4r + 2r/(1+ 2r)+ 1/r2. The exact solution of the
problem Eq. 1-Eq. 4 is u = (r2,1/r). The corresponding results are the case as
Tab. 1.

Table 1: Convergence results on quasi-uniform mesh, N = 5.

h e1(h,N) e0(h,N) e∞(h,N) iters
0.5077 6.2884e-1 3.3593e-1 2.7286e-1 3
0.2239 2.0490e-1 1.0390e-1 7.1050e-2 5
0.1060 5.6080e-2 2.8562e-2 1.8400e-2 7
0.0516 1.4437e-2 7.3060e-3 5.1237e-3 7

Example 2 Let Ω = {(x1,x2,x3) ∈ R
3 : |xi|< 1, i = 1,2,3}, the artificial boundary

Γ = {(x1,x2,x3) ∈ R
3 : r =

√
x2

1 +x2
2 +x2

3 = 2}, p(t) = 1 + e−t2
, f = e−r2

(2r2 −
3)−3+ r2/2, u0 = r2/2−1/r and

t0 =

⎧⎪⎨
⎪⎩

|x1|(1+e−r2
+1/r3), |x1| = 1,

|x2|(1+e−r2
+1/r3), |x2| = 1,

|x3|(1+e−r2
+1/r3), |x3| = 1.

The exact solution of the problem Eq. 1-Eq. 4 is u = (r2/2,1/r). The concerned
results are the case as Tab. 2 and Fig. 2-3.
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Table 2: Convergence results on quasi-uniform mesh, N = 50

h domain e1(h,N) e0(h,N) e∞(h,N) iters
0.5000 Ω 2.3313e-1 4.4980e-2 5.6569e-2 4
0.2500 Ω 1.1038e-1 1.5017e-2 2.9795e-2 5
0.1250 Ω 4.8815e-2 4.6182e-3 1.7115e-2 5
0.4050 Ω1 1.9565e-1 4.9411e-2 4.6950e-2 4
0.2025 Ω1 9.7283e-2 1.5609e-2 2.9795e-2 5
0.1013 Ω1 4.7756e-2 5.6206e-3 1.7115e-2 5
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Figure 2: the relation between mesh
size, error in H1(Ω) and N.
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Figure 3: the relation between mesh
size, error in H1(Ω1) and N.

Example 3 Let Ω = {(x1,x2,x3)∈R
3 : |x1|< 1, |x2|< 1, |x3|< 3}, p(t) = 1+e−t2

,
f = e−r2

(2r2−3)−3+ r2/2, u0 = r2/2−1/r and

t0 =

⎧⎪⎨
⎪⎩

|x1|(1+e−r2
+1/r3), |x1| = 1,

|x2|(1+e−r2
+1/r3), |x2| = 1,

|x3|(1+e−r2
+1/r3), |x3| = 3.

The exact solution of the problem Eq. 1-Eq. 4 is u = (r2/2,1/r). Owing to the
shape of Ω,

Γ =
{

(x1,x2,x3) : x2
1 +x2

2 +
x2

3

9
= a2,a ≥

√
3
}

is chosen as the artificial boundary. The concerned results are the case as Tab. 3
and Fig. 4-9.



244 Copyright © 2008 Tech Science Press CMES, vol.35, no.3, pp.227-252, 2008

Table 3: Convergence results on quasi-uniform mesh, N = 30, a = 2.

h domain e1(h,N) e0(h,N) e∞(h,N) iters
0.5 Ω 3.3794e-1 5.9625e-2 7.1325e-2 5
0.25 Ω 1.2295e-1 1.7618e-2 3.2277e-2 5

0.1667 Ω 6.7098e-2 8.3863e-3 1.8281e-2 5
0.7368 Ω1 2.7427e-1 4.8479e-2 5.0519e-2 5
0.3889 Ω1 1.0689e-1 1.6062e-2 2.2889e-2 5
0.2623 Ω1 6.3718e-2 8.6362e-3 1.5641e-2 5
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Figure 4: the relation between mesh
size, error in H1(Ω) and N.
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Figure 5: the relation between mesh
size, error in H1(Ω1) and N.
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Figure 6: the relation between the loca-
tion of Γ, error in H1(Ω) and N.
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tion of Γ, error in H1(Ω1) and N.
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Figure 8: the relation between N and er-
ror in Ω, h = 0.1667, a = 2.
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Figure 9: the relation between N and er-
ror in Ω1, h = 0.2622, a = 2.

Example 4 Let Ω = {(x1,x2,x3)∈R
3 : |x1|< 3, |x2|< 3, |x3|< 1}, p(t) = 1+e−t2

,
f = e−r2

(2r2−3)−3+ r2/2, u0 = r2/2−1/r and

t0 =

⎧⎪⎨
⎪⎩

|x1|(1+e−r2
+1/r3), |x1| = 3,

|x2|(1+e−r2
+1/r3), |x2| = 3,

|x3|(1+e−r2
+1/r3), |x3| = 1.

