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A Mesh-Free DRK-Based Collocation Method for the
Coupled Analysis of Functionally Graded
Magneto-Electro-Elastic Shells and Plates
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Abstract: A mesh-free collocation method based on differential reproducing ker-
nel (DRK) approximations is developed for the three-dimensional (3D) analysis of
simply-supported, doubly curved functionally graded (FG) magneto-electro-elastic
shells under the mechanical load, electric displacement and magnetic flux. The
material properties of FG shells are firstly regarded as heterogeneous through the
thickness coordinate and then specified to obey an identical power-law distribution
of the volume fractions of the constituents. The novelty of the present DRK-based
collocation method is that the shape functions of derivatives of reproducing kernel
(RK) approximants are determined using a set of differential reproducing condi-
tions without directly taking the differentiation towards the RK approximants. That
prevents from the complicated calculations on the determination of the derivatives
of RK approximants in the conventional RK methods. The present formulation is
derived using the orthogonal curvilinear coordinates of doubly curved shells and
can be reduced to the formulation of plates by letting the curvature radii be an in-
finite value. In the implementation of the present DRK-based collocation method,
several crucial parameters such as the optimal support size and highest-order of
the basis functions are discussed. The influence of the power-law exponent on the
magnetic, electric and mechanical variables induced in the FG shells is studied.

Keyword: Mesh-free methods, Collocation methods, DRK approximants, Cou-
pled magneto-electro-elastic effects, FG material, Static, Shells, Plates.

1 Introduction

Recently, functionally graded (FG) magneto-electro-elastic structures have been
used in engineering applications for sensing, actuating and controlling purposes
due to their direct and converse multi-field effects. Unlike the conventional multi-
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layered composite structures of which properties are layer-wise constants through
the thickness of the structures, the through-thickness distribution of material prop-
erties for FG structures are gradually and continuously vary. That is helpful for pre-
venting from several drawbacks such as residual stress concentration, large inter-
laminar stresses at interfaces between adjacent layers, etc, often occurring in mul-
tilayered structures. That type of material properties, however, also increases the
complexity and difficulty for the analysis of FG structures. Since an accurate struc-
tural analysis is of much importance for the design work of those devices made up
of the FG materials, the relevant subjects have considerably attracted the attention
of researchers.

Some literature on three-dimensional (3D) analysis of multilayered and FG magneto-
electro-elastic structures has been published. Based on the pseudo-Stroh formal-
ism, Pan (2001), Pan and Heyliger (2003) and Pan and Han (2005) presented
exact 3D solution of multilayered and FG magneto-electro-elastic plates, respec-
tively. The material properties of the FG plates have been assumed to be expo-
nentially distributed through the thickness coordinate. The structural behavior of
simply-supported, FG plates made of piezoelectric BaTiO3 and magnetostrictive
CoFe2O4 materials and subjected to magneto-electro-mechanical loads has been
studied. Chen and Lee (2003) proposed the alternative state space formulation to
determine 3D solutions of FG magneto-electro-elastic plates using the method of
propagator (or transfer) matrix. The material properties of the FG plates have been
assumed to obey an identical power-law distribution of the volume fractions of the
constituents. In recent papers, Wu and Tsai (2007) and Tsai and Wu (2008a, b)
presented 3D solutions for the static and dynamic analyses of multilayered and FG
magneto-electro-elastic shells using the method of perturbation. It has been shown
that the asymptotic solutions converge rapidly and the convergent asymptotic solu-
tions are in excellent agreement with the available 3D solutions. A comprehensive
literature review on the 3D analytical approaches of the functionally graded struc-
tures made up of smart materials has been made by Wu et al. (2008a).

Several numerical methodologies have also been proposed for the approximate 3D
and two-dimensional (2D) analysis of the present smart structures. Bhangale and
Ganesan (2006) proposed a semi-analytical finite element method for the static
analysis of FG and layered magneto-electro-elastic plates. It has been demonstrated
that the FE solutions are in excellent agreement with the 3D solutions obtained by
Pan and Han (2005). Heyliger and Pan (2004) and Heyliger et al. (2004) proposed a
discrete-layer theory for the static behavior of multilayered magneto-electro-elastic
plates. Excellent agreement has been found between this discrete-layer solutions
and available 3D solutions.

In recent decades, many researchers have devoted to the development of meshless
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methods such as the smooth particle hydrodynamics methods (Lucy et al., 1977),
the diffuse element methods (Nayroles et al., 1992), the element-free Galerkin
methods (Belytschko et al., 1994), the moving least squares method (Lancaster and
Salkauskas, 1981), the meshless local Petrov-Galerkin (MLPG) method (Atluri et
al.,1999; Atluri and Zhu, 1998, 2000a, b) and reproducing kernel particle methods
(Liu et al., 1995). Unlike the conventional finite element methods (FEM) of which
formulations and calculations of the coefficient matrix strongly rely on a grid (or
mesh), the unknown approximants of previous meshless methods are entirely con-
structed in terms of randomly scattered nodes. It has been reported that the draw-
backs of FEM in treating discontinuity, moving boundary and large deformation
problems can be overcome (Chen et al., 1996; Liu et al., 1995). A comprehensive
literature survey on meshless methods has been made by Belytschko et al. (1996)
and Liu and Gu (2005).

Several mesh-free particle, finite point and collocation methods based on different
types of approximations or interpolations have been proposed for solving the so-
called strong form problems in the literature. A point collocation method based on
reproducing kernel approximations has been proposed by Aluru (2000) for numer-
ical solution of partial differential equations with appropriate boundary conditions.
The point collocation method has been shown to be accurate for several one and
two-dimensional problems. Oňate (1996) proposed a finite point method based on
weighted least squares interpolations for the analysis of convective-diffusive trans-
port and compressible fluid flow problems. A differential quadrature (DQ) method
based on the local radial basis functions (RBF) has been proposed by Shu et al.
(2003). The local RBF-based DQ method has been successfully applied to study
the incompressible flows in the steady and unsteady regions (Shu et al., 2005), 2D
incompressible Navier-Stokes equations (Shu et al., 2003) and 3D incompressible
viscous flows with curved boundary (Shan et al., 2008).

As we aforementioned, several element-free and mesh-free methods have also been
proposed for solving the so-called weak form problems based on energy principles
in the literature (Atluri et al. 1998; Belytschko, et al., 1994; Liu et al., 1995). Since
the computation for derivatives of those unknown approximants is complicated,
Atluri et al. (2004) proposed a meshless local Petrov-Galerkin mixed finite volume
method to simplify and speed up the MLPG implementation. This MLPG mixed fi-
nite volume method has been successfully applied to various elastic problems (Han
and Atluri, 2004a, b; Han et al., 2005). Atluri et al. (2006a) proposed a MLPG
mixed collocation method by means of using the Dirac delta function as the test
function in the MLPG method. It has been concluded that the MLPG mixed collo-
cation method is much more efficient than the MLPG finite volume method. Atluri
et al. (2006b) have further proposed a MLPG mixed difference method where the
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generalized finite difference method has been used for approximating the deriva-
tives of a function using the nodal values in the local domain of definition. Various
elasticity problems have been used to validate the accuracy and convergence rate
of this MLPG mixed difference method.

The MLPG method has been used to study various mechanics problems of plates
and shells. A MLPG method based on the moving least squares approximations
has been applied for the analysis of static, dynamic and thermoelastic analyses of
isotropic homogeneous plates, shells and hollow cylinders (Sladek, Sladek, Zhang
and Tan, 2006; Sladek, Sladek, Wen and Aliabadi, 2006). Based on Reissner-
Mindlin plate and shallow shell theories, Sladek, Sladek, Solek and Wen (2008)
and Sladek, Sladek, Solek, Wen and Atluri (2008) have studied the thermal bending
problems of functionally graded anisotropic plates and shallow shells, respectively,
using the MLPG method.

