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A Highly Accurate MCTM for Inverse Cauchy Problems
of Laplace Equation in Arbitrary Plane Domains

Chein-Shan Liu1

Abstract: We consider the inverse Cauchy problems for Laplace equation in
simply and doubly connected plane domains by recoverning the unknown bound-
ary value on an inaccessible part of a noncircular contour from overspecified data.
A modified Trefftz method is used directly to solve those problems with a simple
collocation technique to determine unknown coefficients, which is named a mod-
ified collocation Trefftz method (MCTM). Because the condition number is small
for the MCTM, we can apply it to numerically solve the inverse Cauchy problems
without needing of an extra regularization, as that used in the solutions of direct
problems for Laplace equation. So, the computational cost of MCTM is very sav-
ing. Numerical examples show the effectiveness of the new method in providing
an excellent estimate of unknown boundary data, even by subjecting the given data
to a large noise.

Keyword: Inverse Cauchy problem, Modified Trefftz method, Laplace equation,
Modified collocation Trefftz method (MCTM)

1 Inverse Cauchy problems

The inverse Cauchy problem is difficult to solve, since its solution does not depend
continuously on the given data. Because of this ill-posedness, the errors in mea-
sured data will be enlarged in the solution by a numerical treatment, if we do not
take this trouble into account. Therefore, we must tackle this type problem with a
suitable numerical algorithm, which compromises accuracy and stability. Chang,
Yeih and Shieh (2001) have shown that neither the traditional Tikhonov’s regular-
ization method nor the singular value decomposition method can yield acceptable
numerical result for the inverse Cauchy problem of Laplace equation, when the
influence matrix is highly ill-posed.
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Lesnic, Elliott and Ingham (1997), and Mera, Elliott, Ingham and Lesnic (2000)
have applied the boundary element method for the solutions of inverse Cauchy
problems. Their methods are inevitably required an iterative process to adjust the
solution. In this paper, we begin with a modified Trefftz method proposed by Liu
(2007a, 2007b), and leave the unknown coefficients determined by partial but over-
specified boundary conditions from a collocation method. The collocation method
is very useful in the computations of direct problems in engineering, because the
algebraic equations can be easily derived. However, it is seldom used in the inverse
problems because the ill-posedness is inherent.

The method of fundamental solutions (MFS) utilizes the fundamental solutions as
basis functions to expand the solution, which is another popularly used meshless
method. While Jin and Zheng (2006) have applied the MFS to solve the inverse
problem of Helmholtz equation, Marin and Lesnic (2005) have applied the MFS to
solve the inverse Cauchy problem associated with a two-dimensional biharmonic
equation. In order to tackle of the ill-posedness of MFS and the inherent ill-posed
property of the inverse Cauchy problems, those authors proposed new numerical
schemes with the regularization parameters determined by the L-curve method.
Ling and Takeuchi (2008) have combined the MFS and boundary control technique
to solve the inverse Cauchy problem of Laplace equation. Liu and Atluri (2008a)
reformulated the inverse Cauchy problem of Laplace equation in a rectangle as an
optimization problem, and applied a fictitious time integration method [Liu and
Atluri (2008b)] to solve an algebraic equations system to obtain the data on an
unspecified portion of boundary. When an extension to nonlinear inverse Cauchy
problem is concerned with, they showed that good result can be obtained by using
their method.

Our starting point employs a meshless method of Trefftz type, and a new modifica-
tion is required in order to get a non ill-posed linear equations system. Furthermore,
our method does not need regularization even the input data is noised seriously.
Recently, Liu (2008a) has applied a similar technique by modifying the traditional
Trefftz method for biharmonic equation, and showed that both the direct and in-
verse problems can be unifiedly solved very well by the same modified collocation
Trefftz method (MCTM).