The exact solution of the original problem is u = (r2/2,1/r). Owing to the shape
of Ω,

Γ =
{

(x1,x2,x3) :
x2

1

9
+

x2
2

9
+x2

3 = a2,a ≥
√

3
}

is chosen as the artificial boundary. The corresponding results are the case as Tab.
4 and Fig. 10-15.

Example 5 Let Ω = {(x1,x2,x3) ∈ R
3 : |x1| < 2.5, |x2| < 2.0, |x3| < 1.5}, p(t) =

1+e−t2
, f = e−r2

(2r2−3)−3+ r2/2, u0 = r2/2−1/r and

t0 =

⎧⎪⎨
⎪⎩

|x1|(1+e−r2
+1/r3), |x1| = 2.5,

|x2|(1+e−r2
+1/r3), |x2| = 2.0,

|x3|(1+e−r2
+1/r3), |x3| = 1.5.

The exact solution of the original problem is u = (r2/2,1/r). A general ellipsoidal
surface

Γ =
{

(x1,x2,x3) :
x2

1

6.25
+

x2
2

4
+

x2
3

2.25
= a2,a ≥

√
3
}
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Table 4: Convergence results on quasi-uniform mesh, N = 30, a = 2.

h domain e1(h,N) e0(h,N) e∞(h,N) iters
1.0 Ω 1.0896 3.1240e-1 1.7754e-1 5
0.5 Ω 7.7651e-1 1.4491e-1 1.4368e-1 5
0.25 Ω 4.0698e-1 5.5045e-2 7.6554e-2 5

1.3896 Ω1 1.32701 4.5018e-1 1.7754e-1 5
0.7612 Ω1 7.4871e-1 1.8982e-1 1.4368e-1 5
0.3924 Ω1 3.93731e-1 7.8092e-2 7.6554e-2 5
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Figure 10: the relation between mesh
size, error in H1(Ω) and N.
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Figure 11: the relation between mesh
size, error in H1(Ω1) and N.
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Figure 12: the relation between the lo-
cation of Γ, error in H1(Ω) and N.
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Figure 13: the relation between the lo-
cation of Γ, error in H1(Ω1) and N.

is chosen as the artificial boundary. The concerned results are the case as Tab. 5
and Fig. 16-19. a = 2.0.
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Figure 14: the relation between N and
error in Ω, h = 0.2500,a = 2.
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Figure 15: the relation between N and
error in Ω1, h = 0.3924,a = 2.

Table 5: Convergence results on quasi-uniform mesh, N = 20, a = 2.

h domain e1(h,N) e0(h,N) e∞(h,N) iters
1.00 Ω 1.1571 3.2559e-1 1.6243e-1 5
0.50 Ω 5.9577e-1 1.2818e-1 1.0490e-1 5
0.25 Ω 2.9484e-1 4.5164e-2 6.6466e-2 5

1.3449 Ω1 9.8758e-1 3.3065e-1 1.6243e-01 5
0.7265 Ω1 5.3383e-1 1.3750e-1 1.0490e-1 5
0.3708 Ω1 2.8247e-1 5.8797e-2 6.6466e-2 5

6 Conclusions

In this paper we apply the artificial boundary method to solve a three-dimensional
nonlinear interface problem on an unbounded domain. According to the shape of
the inner boundary Γ0 of the domain, we can use some different artificial bound-
aries, e.g., a spherical, spheroidal or ellipsoidal surface, in order to reduce the un-
bounded domain into a small computational bounded region Ω1. The DtN mapping
on the artificial boundary are presented, it is just the exact condition on the outer
boundary of the reduced domain Ω1. The well-posedness of the coupled weak for-
mulation is proved, and the error estimate is given. The error not only depends on
the mesh size, but also on the number of term after truncating the series and the
location of the artificial boundary. Finally, all of the numerical examples given in
Sect. 5 show us that the method is effective, and we have following conclusions:

1. From Fig. 2-5, Fig. 10, Fig. 11, Fig. 16 and Fig. 17 we can see that for
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Figure 16: the relation between mesh
size, error in H1(Ω) and N.

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Truncation  Terms  N

H
1 (Ω

1) 
   

E
rr

o
r

h=0.7265
h=0.3708
h=0.2974

Figure 17: the relation between mesh
size, error in H1(Ω1) and N.