Recently, a mesh-free differential reproducing kernel collocation method has been
proposed by Wu et al. (2008b). The novelty of this method is on the modifications
for the calculations of the derivatives of RK approximants. In the conventional RK
methods, the shape functions of derivatives of RK approximants were obtained by
directly taking the differentiation towards the shape functions of RK approximants
that may result in a lengthy expression and complicated computation. In the present
DRK approximations, the shape functions of derivatives of RK approximants were
obtained using a set of differential reproducing conditions. A mesh-free collocation
method based on the present DRK approximations was developed for the coupled
analysis of FG magneto-electro-elastic shells and plates as follows.

2 Basic equations of 3D magneto-electro-elasticity

A simply-supported, doubly curved FG magneto-electro-elastic shell with hetero-
geneous material properties through the thickness is considered and shown in Fig.
1. A set of the orthogonal curvilinear coordinates α , β , ζ is located on the middle
surface of the shell. The total thickness of the shell is 2h. aα and aβ denote the
curvilinear dimensions in α and β directions; Rα and Rβ denote the curvature radii
to the middle surface of the shell, respectively.

The linear constitutive equations valid for the nature of symmetry class of magneto-
electro-elastic material considered are given by

σi = ci j ε j −eki Ek −qki Hk, (1)

Dl = el j ε j +ηlk Ek +dlk Hk, (2)

Bl = ql j ε j +dlk Ek + μlk Hk, (3)
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Figure 1: (a) The geometry and coordinates of a doubly curved shell; (b) The
dimensionless thickness coordinates of nodal points in a two-layered shell; (c) The
dimensionless thickness coordinates of nodal points in a FG shell.

where σi and ε j (i, j=1-6) are the contracted notation for the stress and strain com-
ponents, respectively; Dl and Bl (l=1-3) are the electric displacements and mag-
netic flux, respectively; Ek and Hk (k=1-3) are the electric field and magnetic field,
respectively; ci j, ηlk and μlk are the elastic, dielectric and magnetic permeability
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coefficients, respectively. eki, qki and dlk are the piezoelectric, piezomagnetic and
magnetoelectric coefficients, respectively. The material properties are considered
as heterogeneous through the thickness (i.e., ci j(ζ ), ηlk(ζ ), μlk(ζ ), eki(ζ ), qki(ζ )
and dlk(ζ )). For an orthotropic solid, the previous material coefficients are given
by

c =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 q31

0 0 q32

0 0 q33

0 q24 0
q15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

η =

⎡
⎣η11 0 0

0 η22 0
0 0 η33

⎤
⎦ , d =

⎡
⎣d11 0 0

0 d22 0
0 0 d33

⎤
⎦ , μ =

⎡
⎣μ11 0 0

0 μ22 0
0 0 μ33

⎤
⎦ .

The strain-displacement relationships are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εα
εβ
εζ

γβ ζ
γα ζ
γα β

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(1/γα) ∂α 0 (1/γαRα)
0

(
1/γβ

)
∂β

(
1/γβ Rβ

)
0 0 ∂ζ
0 ∂ζ −

(
1/γβ Rβ

) (
1/γβ

)
∂β

∂ζ − (1/γαRα) 0 (1/γα) ∂α(
1/γβ

)
∂β (1/γα) ∂α 0

⎤
⎥⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

uα
uβ
uζ

⎫⎬
⎭ , (4)

in which γk = 1+ζ/Rk (k = α , β ); ∂i = ∂/∂ i (i = α , β , ζ ); uα , uβ and uζ are
the displacement components.

The stress equilibrium equations without body forces are given by

γβ σα ,α + γα ταβ ,β + γα γβ ταζ ,ζ +
(
2/Rα +1/Rβ +3ζ/RαRβ

)
ταζ = 0, (5)

γβ τα β ,α +γα σβ ,β +γα γβ τβ ζ ,ζ +
(
1/Rα +2/Rβ +3ζ/Rα Rβ

)
τβ ζ = 0, (6)

γβ τα ζ ,α +γα τβ ζ ,β +γα γβ σζ ,ζ +
(
1/Rα +1/Rβ +2ζ/Rα Rβ

)
σζ − γβ σα/Rα

− γα σβ /Rβ = 0. (7)
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The equations of electrostatics for the magneto-electro-elastic material without the
electric charge density is

γβ Dα ,α +γα Dβ ,β +γα γβ Dζ ,ζ +(γβ/Rα + γα /Rβ)Dζ = 0. (8)

The relations between the electric field and electric potential are

Ek = −Φ,k/γk, (9)

where Φ denotes the electric potential; k = α , β , ζ and γζ = 1.

The equations of magnetostatics for the magneto-electro-elastic material without
the magnetic charge density is

γβ Bα ,α +γα Bβ ,β +γα γβ Bζ ,ζ +(γβ/Rα + γα/Rβ )Bζ = 0. (10)

The relations between the magnetic field and magnetic potential are

Hk = −Ψ,k/γk, (11)

where Ψ denotes the magnetic potential; k = α , β , ζ .

The boundary conditions of the problem are specified as follows:

On the lateral surfaces the transverse load q̄±ζ (α , β ), electric displacement D̄±
ζ (α , β)

and magnetic flux B̄±
ζ (α , β) are prescribed,

σζ = q̄±ζ (α , β ) Dζ = D̄±
ζ (α , β ) and Bζ = B̄±

ζ (α , β ) on ζ = ±h. (12)

The edge boundary conditions of the shell are considered as fully simple supports
and suitably grounded where the following quantities be satisfied:

σα = uβ = uζ = Φ = Ψ = 0, at α = 0 and α = aα ; (13a)

σβ = uα = uζ = Φ = Ψ = 0, at β = 0 and β = aβ . (13b)

There are twenty-nine basic equations in the 3D magneto-electro-elasticity as listed
in Eqs. (1)-(11). Basically these equations are a system of simultaniously partial
differential equations with variable coefficients. That results mathematical com-
plexity and difficulty for an exact 3D coupled analysis of the corresponding prob-
lem. Here, an approximately 3D approach, namely the differential reproducing
kernel collocation method, is used for the present analysis of doubly curved FG
shells under magneto-electro-mechanical loads.
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3 Nondimensionalization

In order to scale all the field variables within a close order of magnitude and prevent
from the unexpected numerical instability in the computation process, we define a
set of dimensionless coordinates and variables as follows:

x = α/
√

Rh, y = β/
√

Rh, z = ζ/h, Rx = Rα/R, Ry = Rβ /R,

u = uα/
√

Rh, v = uβ/
√

Rh, w = uζ/R,

σx = σα/Q , σy = σβ /Q , τxy = ταβ/Q,

τxz = ταζ /(Q
√

h/R) , τyz = τβζ /(Q
√

h/R) , σz = σζ R/Qh,

Dx = Dα /(e
√

h/R), Dy = Dβ /(e
√

h/R), Dz = Dζ/e,

Bx = Bα /(q
√

h/R), By = Bβ /(q
√

h/R), Bz = Bζ /q,

ϕ = Φe/Qh, ψ = Ψq/Qh, (14)

where R, Q, e and q stand for a characteristic length, a reference elastic, piezoelec-
tric and piezomagnetic moduli, respectively.