The detection of corrosion inside a pipe is very important in engineering applica-
tions. In this paper we consider a mathematical modeling of this problem and give
an effective numerical algorithm for a method to detect the corrosion by an electri-
cal field in the pipe. Given the Cauchy data u(x,y) and Neumann data ∂u/∂n(x,y)
at the point (x,y) ∈ R

2 with unit outward normal n(x,y) on the accessible exter-
nal part Γ1 of a noncircular contour, we consider an inverse Cauchy problem of
the Laplace equation Δu(x,y) = 0 in two dimensions to find the unknown func-
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tion u(x,y) on an inaccessible part Γ2 of Γ = Γ1 ∪Γ2 as schematically shown in
Fig. 1(a). This is the first type inverse Cauchy problem considered in the present
paper.

B.Cs. given
h( ) and g( )1

2
f( )=?

(a)

u=0

u=0
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h( ) and g( )

f( )=?

(b)

1
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Figure 1: The inverse Cauchy problems are schematically shown in (a) for the
first type in a simply-connected domain, and (b) for the second type in a doubly-
connected domain.

On the other hand, this paper also addresses the second type inverse Cauchy prob-
lem in a doubly-connected plane domain as schematically shown in Fig. 1(b), where
we want to recover the unknown boundary data on an inner part Γ2 by giving over-
specified data on an outer part Γ1. This problem setting can be used in the elec-
trostatic image of the inverse problem in human electro-cardiography [Johnston
(2001)]. The use of electrostatic image in the nondestructive testing of metallic
plates leads to an inverse boundary value problem for Laplace equation in two-
dimensions. In order to detect the unknown shape of the inclusion within a conduct-
ing metal, the overspecified Cauchy data, for example the voltage and current, are
imposed on the accessible exterior boundary [Akduman and Kress (2002); Inglese
(1997); Kaup, Santosa and Vogelius (1996)]. This amounts to solving an inverse
Cauchy problem from available data on a partial part of the boundary. Because this
problem is well known to be highly ill-posed since the work of Hadamard, there
have been many studies of this type problems, e.g., Andrieux, Baranger and Ben
Abda (2006), Aparicio and Pidcock (1996), Ben Belgacem and El Fekih (2005),
Berntsson and Eldén (2001), Bourgeois (2005, 2006); Chapko and Kress (2005),
Kress (2004), Mera, Elliott, Ingham and Lesnic (2000), and Slodicka and Van Keer
(2004).
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Let us consider

Δu = urr +
1
r

ur +
1
r2 uθθ = 0, (1)

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ β π , (2)

un(ρ ,θ ) = g(θ ), 0 ≤ θ ≤ β π , (3)

where h(θ ) and g(θ ) are given functions. β ≤ 1 for the first type inverse Cauchy
problem, while β = 2 for the second type inverse Cauchy problem. Here, r = ρ(θ )
is a given contour describing the boundary shape of an interior domain Ω. The
contour Γ in the polar coordinates is described by Γ = {(r,θ )|r = ρ(θ ), 0 ≤ θ ≤
2π}. For the second type inverse Cauchy problem, while r = ρ is used to describe
the outer contour, r = κ(θ ) is used to describe the inner contour.

The present inverse Cauchy problem is given as follows:
Inverse problem. To seek an unknown function f (θ ) on the unspecified part of the
boundaries under Eqs. (1)-(3).

This problem is for solving the Laplace equation under an overspecified Cauchy
data on a partial noncircular boundary. Usually, it requires β ≥ 1, which is specified
by Mera, Elliott and Ingham (2003) as a necessary condition for the numerically
identifiable of the first type inverse Cauchy problem. However, in the present study
we can let β < 1 without losing much accuracy.

When the contour is circular, Liu (2008b) has applied a modified Trefftz method to
recover the unknown boundary data for the first type inverse Cauchy problem, but
needs to consider a regularization technique by truncating the higher-mode compo-
nents of the given data. In this paper we extend the study to arbitrary plane domain,
without needing of regularization technique. In Sections 2 and 3 we give numerical
method and numerical examples for the first type inverse Cauchy problem, while in
Sections 4 and 5 we give numerical method and numerical examples for the second
type inverse Cauchy problem. The latter type is more difficult to solve than the first
type.

2 A modified collocation Trefftz method

In this section we derive a new numerical method to solve the first type inverse
Cauchy problem, and numerical examples are given in the next section.