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

Truncation  Terms  N

 T
h

re
e 

 N
o

rm
s:

  −
ln

(E
rr

o
r)

 

L∞(Ω)  norm
L2(Ω)  norm
H1(Ω)  norm

Figure 18: the relation between N and
error in Ω, h = 0.2500.
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Figure 19: the relation between N and
error in Ω1, h = 0.3708.

different mesh size h, after the truncation term N increases to a certain value
(pertaining to the mesh size h), the error of approximate solution with respect
to the norms in H1(Ω) and H1(Ω1) changes very small. It has shown that the
error mainly comes from the mesh size when the truncation term has already
amounted to this value.

2. Tab. 1-5 all have indicated that when the truncation term arrive at a certain
value, e.g., N = 30 or 20, the convergent order of ||u−uNh||H1(Ωs) with re-
spect to h is approximate to 1, while the convergent order of ||u−uNh||L2(Ω1)
with respect to h is greater than 1.5.

3. From Fig. 6, Fig. 7, Fig. 12 and Fig. 13 we see that the error depends on
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the location of the artificial boundary. When the mesh size and the trunca-
tion term N are fixed, the error become smaller as the distant between the
artificial boundary and the inner boundary Γ0 is farther. However, in order to
reduce the error, it is inadvisable to increase the distant between the artificial
boundary and the inner boundary Γ0 because the computational cost resulted
from the larger computational domain will become higher.

4. Fig. 8, Fig. 9, Fig. 14, Fig. 15, Fig. 18 and Fig. 19 all have illustrated that
when the mesh size is given, the relation between the logarithm of the error
of uNh − u20h with respect to three norms and the truncation term N is ap-
proximate to a line. These have shown that the error of approximate solution
resulted from the truncation term is approximately an exponential function,
whose base is less than 1 and N is the exponential. It is also consistent with
the theoretical analysis in Sect. 4.

Of course, there are also some other methods developed in recent years for solv-
ing exterior problems. We can see the book by Ying (2006) where the numerical
methods for exterior problems, including both traditional and novel methods, are
introduced comprehensively. Moreover, we can see many papers, for examples, the
papers by Yang, Chen and Liang (1995), Chen (2002), Chen (2007), where a dual
boundary integral method and a semi-analytical approach are applied for exterior
problems.
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pp. 3-16.

Feistauer M.(1987): On the finite element approximation of a cascade flow prob-
lem. Numer. Math., vol. 50, pp. 655-684.

Carstensen Carsten; Gwinner Joachim(1997): FEM and BEM coupling for a
nonlinear transmission problem with Signorini contact. SIAM J.Numer.Anal., vol.
34, pp. 1845-1864.

Costabel M. M.; Stephan E. P.(1990): Coupling of finite and boundary element
methods for an elastoplastic interface problem. SIAM J. Numer. Anal., vol. 27(5),
pp. 1212-1226.



252 Copyright © 2008 Tech Science Press CMES, vol.35, no.3, pp.227-252, 2008

Stephan E. P.(1992): Coupling of finite elements and boundary elements for some
nonlinear interface problems. Comput. Methods Appl. Mech. Engrg., vol. 101, pp.
61-72.

Lions J. L.; Magenes E.(1972): Non-Homogeneous Boundary Value Problems
and Applications, volume I. Springer-Verlag, New York.

Ciarlet P. G.(1978): The Finite Element Method for Elliptic Problems. North-
Holland Publishing Company, New York.

Ying L. A.(2006): Numerical Methods for Exterior Problems. World Scientific,
New Jersey.

Yang S. S.; Chen J. T.; Liang M. T.(1995): Dual boundary integral equations for
exterior problems. Engrg. Anal. with Boundary Elements, vol. 16, pp. 333-340.

Chen C. T.; Chen J. T.; Chen K. H.(2002): Adaptive boundary element method of
time-harmonic exterior acoustics in two dimensions. Computer Methods in Applied
Mechanics and Engineering, vol. 191, pp. 3331-3345.

Chen P. Y.; Chen I. L.; Chen J. T.; Chen C. T.(2007): A semi-analytical approach
for radiation and scattering problems with circular boundaries. Computer Methods
in Applied Mechanics and Engineering, vol. 196, pp. 2751-2764.

Liu Chein-Shan(2007): A meshless regularized integral equation method for
laplace equation in arbitrary interior or exterior plane domains. CMES: Computer
Modeling in Engineering & Sceinces, vol. 19(1), pp. 99-109.

Jr. Soares Delfim(2008): A time-domain fem-bem iterative coupling algorithm to
numerically model the propagation of electromagnetic waves. CMES: Computer
Modeling in Engineering & Sceinces, vol. 32(2), pp. 57-68.

Novati G.; Springhetti R.; Margonari M.(2006): Weak coupling of the symmet-
ric galerkin bem with fem for potential and elastostatic problems. CMES: Computer
Modeling in Engineering & Sceinces, vol. 13(1), pp. 67-80.