In the formulation the elastic displacements (uα , uβ , uζ ), the transverse shear and
normal stresses (τα ζ , τβ ζ , σζ ), the electric and magnetic flux (Dζ , Bζ ) and the
electric and magnetic potentials (Φ, Ψ) are selected as the primary field variables.
The other field variables are the secondary field variables and can be expressed in
terms of the primary variables. Introducing the set of dimensionless coordinates
and variables (Eq. (14)) and using the method of direct elimination, we obtain a set
of state space equations in terms of the primary field variables as follows:

∂
∂ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v

Dz

Bz

σz

τxz

τyz

ϕ
ψ
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 0 0 0 k16 0 k18 k19 k10

0 k22 0 0 0 0 k27 k28 k29 k20

0 0 k33 0 0 k18 k28 k38 k39 0
0 0 0 k33 0 k19 k29 k39 k49 0

k51 k52 k53 k54 k55 k10 k20 0 0 k50

k61 k62 k63 k64 k65 k66 0 0 0 k60

k71 k72 k73 k74 k75 0 k77 0 0 k70

k63 k73 k83 k84 k85 0 0 0 0 k80

k64 k74 k84 k94 k95 0 0 0 0 k90

k65 k75 k85 k95 k05 0 0 0 0 k00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v

Dz

Bz

σz

τxz

τyz

ϕ
ψ
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where

k11 = h/(γα RRx), k16 = h/c̃55 R, k18 = −(ẽ15 h/c̃55 γα R) ∂x,
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k19 = −(q̃15 h/c̃55 γα R) ∂x, k10 = −(1/γα) ∂x, k22 = h/(γβ RRy),

k27 = h/c̃44 R, k28 = −(ẽ24 h/c̃44 γβ R
)

∂y, k29 = −(q̃24 h/c̃44 γβ R
)

∂y,

k20 = −(1/γβ
)

∂y, k33 = −[(h/γα RRx)+
(
h/γβ RRy

)]
,

k38 =
[(

ẽ2
15/c̃55 + η̃11

)
h/γ2

α R
]

∂xx +
[(

ẽ2
24/c̃44 + η̃22

)
h/γ2

β R
]

∂yy,

k39 =
[(

ẽ15 q̃15/c̃55 + d̃11
)

h/γ2
α R
]

∂xx +
[(

ẽ24 q̃24/c̃44 + d̃22
)

h/γ2
β R
]

∂yy,

k49 =
[(

q̃2
15/c̃55 + μ̃11

)
h/γ2

α R
]

∂xx +
[(

q̃2
24/c̃44 + μ̃22

)
h/γ2

β R
]

∂yy,

k51 =
[(

Q̃11/γ2
α Rx

)
+
(
Q̃21/γα γβ Ry

)]
∂x,

k52 =
[(

Q̃12/γα γβ Rx
)
+
(

Q̃22/γ2
β Ry

)]
∂y,

k53 = (a21 e/Qγα Rx)+
(
a22 e/Qγβ Ry

)
,

k54 = (a31 q/Qγα Rx)+
(
a32 q/Qγβ Ry

)
,

k55 = (a11 h/γα RRx)+
(
a12 h/γβ RRy

)−(1/Rx +1/Ry +2hz/RRx Ry)
(
h/Rγα γβ

)
,

k50 =
(
Q̃11/γ2

α R2
x

)
+
(
Q̃12 + Q̃21

)
/γα γβ Rx Ry +

(
Q̃22/γ2

β R2
y

)
,

k61 = −
[(

Q̃11/γ2
α
)

∂xx +
(

Q̃66/γ2
β

)
∂yy

]
,

k62 = −[(Q̃12 + Q̃66
)
/γα γβ

]
∂xy, k63 = −(a21 e/Qγα) ∂x,

k64 = −(a31 q/Qγα) ∂x, k65 = −(a11 h/Rγα) ∂x,

k66 = −(h/Rγα γβ
)

(2/Rx +1/Ry +3hz/RRx Ry) ,

k60 = −[(Q̃11/γ2
α Rx

)
+
(
Q̃12/γα γβ Ry

)]
∂x,

k71 = −[(Q̃21 + Q̃66
)
/γα γβ

]
∂xy, k72 = −

[(
Q̃66/γ2

α
)

∂xx +
(

Q̃22/γ2
β

)
∂yy

]
,

k73 = −(a22 e/Qγβ
)

∂y, k74 = −(a32 q/Qγβ
)

∂y, k75 = −(a12 h/Rγβ
)

∂y,

k77 = −(h/Rγα γβ
)

(1/Rx +2/Ry +3hz/RRx Ry) ,

k70 = −
[(

Q̃21/γα γβ Rx
)
+
(

Q̃22/γ2
β Ry

)]
∂y,

k83 = e2 b2/Q, k84 = qeb3/Q, k85 = ehb1/R,

k80 = −[(a21 e/Qγα Rx)+
(
a22 e/Qγβ Ry

)]
, k94 = q2 c3/Q, k95 = qhc1/R,

k90 = −[(a31 q/Qγα Rx)+
(
a32 q/Qγβ Ry

)]
, k05 = a1 Qh2/R2,
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k00 = −[(a11 h/γα RRx)+
(
a12 h/γβ RRy

)]
;

the relevant coefficients in the previous terms of ki j are given in Appendix A.

The in-surface stresses, electric displacements and magnetic displacements are de-
pendent field variables that can be expressed in terms of the primary variables in
the following form

σp = B1u +B2w+B3σz +B4Dz +B5Bz (16)

d = B6 σσσ s +B7 ϕ +B8ψ , (17)

b = B9 σσσ s +B8 ϕ +B10 ψ , (18)

where

σσσ p =

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ , u =

{
u
v

}
, σσσ s =

{
τxz

τyz

}
, d =

{
Dx

Dy

}
, b =

{
Bx

By

}
,

B1 =

⎡
⎣
(
Q̃11/γα

)
∂x

(
Q̃12/γβ

)
∂y(

Q̃21/γα
)

∂x
(
Q̃22/γβ

)
∂y(

Q̃66/γβ
)

∂y
(
Q̃66/γα

)
∂x

⎤
⎦ , B2 =

⎡
⎣
(
Q̃11/γα Rx

)
+
(
Q̃12/γβ Ry

)(
Q̃21/γα Rx

)
+
(
Q̃22/γβ Ry

)
0

⎤
⎦ ,

B3 =

⎡
⎣a11 h/R

a12 h/R
0

⎤
⎦ , B4 =

⎡
⎣a21 e/Q

a22 e/Q
0

⎤
⎦ , B5 =

⎡
⎣a31 q/Q

a32 q/Q
0

⎤
⎦ ,

B6 =
[
(ẽ15/c̃55) 0

0 (ẽ24/c̃44)

]
, B7 =

[−(ẽ2
15/c̃55 + η̃11

)
∂x/γα

−(ẽ2
24/c̃44 + η̃22

)
∂y/γβ

]
,

B8 =
[−(ẽ15 q̃15/c̃55 + d̃11

)
∂x/γα

−(ẽ24 q̃24/c̃44 + d̃22
)

∂y/γβ

]
, B9 =

[
(q̃15/c̃55) 0

0 (q̃24/c̃44)

]
,

B10 =
[−( q̃2

15/c̃55 + μ̃11
)

∂x/γα
−( q̃2

24/c̃44 + μ̃22
)

∂y/γβ

]
.

The dimensionless form of boundary conditions of the problem are specified as
follows:

On the lateral surfaces, the transverse load, normal electric displacement and nor-
mal magnetic flux are prescribed,

σz = q̄±z (x, y) Dz = D̄±
z (x, y) , Bz = B̄±

z (x, y) on z = ±1. (19)

where q̄±z = q̄±ζ R/Qh, D̄±
z = D̄±

ζ /e, B̄±
z = B̄±

ζ /q.