Liu (2007a, 2007b, 2007c) has proposed a modified Trefftz method by supposing
that

u(r,θ ) = a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]
, (4)
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where

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ ) (5)

is a number greater than the characteristic length of the problem domain we con-
sider. Besides, m is a positive integer chosen by the user, and a0,ak,bk, k = 1, . . . ,m
are unknown coefficients to be determined below. Recently, Chen, Liu and Chang
(2008) have applied the MCTM to discontinuous boundary value problem, sin-
gular problem and degenarate scale problem of Laplace equation by using much
higher-order terms with m larger than 100, and they showed that the MCTM is
more powerful and robust against noise than other numerical methods.

Through some effort we can derive (see the Appendix)

un(ρ ,θ ) = η(θ )
[

∂u(ρ ,θ )
∂ρ

− ρ ′

ρ2

∂u(ρ ,θ )
∂θ

]
, (6)

where

η(θ ) =
ρ(θ )√

ρ2(θ )+[ρ ′(θ )]2
. (7)

From Eqs. (6) and (4) it follows that

un(ρ ,θ ) =
m

∑
k=1

γk
[{

kak

ρ
− kbkρ ′

ρ2

}
coskθ +

{
kbk

ρ
+

kakρ ′

ρ2

}
sinkθ

]
, (8)

where

γ(θ ) :=
ρ(θ )

R0
. (9)

By imposing conditions (2) and (3) on Eqs. (4) and (8) we can obtain

a0 +
m

∑
k=1

[akCk +bkDk] = h(θ ), 0 ≤ θ ≤ β π , (10)

m

∑
k=1

[akEk +bkFk] = g(θ ), 0 ≤ θ ≤ β π , (11)

where

Ck := γk coskθ , (12)

Dk := γk sinkθ , (13)

Ek := ηγk
[

k
ρ

coskθ +
kρ ′

ρ2 sinkθ
]
, (14)

Fk := ηγk
[

k
ρ

sinkθ − kρ ′

ρ2 coskθ
]
. (15)
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Eqs. (10) and (11) are then imposed at m+1 different collocated points (ρ(θi),θi)
in an interval of 0 ≤ θi ≤ β π :

a0 +
m

∑
k=1

[akC
i
k +bkDi

k] = h(θi), (16)

m

∑
k=1

[akE
i
k +bkFi

k ] = g(θi), (17)

where for simple notations we use Ci
k = Ck(θi), etc.

It can be seen that the idea behind the collocation method is rather simple, and it
has a great advantage of the flexibility to apply to different geometric shapes, and
the simplicity for a computer program.

Let

θi = iΔθ , i = 1, . . . ,m, (18)

where Δθ = β π/(m+ 1), and (ρ(θi),θi) are the collocated points on the partial
noncircular contour. When the index i in Eqs. (16) and (17) runs from 1 to m we
obtain a linear equations system with dimensions n = 2m+1:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 C0
1 cosθ0 D0

1 sinθ0 . . . C0
m cos(mθ0) D0

m sin(mθ0)
1 C1

1 cosθ1 D1
1 sinθ1 . . . C1

m cos(mθ1) D1
m sin(mθ1)

0 E1
1 cosθ1 F1

1 sinθ1 . . . E1
m cos(mθ1) F1

m sin(mθ1)
...

...
...

...
...

...
1 Cm

1 cosθm Dm
1 sinθm . . . Cm

m cos(mθm) Dm
m sin(mθm)

0 Em
1 cosθm Fm

1 sinθm . . . Em
m cosθm Fm

m sin(mθm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

b1
...

am

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(θ0)
h(θ1)
g(θ1)

...
h(θm)
g(θm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Corresponding to the uniformly distributed collocated points on the upper partial
contour, θ0 = 0 is a single collocated point which is supplemented to provide the
n-th equation.