At the edges, the following quantities are satisfied:

σx = v = w = ϕ = ψ = 0, at x = 0 and x = aα/
√

Rh; (20a)

σy = u = w = ϕ = ψ = 0, at y = 0 and y = aβ /
√

Rh. (20b)



A Mesh-Free DRK-Based Collocation Method 191

4 The DRK approximations

In the present paper, a newly-proposed DRK-based collocation method (Wu et al.,
2008a) was used for the coupled analysis of FG magneto-electro-elastic shells. The
relevant DRK approximations were briefly interpreted as follows.

4.1 Reproducing kernel approximants

It is assumed that there are NP discrete points randomly selected and located at
x1, x2, · · · , xNP, respectively, in the domain. The reproducing kernel approximant
ua(x) of unknown function u(x), ∀ x ∈ Ω, is defined as

ua(x) =
NP

∑
l=1

φl(x) ûl (21)

where

φl(x) = wa(x−xl) C(x; x−xl ), C(x; x−xl ) = PT (x−xl ) b(x),

PT (x−xl) =
[
1 (x−xl) (x−xl)2 · · · (x−xl )n

]
,

bT (x) =
[
b0(x) b1(x) b2(x) · · · bn(x)

]
;

ûl (l = 1, 2, · · · , NP) are the fictitious nodal values and are not the nodal values of
ua(x) in general; φl(x) is the shape functions of ua(x) at x = xl; wa(x− xl) is the
weight function centered at xl with a support size a, C(x; x− xl) is the correction
function; b j(x) ( j = 0, 1, 2, · · · , n) are the undetermined functions and will be
determined by satisfying the reproducing conditions, and n is the highest order of
the basis functions.

By selecting the complete nth-degree polynomials as the basis functions to be re-
produced, we obtain a set of reproducing conditions to determine the undetermined
functions of bl(x) in Eq. (21). The reproducing conditions are given as

NP

∑
l=1

φl(x) xm
l = xm m = 0, 1, 2, · · · , n. (22)

The previous set of reproducing conditions can be rewritten in a matrix form of

NP

∑
l=1

P(x−xl)φl(x) =
NP

∑
l=1

P(x−xl)wa(x−xl)PT (x−xl)b(x) = P(0), (23)

where P(0) =
[
1 0 0 · · · 0

]T
.
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According to the set of reproducing conditions, we may obtain the undetermined
function matrix b(x) in the following form

b(x) = A−1(x) P(0), (24)

where A(x) =
NP
∑

l=1
P(x−xl)wa(x−xl)PT (x−xl).

Substituting Eq. (24) into Eq. (21) yields the reproducing kernel shape functions
in the form of

φl(x) = wa(x−xl)PT (x−xl)A−1(x)P(0). (25)

It is realized from Eq. (25) that φl(x) vanishes when x is not in the support of
nodal point at x = xl . The influence of the shape functions in the support of the
referred nodal point monotonically decreases as the relative distance to the nodal
point increases. The fact preserves the local character of the present scheme.

4.2 Derivatives of reproducing kernel approximants

Since the reproducing kernel approximant ua(x) is given in Eq. (21), the first-order
derivative of ua(x) is therefore expressed as

d ua(x)
dx

=
NP

∑
l=1

φ (1)
l (x) ûl, (26)

where φ (1)
l (x) denote the shape functions of the first-order derivatives of ua(x).

In the present scheme, we express φ (1)
l (x) in the similar form of φl(x) as follows:

φ (1)
l (x) = wa(x−xl) C1(x; x−xl ), (27)

where C1(x; x−xl) = PT (x−xl) b1(x),

bT
1 (x) =

[
b1

0(x) b1
1(x) b1

2(x) · · · b1
n(x)

]
.

The differential reproducing conditions for a set of complete nth-degree polynomi-
als are given as

NP

∑
l=1

φ (1)
l (x) xm

l = mxm−1 m = 0, 1, 2, · · · , n. (28)

The previous set of differential reproducing conditions can be rewritten in a matrix
form of
NP

∑
l=1

P(x−xl)φ (1)
l (x) =

NP

∑
l=1

P(x−xl)wa(x−xl)PT (x−xl)b1(x) = −P(1)(0), (29)
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where (-1)
[
P(1)(0)

]
= − d P(x−xl)

d x

∣∣∣
x=xl

=
[
0 −1 0 · · · 0

]T
.

The undetermined function matrix b1(x) can then be obtained and given by

b1(x) = −A−1(x) P(1)(0), (30)

Substituting Eq. (30) into Eq. (27) yields

φ (1)
l (x) = −wa(x−xl)PT (x−xl)A−1(x)P(1)(0). (31)

Carrying on the similar derivation to the kth-order derivative of the reproducing
kernel approximant leads to

dk ua(x)
dxk =

NP

∑
l=1

φ (k)
l (x) ûl, (32)

where

φ (k)
l (x) = (−1)k wa(x−xl)PT (x−xl)A−1(x)P(k)(0),

P(k)(0) =
dkP(x−xl)

d xk

∣∣∣∣
x=xl

.

It is found from observing Eqs. (21), (31) and (32) that the shape functions of re-
producing kernel approximants and their derivatives are independent of one another
and easy to be applied in the point collocation method.

4.3 Weight functions

In implementing the present scheme, the weight functions must be selected in ad-
vance. The conventional weight function of cubic spline is used in the present
analysis and given as

Cubic spline: wa(x−xl) = w(s) =

⎧⎪⎨
⎪⎩

6s3−6s2 +1 for s ≤ (1/2)
−2s3 +6s2 −6s+2 for (1/2) < s ≤ 1

0 for s > 1

,

(33)

where s = |x−xl |/a.

It is noted that a very small value of a may result in an ill-conditioned problem
since the system matrix A(x) will become singular. On the other hand, the value of
a also has to be small enough to preserve the local character of the present scheme.
Hence, a compromise range of the value of a has to be studied later to ensure the
accuracy and convergence of the present scheme.
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5 Applications

A simply-supported, doubly curved multilayered and FG shells under magneto-
electro-mechanical loads is considered in the present analysis. Three different cases
of applied loads on the lateral surfaces of the magneto-electro-elastic shells are
considered and given as follows:

For the cases of applied mechanical load, we consider

Case 1. q̄+
ζ = q0 sin(πα/aα) sin(πβ/aβ) N/m2, q̄−ζ = 0 N/m2; D̄+

ζ = 0 N/m2,

D̄−
ζ = 0 C/m2; B̄+

ζ = 0 Wb/m2, B̄−
ζ = 0 Wb/m2; and q0 = 1 N/m2. (34)

For the cases of applied electric load, we consider

Case 2. D̄+
ζ = D0 sin(πα/aα) sin(πβ/aβ) C/m2, D̄−

ζ = 0 C/m2; q̄+
ζ = 0 N/m2,

q̄−ζ = 0 N/m2; B̄+
ζ = 0 Wb/m2, B̄−

ζ = 0 Wb/m2; and D0 = 1 C/m2. (35)

For the cases of applied magnetic load, we consider

Case 3. B̄+
ζ = B0 sin(πα/aα) sin(πβ/aβ) Wb/m2, B̄−

ζ = 0 Wb/m2; q̄+
ζ = 0 N/m2,

q̄−ζ = 0 N/m2; D̄+
ζ = 0 C/m2, D̄−

ζ = 0 C/m2; and B0 = 1 Wb/m2. (36)

5.1 The method of double Fourier series expansion

The method of double Fourier series expansion is applied to reduce the system of
partial differential equations (Eq. (15)) to a system of ordinary differential equa-
tions. By satisfying the edge boundary conditions, we express the primary variables
in the following form

(u, τxz) =
∞

∑̂
m=1

∞

∑̂
n=1

(um̂n̂(z), τxzm̂n̂(z)) cos m̃x sin ñy, (37)

(v, τyz) =
∞

∑̂
m=1

∞

∑̂
n=1

(vm̂n̂(z), τyzm̂n̂(z)) sin m̃x cos ñy, (38)

(w, σz, ϕ, ψ , Dz, Bz) =
∞

∑̂
m=1

∞

∑̂
n=1

(wm̂n̂(z), σzm̂n̂(z), ϕm̂n̂(z), ψm̂n̂(z), Dzm̂n̂(z), Bzm̂n̂(z)) sinm̃x sin ñy, (39)

where m̃ = m̂π
√

Rh/aα , ñ = n̂π
√

Rh/aβ , m̂ and n̂ are positive integers.
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For brevity, the symbols of summation are omitted in the following derivation.
Using the set of dimensionless coordinates and field variables ((Eq. (14)) and sub-
stituting the Eqs. (37)-(39) in Eq. (15), we have the resulting equations as follows:

d
dz

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

um̂n̂

vm̂n̂

Dzm̂n̂

Bzm̂n̂

σzm̂n̂

τxzm̂n̂

τyzm̂n̂

ϕm̂n̂

ψm̂n̂

wm̂n̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̄11 0 0 0 0 k̄16 0 k̄18 k̄19 k̄10

0 k̄22 0 0 0 0 k̄27 k̄28 k̄29 k̄20

0 0 k̄33 0 0 −k̄18 −k̄28 k̄38 k̄39 0
0 0 0 k̄33 0 −k̄19 −k̄29 k̄39 k̄49 0

k̄51 k̄52 k̄53 k̄54 k̄55 −k̄10 −k̄20 0 0 k̄50

k̄61 k̄62 k̄63 k̄64 k̄65 k̄66 0 0 0 k̄60

k̄71 k̄72 k̄73 k̄74 k̄75 0 k̄77 0 0 k̄70

−k̄63 −k̄73 k̄83 k̄84 k̄85 0 0 0 0 k̄80

−k̄64 −k̄74 k̄84 k̄94 k̄95 0 0 0 0 k̄90

−k̄65 −k̄75 k̄85 k̄95 k̄05 0 0 0 0 k̄00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

um̂n̂

vm̂n̂

Dzm̂n̂

Bzm̂n̂

σzm̂n̂

τxzm̂n̂

τyzm̂n̂

ϕm̂n̂

ψm̂n̂

wm̂n̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (40)

where k̄i j (i, j=1-10) are given in Appendix B.

5.2 The mesh-free DRK-based collocation method

Equation (40) represents a system of ten simultaneously linear ordinary differen-
tial equations in terms of ten primary variables. A mesh-free collocation method
based on the present DRK approximations is applied to determine the primary vari-
ables in the elastic, electric and magnetic fields. Once these primary variables are
determined, the dependent variables can then be calculated using Eqs. (16)-(18).

5.2.1 Multilayered magneto-electro-elastic shells

The present mesh-free DRK-based collocation method is applied to the coupled
analysis of multilayered magneto-electro-elastic shells. The through-thickness dis-
tributions of material properties of the shell are the layerwise Heaviside functions
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and given by

gi j (ζ ) =
NL

∑
m=1

g(m)
i j [H (ζ −ζm)−H (ζ −ζm+1)] , (41)

where NL denotes the total number of layers constituting the shell; g(m)
i j refer to

the coefficients of ci j, ei j , qi j, ηi j , di j and μi j of the mth-layer in general; H (ζ ) is
the Heaviside function; ζm and ζm+1 are the distances measured from the middle
surface of the shell to the bottom and top surfaces of the mth-layer, respectively.

Selecting NP(m) nodal points along the thickness coordinate from bottom to top
surfaces of the mth-layer and applying the present DRK approximations to Eq. (40)
at each nodal point, we obtain(

NP(m)

∑
l=1

φ (1)
l (z(m)

r )
(

F̂ (m)
i

)
l

)
− k̄(m)

i j

(
NP(m)

∑
l=1

φl(z(m)
r )

(
F̂ (m)

j

)
l

)
= 0, (42)

where the subscripts i, j = 1, 2, 3, · · · , 10 and r = 1, 2, 3, · · · , NP(m); the super-
script m = 1, 2, 3, · · · , NL;

F̂(m) =
{

û(m) v̂(m) D̂(m)
z B̂(m)

z σ̂ (m)
z τ̂ (m)

xz τ̂ (m)
yz ϕ̂(m) ψ̂(m) ŵ(m)

}T

and
(

F̂(m)
j

)
l

denotes the fictitious nodal value of the jth-primary variable in F̂(m)

at the lth-nodal point of the mth-layer; z(m)
r denotes the thickness coordinate of rth-

referred nodal point in the mth-layer.

Similarly, the DRK approximations were applied for the boundary conditions on
the lateral surfaces are given by

NP(1)

∑
l=1

φl(z = −1)
(

F̂(1)
3

)
l
= 0,

NP(1)

∑
l=1

φl(z = −1)
(

F̂ (1)
4

)
l
= 0,

NP(1)

∑
l=1

φl(z = −1)
(

F̂(1)
5

)
l
= 0,

NP(1)

∑
l=1

φl(z = −1)
(

F̂(1)
6

)
l
= 0,

NP(1)

∑
l=1

φl(z = −1)
(

F̂ (1)
7

)
l
= 0; (43)

NP(NL)

∑
l=1

φl(z = 1)
(

F̂ (NL)
3

)
l
= (either D̄0 or 0),
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NP(NL)

∑
l=1

φl(z = 1)
(

F̂ (NL)
4

)
l
= (either B̄0 or 0),

NP(NL)

∑
l=1

φl(z = 1)
(

F̂ (NL)
5

)
l
= (either q̄0 or 0),

NP(NL)

∑
l=1

φl(z = 1)
(

F̂ (NL)
6

)
l
= 0,

NP(NL)

∑
l=1

φl(z = 1)
(

F̂ (NL)
7

)
l
= 0, (44)

where D̄0 = D0/e, B̄0 = B0/q and q̄0 = q0R/Qh.

The DRK approximants were also applied for the continuity conditions at interfaces
between adjacent layers and given by

NP(m)

∑
l=1

φl(z = z(m)
NP )

(
F̂(m)

i

)
l
=

NP(m+1)

∑
l=1

φl(z = z(m+1)
1 )

(
F̂ (m+1)

i

)
l

for i = 1, 2, 3, · · · ,10 and m = 1,2, · · · , (NL−1). (45)

Equations (42)-(45) represent a linear mathematical system consisting of [(10×
NP(m) ×NL) + (10×NL)] simultaneously algebraic equations in terms of (10×
NP(m)×NL) unknowns. The weighted least squares method is used in the present
analysis where the weight number for both the lateral boundary conditions and
continuity conditions is taken to be 10000 and for state space equations is 1.