We denote the above equation by

Rc = b1,
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where c = [a0,a1,b1, · · · ,am,bm]T is the vector of unknown coefficients. The con-
jugate gradient method can be used to solve the following normal equation:

Ac = b, (20)

where

A := RTR, b := RTb1. (21)

Inserting the calculated c into Eq. (4) we thus have a semi-analytical solution of
u(r,θ ),

u(r,θ ) = c1 +
m

∑
k=1

(
r

R0

)k

[c2k coskθ +c2k+1 sinkθ ], (22)

and thus the data to be recovered is given by

f (θ ) = c1 +
m

∑
k=1

(
ρ(θ )

R0

)k

[c2k coskθ +c2k+1 sinkθ ]. (23)

3 Numerical examples for the first type inverse Cauchy problem

Before embarking a numerical testing of the new method, we are concerned with
the stability of modified collocation Trefftz method (MCTM), in the case when
the boundary data are contaminated by random noise, which is investigated by
adding different levels of random noise on the boundary data. We use the function
RANDOM−NUMBER given in Fortran to generate the noisy data R(i), which are
random numbers in [−1,1]. Hence we use the simulated noisy data given by

ĥ(θi) = h(θi)+ sR(i) (24)

as the inputs in Eq. (19), where θi = iβ π/(m + 1), i = 0,1, . . .,m + 1, and s is the
level of noise. Similarly, we do this for the Neumann boundary data g(θ ).

3.1 Example 1

We first consider a simple example with the exact solution

u = x2 −y2 = r2 cos(2θ ). (25)

Therefore, the data on the upper contour are given by

h(θ ) = ρ2 cos(2θ ), 0 ≤ θ ≤ β π , (26)

g(θ ) = η(θ )[2ρ cos(2θ )+2ρ ′ sin(2θ )], 0 ≤ θ ≤ β π , (27)
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where the contour is described by an epitrochoid boundary shape,

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b) (28)

with a = 4 and b = 1.

We can apply the MCTM to this example with very high accuracy as shown in
Fig. 2(a) by comparing the numerical solution with exact solution, and by display-
ing the absolute error in Fig. 2(b), where m = 3, R0 = 10, β = 1 and s = 0 were
used. The L2 error is about 2.9×10−12 for this case. We also plot the numerical
errors in Fig. 2(b) for other cases with m = 100, R0 = 2000, β = 0.8 and s = 0, and
m = 50, R0 = 1000, β = 0.9 and s = 0.01. Upon comparing the dashed-dotted line
in Fig. 2(a) with the solid line, it can be seen that the noise disturbs the numerical
solution little from the exact one. The present method is robust against the noise.

For comparison purpose we also apply the collocation Trefftz method (CTM) with-
out a modification, i.e., R0 = 1, to the calculation of this case by fixing β = 1 and
m = 8 (when m > 8, the CTM is not applicable). As shown by the solid line filled
with solid circles in Fig. 2(a), the CTM produces a bad result even no noise is
added.

The inaccuracy of CTM may result from its numerical instability. In order to ob-
serve this phenomenon we plot the condition number of A with respect to the num-
ber of bases in Fig. 3, which is defined by

Cond(A) = ‖A‖‖A−1‖. (29)

The norm used for A is the Frobenius norm. Therefore, we have

1
n

Cond(A)≤ λmax

λmin
≤ Cond(A), (30)

where λ is the eigenvalue of A. Conventionally, λmax/λmin is used to define the
condition number of A. For the present study we use Eq. (29) to define the condition
number of A.

It can be seen that the present method can greatly reduce the condition number
about twenty orders under m = 18 as shown in Fig. 3. No matter which m is se-
lected, the condition number of the presently modified Trefftz method is always
much smaller than that of the original Trefftz method. Therefore, when the new
method is very accurate, the Trefftz method leads to a bad numerical result as shown
in Fig. 2(a).
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Figure 2: For Example 1 in Section 3: (a) comparing numerical and exact solutions,
and (b) showing the numerical errors for different parameters.

3.2 Example 2

In this example a complex amoeba-like irregular shape is shown in the inset of
Fig. 4:

ρ(θ ) = exp(sinθ ) sin2(2θ )+exp(cosθ )cos2(2θ ). (31)

We consider the following analytical solution:

u(x,y) = cosxcoshy+ sinxsinhy, (32)

from which the exact boundary data can be derived.