5.2.2 FG magneto-electro-elastic shells

In the present paper, the material properties of the FG shells are assumed to obey
the identical power-law distribution of the volume fractions of the constituents and
are given by

gi j (ζ ) = g(t)
i j Γ(ζ ) + g(b)

i j [1−Γ(ζ )] , (46)

where the superscripts t and b in the parentheses denote the top and bottom sur-
faces of the shell, respectively. Γ(ζ ) denotes the volume fraction and is defined

as Γ(ζ ) =
(

ζ+h
2h

)κ
. κ is the power-law exponent which represents the degree of

the material gradient along the thickness. As κ = 0 and κ = ∞, the present FG
magneto-electro-elastic shell reduces to a homogeneous magneto-electro-elastic
shell with material properties g(t)

i j and g(b)
i j , respectively. As κ = 1, it represents

that the material properties of the FG shell linearly varied through the thickness
coordinate.
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The present DRK-based collocation method is applied to the coupled analysis of a
FG doubly curved shell. Selecting NP nodal points along the thickness coordinate
from bottom to top surfaces of the shell with a uniform spacing and applying the
present DRK approximations to Eq. (40) at each nodal point, we obtain(

NP

∑
l=1

φ (1)
l (zr)

(
F̂i
)

l

)
− k̄i j

(
NP

∑
l=1

φl(zr)
(
F̂j
)

l

)
= 0

for i = 1, 2, 3, · · · , 10 and r = 1, 2, 3, · · · , NP, (47)

where F̂ =
{

û v̂ D̂z B̂z σ̂z σ̂xz σ̂yz ϕ̂ ψ̂ ŵ
}T

and
(
F̂j
)

l denotes the fic-
titious nodal value of jth-primary variable in F̂ at the lth-nodal point; zr denotes the
thickness coordinate of rth -referred nodal point.

Similarly, the DRK approximations were applied for the boundary conditions on
the lateral surfaces of the shell are given by

NP

∑
l=1

φl(z = −1)
(
F̂3
)

l = 0,
NP

∑
l=1

φl(z = −1)
(
F̂4
)

l = 0,
NP

∑
l=1

φl(z = −1)
(
F̂5
)

l = 0,

NP

∑
l=1

φl(z = −1)
(
F̂6
)

l = 0,
NP

∑
l=1

φl(z = −1)
(
F̂7
)

l = 0; (48)

NP

∑
l=1

φl(z = 1)
(
F̂3
)

l = (either D̄0 or 0),
NP

∑
l=1

φl(z = 1)
(
F̂4
)

l = (either B̄0 or 0),

NP

∑
l=1

φl(z = 1)
(
F̂5
)

l = (either q̄0 or 0),
NP

∑
l=1

φl(z = 1)
(
F̂6
)

l = 0,

NP

∑
l=1

φl(z = 1)
(
F̂7
)

l = 0. (49)

Equations (47)-(49) represent a linear mathematical system consisting of [(10×
NP)+ 10] simultaneously algebraic equations in terms of (10xNP) unknowns. A
weighted least squares method is used in the present analysis where the weight
number for the lateral boundary conditions is taken to be 10000 and for state space
equations is 1.

6 Illustrative examples

6.1 Multilayered magneto-electro-elastic plates

Exact solution of the [B/F] and [F/B/F] layered magneto-electro-elastic plates un-
der mechanical loads has been presented by Pan and Heyliger (2003) using the
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method of propagator matrix where the character B in square bracket stands for
a piezoelectric layer of BaTiO3 material and the character F stands for a magne-
tostrictive layer of CoFe2O4 material. The previous problem was also analyzed by
Heyliger et al. (2004) using a discrete-layer theory and by Wu and Tsai (2007) us-
ing the method of perturbation. The present formulation of DRK-based collocation
scheme for shells can be reduced to the one for plates by letting 1/Rα = 1/Rβ = 0.

In the cases of [B/F] layered plates, the layer of BaTiO3 is on the top and that of
CoFe2O4 is on the bottom of the two-layered plate. Each layer of the plate is of
equal thickness. The elastic, piezoelectric, dielectric and magnetic properties of
CoFe2O4 and BaTiO3 materials are given in Table 1. The geometric parameters
are given as aα = 0.01 m, 2h = 0.001 m such that the span-to-thickness ratio S =
aα/2h = 10. The loading condition on the lateral surface of the plate is considered
as q̄+

ζ = q0 sin(πα/aα) and q̄−ζ = 0 where q0 = 1 N/m2.

Table 2 shows the present DRK collocation solutions of elastic, electric and mag-
netic field variables at the interface of the [B/F] layered plate. In the present analy-
sis, a uniform spacing (Δx3) for each pair of neighboring nodal points is used where

Δx3 = 2h(m)/(NP(m)−1) and m = 1,2; NP =
NL
∑

m=1
NP(m)− (NL−1); 2h(m) denotes

the thickness of the mth-layer and 2h(m) = z(m)
NP − z(m)

1 . The effects of the highest
order of basis functions (n) and the support size (a) on the present solutions are
presented where the values of (n, a) are taken to be (2, 2.1Δx3), (2, 3.1Δx3) and
(3, 3.1Δx3). The total number of nodal points is taken as NP=7, 9, 11, 21 (i.e.,
NP(m)=4, 5, 6, 11, respectively, and m=1, 2). The accuracy and rate of conver-
gence of the present method are validated by comparing the present solutions with
the available exact 3D solutions (Pan and Heyliger, 2003; Wu and Tsai, 2007) and
approximate 3D solutions (Heyliger et al., 2004). It is shown from Table 2 that
the present solutions with n=3 and a=3.1Δx3 yield more accurate results than the
others and their 11-nodes solutions are in excellent agreement with the available
3D solutions.

Table 3 considers a simply-supported, [F/B/F] layered plate under the mechanical
load (i.e., q̄+

ζ = q0 sin(πα/aα) sin(πβ/aβ), q̄−ζ = 0 and q0 = 1 N/m2). The geo-
metric parameters are given as aα = aβ = 1 m, 2h = 0.3 m and S = aα/2h = 10/3.
The total number of nodal points is taken as NP=10, 13, 16, 31 (i.e., NP(m) =
4, 5, 6, 11, respectively, and m=1, 2, 3). The present DRK collocation solutions
at the lateral surfaces (ζ = ±0.15m) and at the interfaces between adjecent lay-
ers (ζ = ±0.05m) are presented where n=3, a=3.1Δx3. Again, it is shown that the
present solutions converge fast and the present convergent solutions are in excel-
lent agreement with the available exact 3D solutions (Pan and Heyliger, 2003) and
approximate 3D solutions (Heyliger and Pan, 2004).
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Table 1: Elastic, piezoelectric, piezomagnetic, dielectric and magnetic properties
of piezoelectric and magnetostrictive materials

Moduli BaTiO3 CoFe2O4

(Heyliger et al., 2004) (Heyliger et al., 2004)
c11 (Gpa) 166.0 286.0

c22 166.0 286.0
c33 162.0 269.5
c12 77.0 173.0
c13 78.0 170.5
c23 78.0 170.5
c44 43.0 45.3
c55 43.0 45.3
c66 44.5 56.5

e31
(
C/m2) -4.4 0.0

e32 -4.4 0.0
e33 18.6 0.0
e24 11.6 0.0
e15 11.6 0.0

q31 (N/Am) 0.0 580.3
q32 0.0 580.3
q33 0.0 699.7
q24 0.0 550.0
q15 0.0 550.0

η11
(
C2/Nm2

)
11.2e-09 0.080e-09

η22 11.2e-09 0.080e-09
η33 12.6e-09 0.093e-09

μ11
(
Ns2/C2

)
5.0e-06 -590.0e-06

μ22 5.0e-06 -590.0e-06
μ33 10.0e-06 157.0e-06

6.2 Multilayered magneto-electro-elastic shells

The direct piezoelectric and piezomagnetic effects of doubly curved [F/B] and
[F/B/F] layered magneto-electro-elastic shells under the mechanical load (Case 1)
are studied in Figs. 2-3, respectively. The geometric parameters of the shell are
S=aα/2h=5, aα/aβ = 1, Rα/Rβ=1, Rα/aα =5. The dimensionless variables are
denoted as

ūi = uic
∗/q0 (2h) , τ̄i j = τi j/q0, Φ̄ = Φe∗/q0 (2h) , D̄i = Di c∗/q0 e∗,
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Table 3: Mechanical, electric and magnetic field variables at crucial positions in
the [F/B/F] laminated plate under mechanical load (S=10/3)

ζ (m) Theories uα
(
0,

aβ
2 ,ζ

)
uζ
( aα

2 ,
aβ
2 ,ζ

)
σζ
( aα

2 ,
aβ
2 ,ζ

)
Φ
(aα

2 ,
aβ
2 ,ζ

)
Ψ
( aα

2 ,
aβ
2 ,ζ

)
DRKP NP = 10 -0.27371e-11 0.97088e-11 1.00000 0.43139e-2 -0.17564e-5

13 -0.27393e-11 0.97142e-11 1.00000 0.43157e-2 -0.17304e-5
16 -0.27391e-11 0.97139e-11 1.00000 0.43148e-2 -0.17304e-5

0.15 31 -0.27392e-11 0.97140e-11 1.00000 0.43147e-2 -0.17302e-5
Discrete layer sol. -0.27194e-11 0.96774e-11 NA 0.43079e-2 -0.17381e-5

(Heyliger and Pan, 2004)
Exact sol. -0.27392e-11 0.97140e-11 NA 0.43147e-2 -0.17302e-5

(Pan and Heyliger, 2003)
DRKP NP = 10 -0.05772e-11 0.99878e-11 0.73155 0.46854e-2 -0.38303e-5

13 -0.05777e-11 0.99943e-11 0.73167 0.46835e-2 -0.38483e-5
16 -0.05777e-11 0.99939e-11 0.73166 0.46863e-2 -0.38469e-5
31 -0.05777e-11 0.99941e-11 0.73166 0.46863e-2 -0.38477e-5

0.05 Discrete layer sol. -0.05730e-11 0.99571e-11 NA 0.46792e-2 -0.38689e-5
(Heyliger and Pan, 2004)

Exact sol. -0.05777e-11 0.99940e-11 NA 0.46863e-2 -0.38477e-5
(Pan and Heyliger, 2003)

DRKP NP = 10 0.11408e-11 0.96575e-11 0.25863 0.41374e-2 -0.29211e-5
13 0.11414e-11 0.96640e-11 0.25854 0.41441e-2 -0.29142e-5
16 0.11414e-11 0.96636e-11 0.25855 0.41429e-2 -0.29137e-5

-0.05 31 0.11414e-11 0.96638e-11 0.25854 0.41431e-2 -0.29138e-5
Discrete layer sol. 0.11374e-11 0.96269e-11 NA 0.41360e-2 -0.29314e-5

(Heyliger and Pan, 2004)
Exact sol. 0.11414e-11 0.96638e-11 NA 0.41431e-2 -0.29138e-5

(Pan and Heyliger, 2003)
DRKP NP = 10 0.31419e-11 0.88122e-11 0.00000 0.38094e-2 -0.21751e-5

13 0.31441e-11 0.88178e-11 0.00000 0.38156e-2 -0.21671e-5
16 0.31440e-11 0.88175e-11 0.00000 0.38145e-2 -0.21667e-5

-0.15 31 0.31440e-11 0.88176e-11 0.00000 0.38146e-2 -0.21670e-5
Discrete layer sol. 0.31256e-11 0.87814e-11 NA 0.38077e-2 -0.21730e-5

(Heyliger and Pan, 2004)
Exact sol. 0.31440e-11 0.88176e-11 NA 0.38146e-2 -0.21670e-5

(Pan and Heyliger, 2003)

Ψ̄ = Ψq∗/q0 (2h) ; B̄i = Bi c
∗/q0 q∗; (50)

where c∗ = 10×109 N/m2, e∗ = 10 C/m2, q∗ = 10 N/Am.

Figure 2 shows the through-thickness distributions of various variables of mechan-
ical, electric and magnetic fields of the [F/B] layered shell where NP= 7 and 9
(i.e., NP(m) = 4 and 5; m=1, 2). It is shown that the present DRK collocation so-
lutions convergent rapidly and the present 9-nodes solutions are in excellent agree-
ment with the available exact 3D solutions (Wu and Tsai, 2007). In the applied
mechanical load case, the variations of electric field variables through the thick-
ness direction in the piezoelectric layer (B) are more remarkable than those in the
piezomagnostrictive layer (F). Similarly, the variations of magnetic field variables
through the thickness direction in the piezomagnostrictive layer are more remark-
able than those in the piezoelectric layer. In the present thick shell case (S=5),
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Figure 2: The through-thickness distributions of various field variables in a [F/B]
shell under the mechanical load (Case 1).
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Figure 3: The through-thickness distributions of various field variables in a [F/B/F]
plate under the mechanical load (Case 1).
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the through-thickness distribution of the in-surface displacement appears to be lin-
ear and those of out-of-surface displacement and transverse stresses appear to be
global higher-degree polynomials. It is also observed that the through-thickness
distributions of variables of the electric and magnetic fields appear to be layer-wise
higher-degree polynomials.

Figure 3 shows the through-thickness distributions of various variables of mechan-
ical, electric and magnetic fields of the [F/B/F] layered shell where the span-to-
thickness ratio (S) is taken to be 5, 10, 20. The other geometric parameters and di-
mensionless field variables are given as identical values used in the case of the [F/B]
layered shell. It is shown from Fig. 3(c) that the maximum transverse shear stress
occurs in the vicinity of the middle surface of the shells. The transverse shear stress
produced in thick shells are smaller than that in thin shells as the shells are under
mechanical loads. It is observed from Figs. 3(e)-3(f) that the electric displacement
and electric potential in the thickness direction is approximately linearly varied in
the magnetostrictive layer and their variations appear to be higher-degree polyno-
mials in the electric layer. An opposite tendency is also observed for the magnetic
flux and magnetic potential from Figs. 3(g)-3(h). It is shown that the magnetic po-
tential and magnetic flux in the thickness direction is approximately linearly varied
in the piezoelectric layer and their variations appear to be higher-degree polyno-
mials in the magnetostrictive layer. The influence of span-to-thickness ratio of the
shells on the electric potential and magnetic potential is much remarkable than that
on electric displacement and magnetic flux.

6.3 Functionally graded magneto-electro-elastic shells

The direct and converse piezoelectric and piezomagnetic effects of doubly curved
FG magneto-electro-elastic shells under the loading conditions of Cases 1-3 are
considered in Figs. 4-6, respectively. The material properties of bottom and top
surfaces of the shell are identical to those of BaTiO3 and CoFe2O4 materials, re-
spectively. The material properties through the thickness coordinate are assumed to
obey the identical power-law distribution of the volume fractions of the constituents
(BaTiO3 and CoFe2O4 materials) and given as Eq. (46). The power-law exponent
is taken as κ=0.1, 1, 10. The geometric parameters are considered as aα/aβ =1,
Rα/Rβ=1, Rα/aα=5 and S=aα/2h=10. The dimensionless variables for loading
conditions of Case 1 (Eq.(34)) are given in Eq. (50). In addition, for loading con-
ditions of Case 2 (Eq.(35)),

ūi = ui e
∗/D0 (2h), τ̄i j = τi j e∗/D0 c∗, Φ̄ = Φ (e∗)2/D0 c∗ (2h), D̄i = Di/D0,

Ψ̄ = Ψq∗ e∗/D0 c∗ (2h), B̄i = Bi e
∗/D0 q∗. (51)
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Figure 4: The through-thickness distributions of various field variables in a FG
shell under the mechanical load (Case 1).
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Figure 5: The through-thickness distributions of various field variables in a FG
shell under the electric displacement (Case 2).
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Figure 6: The through-thickness distributions of various field variables in a FG
shell under the magnetic flux (Case 3).
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For loading conditions of Case 3 (Eq. (36)),