In Fig. 4(a), by comparing the numerical solution with exact solution, and display-
ing the absolute error for m = 20, R0 = 10, β = 1 and s = 0 in Fig. 4(b), we can
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Figure 3: For Example 1 in Section 3 the condition numbers of CTM and MCTM
are plotted with respect to m.

see that the present MCTM is a good mathematical tool to recover the unknown
boundary data. We also plotted the numerical error in Fig. 4(b) for the noised case
with m = 90, R0 = 40, β = 0.9 and s = 0.005.

Upon comparing with the numerical results in Hayashi, Ohura and Onishi (2002)
and Delvare, Cimetiére and Pons (2000), we can say that the present method is
much better than the numerical methods in those papers.

For comparison purpose we also apply the CTM without a modification, i.e., R0 =
1, to the calculation of this case by fixing β = 1 and m = 10 (when m > 10, the
CTM is not applicable). As shown by the dashed-dotted line in Fig. 4(b), the CTM
produces a bad result even no noise is added.

4 Inverse Cauchy problem in doubly-connected domain

In this section we derive a new numerical method to solve the second type inverse
Cauchy problem, and numerical examples are given in the next section.

For the Laplace equation in a doubly-connected domain, Liu (2008c) has proposed
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Figure 4: For Example 2 in Section 3: (a) comparing numerical and exact solutions,
and (b) showing the numerical errors for different parameters.

a modified Trefftz method by supposing that

u(r,θ ) =a0 +b0 lnr +
m

∑
k=1

[(
ak

(
r

R01

)k

+bk

(
R02

r

)k
)

coskθ

+

(
ck

(
r

R01

)k

+dk

(
R02

r

)k
)

sinkθ

]
, (33)
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where

R01 ≥ max
θ∈[0,2π]

ρ(θ ), (34)

R02 ≤ min
θ∈[0,2π]

κ(θ ), (35)

and ρ and κ are respectively the outer and inner contours Γ1 and Γ2 of the doubly-
connected domain as schematically shown in Fig. 1(b).

We require that

∂u(r,θ )
∂ r

=
b0

r
+

m

∑
k=1

[(
kak

r

(
r

R01

)k

− kbk

r

(
R02

r

)k
)

coskθ

+

(
kck

r

(
r

R01

)k

− kdk

r

(
R02

r

)k
)

sinkθ

]
, (36)

∂u(r,θ )
∂θ

=
m

∑
k=1

[
−
(

kak

(
r

R01

)k

+kbk

(
R02

r

)k
)

sinkθ

+

(
kck

(
r

R01

)k

+kdk

(
R02

r

)k
)

coskθ

]
. (37)

Inserting these two equations into Eq. (6) we can obtain

un(ρ ,θ ) =
ηb0

ρ
+

m

∑
k=1

[Ekak +Fkbk +Gkck +Hkdk], (38)

where

Ek = η
(

ρ
R01

)k [k coskθ
ρ

+
kρ ′ sinkθ

ρ2

]
, (39)

Fk = η
(

R02

ρ

)k [kρ ′ sinkθ
ρ2 − k coskθ

ρ

]
, (40)

Gk = η
(

ρ
R01

)k [k sinkθ
ρ

− kρ ′ coskθ
ρ2

]
, (41)

Hk = −η
(

R02

ρ

)k [kρ ′coskθ
ρ2 +

k sinkθ
ρ

]
. (42)
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By imposing conditions (2) and (3) with β = 2 on Eqs. (33) and (38) leads to

a0 +b0 lnρ +
m

∑
k=1

[Akak +Bkbk +Ckck +Dkdk] = h(θ ), (43)

ηb0

ρ
+

m

∑
k=1

[Ekak +Fkbk +Gkck +Hkdk] = g(θ ), (44)

where

Ak =
(

ρ
R01

)k

coskθ , (45)

Bk =
(

R02

ρ

)k

coskθ , (46)

Ck =
(

ρ
R01

)k

sinkθ , (47)

Dk =
(

R02

ρ

)k

sinkθ . (48)

There are totally 4m + 2 unknown coefficients, and Eqs. (43) and (44) are then
imposed at 2m+1 different collocated points (ρ(θi),θi) in the interval of 0 ≤ θi ≤
2π :

a0 +b0 lnρ(θi)+
m

∑
k=1

[Ai
kak +Bi

kbk +Ci
kck +Di

kdk] = h(θi), (49)

b0η(θi)
ρ(θi)

+
m

∑
k=1

[Ei
kak +Fi

k bk +Gi
kck +Hi

kdk] = g(θi), (50)

where for simple notations we use Ai
k = Ak(θi), etc.

When the index i in Eqs. (49) and (50) runs from 1 to 2m + 1 we obtain a linear
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equations system with dimensions n = 4m+2:

⎡
⎢⎢⎢⎢⎢⎣

1 lnρ(θ1) A1
1 B1

1 C1
1 D1

1 . . .

0 η(θ1)/ρ(θ1) E1
1 F1

1 G1
1 H1

1 . . .
...

...
...

...
...

...
...

1 lnρ(θ2m+1) A2m+1
1 B2m+1

1 C2m+1
1 D2m+1

1 . . .

0 η(θ2m+1)/ρ(θ2m+1) E2m+1
1 F2m+1

1 G2m+1
1 H2m+1

1 . . .

A1
m B1

m C1
m D1

m
E1

m F1
m G1

m H1
m

...
...

...
...

A2m+1
m B2m+1

m C2m+1
m D2m+1

m
E2m+1

m F2m+1
m G2m+1

m H2m+1
m

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

b0

a1

b1

c1

d1
...

am

bm

cm

dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h(θ1)
g(θ1)

...
h(θ2m+1)
g(θ2m+1)

⎤
⎥⎥⎥⎥⎥⎦ . (51)

Inserting the calculated e = [a0,b0,a1,b1,c1,d1, · · · ,am,bm,cm,dm]T into Eq. (33)
we thus have a semi-analytical solution of u(r,θ ):

u(r,θ ) =e1 +e2 lnr +
m

∑
k=1

[(
e4k−1

(
r

R01

)k

+e4k

(
R02

r

)k
)

coskθ

+

(
e4k+1

(
r

R01

)k

+e4k+2

(
R02

r

)k
)

sinkθ

]
, (52)

where (e1, . . .,en) are the components of e. Therefore, the boundary data on the
inner contour is calculated by

f (θ ) =e1 +e2 ln χ(θ )+
m

∑
k=1

[(
e4k−1

(
χ(θ )
R01

)k

+e4k

(
R02

χ(θ )

)k
)

coskθ

+

(
e4k+1

(
χ(θ )
R01

)k

+e4k+2

(
R02

χ(θ )

)k
)

sinkθ

]
. (53)
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5 Numerical examples for the second type inverse Cauchy problem

5.1 Example 1

We consider a kite-shape outer boundary with its parameterization given by

ρ(θ ) = 2
√

(0.6cosθ +0.3cos2θ −0.2)2 +(0.6sinθ )2, (54)

while the inner boundary is an apple shape described by

κ(θ ) =
0.5+0.2cosθ +0.1sin2θ

1.5+0.7cosθ
. (55)

The above two curves are shown in the inset of Fig. 5.

In order to test our method we consider an exact solution as that given by Eq. (25),
which however led to very complicated boundary conditions overspecified on the
outer boundary.

Under the parameters R01 = 20, R02 = 0.1 and m = 14, we solve this problem by the
method in Section 4, whose numerical result along the inner boundary is shown in
Fig. 5(a) by the dashed line. It is almost coincident with the exact one as shown by
the solid line in Fig. 5(a), and the numerical error as shown in Fig. 5(b) is smaller
than 10−6. A highly accurate result is obtained as compared with exact solution.

When we apply the Trefftz method to this problem by using R01 = 1, R02 = 1 and
m = 14, we find that the solution is unstable as shown in Fig. 5(a) by the dashed-
dotted line.