ūi = ui q
∗/B0 (2h), τ̄i j = τi j q∗/B0 c∗, Φ̄ = Φe∗ q∗/B0 c∗ (2h),

D̄i = Di q
∗/B0 e∗, Ψ̄ = Ψ(q∗)2/B0 c∗ (2h), B̄i = Bi /B0. (52)

Figures 4-6 show the variations of mechanical, electric and magnetic variables
across the thickness coordinate of the considered FG shells. Figures 4(a), 5(a)
and 6(a) show that the through-thickness distributions of in-surface displacement
appear to be linear as the mechanical load is applied; whereas that appears to be
higher-degree polynomials as the electric or magnetic load is applied. It is ob-
served from Figs. 4(a)-(d), 5(a)-(d) and 6(a)-(d) that the influence of the power-law
exponent on the mechanical variables is minor in the cases of applied mechani-
cal load (Case 1) and is significant in the cases of applied electric and magnetic
loads (Cases 2 and 3). Figures 4(e)-6(e) and 4(f)-6(f) show that the electric dis-
placement and magnetic flux change dramatically through the thickness coordinate
of the shell. It is also illustrated from Figs. 4(d, e, g), 5(d, e, g) and 6(d, e, g),
the prescribed boundary conditions on the lateral surfaces of the shell are exactly
satisfied.

As previously observed, we found that these through-thickness distributions of gen-
eralized displacement field are quite different from the basic assumptions of kine-
matics field in conventionally coupled classical shell theories (CCST) and coupled
first-order shear deformation theories (CFSDT), especially in the applied electric
and magnetic load cases. Using CCST and CFSDT for the coupled magneto-
electro-elastic analysis of FG plates and shells may lead to unexpected error. It
is therefore suggested that an advanced approximate plate/shell theory needs to be
developed for the coupled magneto-electro-elastic analysis of plates/shells.

7 Conclusions

In the paper we have extendedly applied the mesh-free DRK-based collocation
method for the three-dimensional solutions of simply-supported, doubly curved
multilayered and FG magneto-electro-elastic shells. Three different kinds of load-
ings (i.e., the mechanical load, electric displacement and magnetic flux) applied
on the lateral surfaces of the shells are considered. The through-thickness distri-
butions of material properties of the FG shells are considered to obey an identical
power-law distribution of the volume fractions of the constituents. They are further
considered as layer-wise Heaviside functions through the thickness coordinate for
the analysis of multilayered shells. The accuracy and the rate of convergence of the
present DRK collocation solutions are evaluated in comparison with exact solutions
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of [B/F] and [F/B/F] layered magneto-electro-elastic plates available in the litera-
ture. The present asymptotic solutions are shown to converge rapidly and be in ex-
cellent agreement with the exact solutions. The variations of through-thickness dis-
tributions of magnetic, electric and mechanical variables of [F/B/F] layered shells
with span-to-thickness ratios are presented. The influence of the power-law expo-
nent on the magnetic, electric and mechanical variables induced in the FG shells is
also studied. Based on the present results, it is concluded that the generalized kine-
matics field in CCST and CFSDT may not be appropriate for the analysis of FG and
multilayered magneto-electro-elastic shells, especially as the shells are under elec-
tric and magnetic loads. Hence, an advanced approximate plate/shell theory needs
to be developed for the coupled magneto-electro-elastic analysis of plates/shells.
The relevant research subjects are continuously studied.
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Appendix A

The relevant coefficients in the terms of ki j are given by

c̃i j = ci j/Q, ẽi j = ei j/e, q̃i j = qi j/q, d̃i j = di j Q/eq,

η̃i j = ηi j Q/e2, μ̃i j = μi j Q/q2,

Qi j = ci j −ci3 a1 j −e3i a2 j −q3i a3 j (i, j = 1,2,6); a1k = ck3 a1 +e3k a2 +q3k a3,

a2k = ck3 b1 +e3k b2 +q3k b3, a3k = ck3 c1 +e3k c2 +q3k c3, (k = 1,2);

a1 =
1
Δ
(
η33 μ33 −d2

33

)
, a2 =

1
Δ

(e33 μ33 −d33 q33) , a3 =
1
Δ

(q33 η33 −d33 e33) ,

b1 = a2, b2 =
−1
Δ
(
c33 μ33 + q2

33

)
, b3 =

1
Δ

(c33 d33 +q33 e33) ,

c1 = a3, c2 = b3, c3 =
−1
Δ
(
c33 η33 + e2

33

)
, Δ =

∣∣∣∣∣∣
c33 e33 q33

e33 −η33 −d33

q33 −d33 −μ33

∣∣∣∣∣∣ .
(A1-20)
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Appendix B

The coefficients k̄i j in Eq. (40) are given by

k̄11 = k11, k̄16 = k16, k̄18 = −m̃ (ẽ15 h/c̃55 γα R) , k̄19 = −m̃ (q̃15 h/c̃55 γα R) ,

k̄10 = −m̃ (1/γα) , k̄22 = k22, k̄27 = k27, k̄28 = −ñ
(
ẽ24 h/c̃44 γβ R

)
,

k̄29 = −ñ
(
q̃24 h/c̃44 γβ R

)
, k̄20 = −n

(
1/γβ

)
, k̄33 = k33,

k̄38 = −m̃2 [(ẽ2
15/c̃55 + η̃11

)
h/γ2

α R
] − ñ2

[(
ẽ2

24/c̃44 + η̃22
)

h/γ2
β R
]
,

k̄39 = −m̃2 [(ẽ15 q̃15/c̃55 + d̃11
)

h/γ2
α R
] − ñ2

[(
ẽ24 q̃24/c̃44 + d̃22

)
h/γ2

β R
]

,

k̄49 = −m̃2 [( q̃2
15/c̃55 + μ̃11

)
h/γ2

α R
] − ñ2

[(
q̃2

24/c̃44 + μ̃22
)

h/γ2
β R
]

,

k̄51 = −m̃
[(

Q̃11/γ2
α Rx

)
+
(
Q̃21/γα γβ Ry

)]
,

k̄52 = −ñ
[(

Q̃12/γα γβ Rx
)
+
(

Q̃22/γ2
β Ry

)]
,

k̄53 = k53, k̄54 = k54, k̄55 = k55, k̄50 = k50,

k̄61 = m̃2 (Q̃11/γ2
α
)
+ ñ2

(
Q̃66/γ2

β

)
, k̄62 = m̃ ñ

(
Q̃12 + Q̃66

)
/
(
γα γβ

)
,

k̄63 = −m̃ (a21 e/Qγα) , k̄64 = −m̃ (a31 q/Qγα) , k̄65 = −m̃ (a11 h/Rγα) ,

k̄66 = k66, k̄60 = −m̃
[(

Q̃11/γ2
α Rx

)
+
(
Q̃12/γα γβ Ry

)]
,

k̄71 = m̃ ñ
(
Q̃21 + Q̃66

)
/
(
γα γβ

)
, k̄72 =

[
m̃2

(
Q̃66/γ2

α
)
+ ñ2

(
Q̃22/γ2

β

)]
,

k̄73 = −ñ
(
a22 e/Qγβ

)
,

k̄74 = −ñ
(
a32 q/Qγβ

)
, k̄75 = −ñ

(
a12 h/Rγβ

)
, k̄77 = k77,

k̄70 = −ñ
[(

Q̃21/γα γβ Rx
)
+
(

Q̃22/γ2
β Ry

)]
, k̄83 = k83, k̄84 = k84, k̄85 = k85,

k̄80 = k80, k̄94 = k94, k̄95 = k95, k̄90 = k90, k̄05 = k05, k̄00 = k00.