All the computations in this paper are carried out in a PC-586 with pentium-100.
For this example, the computations both by the Trefftz method and our new method
spent the CPU time smaller than one second. Basically, the most time is spent in
the solution of Eq. (51). Under the same stopping criterion 10−15, through 387
iterations the solution of e by Eq. (51) is obtained for the MCTM, but the CTM
requires 2088 iterations. Due to this, the computational time of MCTM is less than
that charged by the CTM.

5.2 Example 2

We consider

u(r,θ ) = ex cosy = ercosθ cos(r sinθ ), (56)

under the boundaries:

ρ(θ ) =
5+2cosθ + sin2θ

1.5+0.7cosθ
, (57)

κ(θ ) = 2
√

(0.6cosθ +0.3cos2θ −0.2)2 +(0.6sinθ )2. (58)
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Figure 5: For Example 1 in Section 5: (a) comparing numerical and exact solutions,
and (b) showing the numerical error for MCTM.

The condition number heavily depends on the values of R01 and R02. For this
problem ρmax is about 4.6. In Fig. 6 we plot the variation of condition numbers with
respect to R01 by fixing R02 = 0.1 and m = 20. It can be seen that when R01 < ρmax,
the condition number increases rapidly, and for the case of Trefftz method, i.e.
R01 = 1 used in the CTM, the condition number reaches its maximum about in the
order of 1014. Therefore, we can see that the Trefftz method is essentially unstable.
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Figure 6: For Example 2 in Section 5 the condition number of MCTM is plotted
with respect to R01.

In Fig. 7(a) we compare the numerical solutions of CTM and MCTM with exact
solution, where R01 = 1, R02 = 1 and m = 10 for CTM, and R01 = 6, R02 = 0.1 and
m = 30 for MCTM. We find that the solution by CTM is rather unstable by using
other m. The numerical errors are shown in Fig. 7(b), from which it is obvious that
MCTM is much accurate than CTM. Even under a large noise with s = 0.01, the
numerical error of MCTM as shown in Fig. 7(b) by the dashed line is still smaller
than 0.02.

6 Conclusions

We have employed a new idea to treat the inverse Cauchy problems in arbitrary
plane domains by a modified collocation Trefftz method. The new method can
provide a semi-analytical solution in terms of the modified Trefftz basis functions,
which renders a rather compendious numerical implementation to solve the inverse
Cauchy problems without needing of any iteration and any regularization. The new
methods were found accurate, effective and stable. These points are very diiferent
from other numerical methods for the inverse Cauchy problems. The author as-
serted that a good numerical method is not only applicable to the direct problems
but also to the inverse problems. That the conventional method is not applicable
to the inverse problems is due to its inherent ill-conditioned property. If the ill-
conditioned property can be gotten rid of, it is not only applicable to the direct
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Figure 7: For Example 2 in Section 5: (a) comparing numerical and exact solutions,
and (b) showing the numerical errors for different parameters.

problems, but also applicable to the inverse problems. Without needing of any reg-
ularization technique, the present MCTM is very time saving to solve the inverse
Cauchy problems.
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Appendix

In this appendix we derive Eq. (6). The plane curve of Γ has an arc length s as a
parameter. The unit normal vector n along Γ is given by

n =
(

dy
ds

,−dx
ds

)
. (A1)

The gradient of u(r,θ ) is given by

∇u =
(

∂u
∂ r

cosθ − ∂u
∂θ

sinθ
r

,
∂u
∂ r

sinθ +
∂u
∂θ

cosθ
r

)
. (A2)

By using x = r cosθ and y = r sinθ , one has

dx = (r′(θ )cosθ − r(θ ) sinθ )dθ , dy = (r′(θ ) sinθ + r(θ )cosθ )dθ , (A3)

when (x,y) ∈ Γ. In the above, r = r(θ ) is the curve of Γ, and r′ denotes the deriva-
tive with respect to θ .

Therefore, by ds =
√

r2 + r′2dθ and Eq. (A1) we have

n =
r√

r2 + r′2

(
cosθ +

r′

r
sinθ , sinθ − r′

r
cosθ

)
. (A4)

Inserting Eqs. (A4) and (A2) into

un = n ·∇u, (A5)

and through some manipulations we can derive Eq. (6).




