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An Assumed Strain Solid Shell Element Formulation with
Transversely Quadratic Displacement

K. Lee1 and S.W. Lee2

Abstract: A geometrically nonlinear assumed strain formulation is used to de-
velop a nine-node solid shell element with quadratic displacement through the
thickness. The transversely quadratic element allows direct use of the constitutive
equations developed for three-dimensional solids, which is convenient when ma-
terial nonlinearity is involved. The nodal degrees of freedom associated with the
quadratic terms in the assumed displacement through the thickness are statically
condensed out at the element level. The results of numerical tests conducted on se-
lected example problems demonstrate the validity and effectiveness of the present
approach. For the cases involving linear elastic material, the differences between
the present element and the solid shell element with linear displacement through
the thickness are negligible.
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1 Introduction

Computational modeling of shell structures has been an active research area for
the last decades. Several kinds of finite elements have been developed for shell
analysis such as degenerated solid shell element [Ahmad, Irons and Zienkiewicz
(1970)], shell theory-based element [Simo and Rifai (1990)] and three-dimensional
(3D) solid shell element [Ausserer and Lee (1988), Kim and Lee (1988)]. For an
extensive literature survey on shell finite elements, one may refer to Yang, Sai-
gal, Masoud and Kapania (2000) and Arciniega and Reddy (2007). Alternatively,
meshless approaches have been used for shell analyses by Atluri and Zhu (1998)
and Sladek, Sladek, Wen and Aliabadi (2006). In the finite element modeling of
various shell models, one needs to pay a close attention to their salient features
and limitations in order to avoid computational errors. In the present work, we
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briefly mention how differently constitutive equations have been incorporated into
these shell elements depending upon selected assumptions in their kinematics of
deformation.

A shell element formulation that allows using the fully 3D constitutive law is at-
tractive for applications involving materially nonlinear deformation. However, for
the ‘inextensible’ shell approach that does not allow changes in the thickness, the
plane stress assumption is unavoidable, complicating its materially nonlinear for-
mulation, as shown by Tonkovic, Soric and Skozrit (2008). The ‘extensible’ shell
approach that allows changes in the thickness can be more versatile if one can avoid
the plane stress assumption in the constitutive equations. One example would be
direct application of elastoplasticity theories developed for 3D solids [Han, Rajen-
dran and Atluri (2005), Liu (2005)] to elastoplastic shell analysis using the full
Newton-Raphson iteration. Within the context of the extensible shell approach,
the linear displacement assumption in the thickness direction has been dominantly
used. For the case of linear elastic materials, the linear assumption together with a
constitutive law modified to describe the thin shell behavior is adequate for analy-
sis of shell structures [Ausserer and Lee (1988), Kim and Lee (1988)]. However, it
can be still inconvenient to adopt constitutive laws for materially nonlinear formu-
lation. Therefore, various approaches including the seven parameter model have
been developed to overcome this difficulty without introducing undue numbers of
additional degrees of freedom. Notable examples are the works reported by San-
sour (1995), Parisch (1995), Hauptmann and Schweizerhof (1998), El-Abbasi and
Meguid (2000), Vu-Quoc and Tan (2003), Klinkel, Gruttmann and Wagner (2006),
and Kulikov and Plotnikova (2008). In addition, several higher order shell elements
incorporating higher-order displacement assumptions through the thickness to de-
scribe the nonlinear transverse strains have been developed by Tabiei and Tanov
(2000), Balah and Al-Ghamedy (2002), Basar, Hanskotter and Schwab (2003), and
Arciniega and Reddy (2007) to name a few.

For the meshless-based formulation, Soric, Li, Jarack and Atluri (2004) and Li,
Soric, Jarak, and Atluri (2005) introduced an approach with the hierarchical quadratic
interpolation over the thickness. Subsequently, Jarak, Soric and Hoster (2007) used
two separate interpolation schemes: a quadratic interpolation in the thickness direc-
tion to avoid the undesired thickness locking and the moving-least-square higher-
order interpolation in the in-plane directions. Their solid-shell based kinematics
allowed the use of 3D constitutive models.

The solid shell approach that treats the shell simply as a three-dimensional solid
should naturally facilitate the use of constitutive equations developed for 3D solids.
Moreover, the solid shell approach allows changes in the thickness and does not use
any rotational angles in the kinematics of deformation, enabling large load incre-
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ments for geometrically nonlinear analysis, [Park, Cho, and Lee (1995) and Lee,
Cho and Lee (2002)]. However, for the existing assumed strain solid shell ele-
ments, the displacement has been assumed to be linear through the thickness. Ac-
cordingly, it is still necessary to modify the 3D constitutive equations in a manner
consistent with the behavior of thin shell structures [Ausserer and Lee (1988), Kim
and Lee (1988)]. The assumed strain formulation has been combined with the solid
shell approach to alleviate the transverse shear locking and the inplane rigidity (or
membrane) locking at the element level. For various assumed strain approaches to
alleviate the element locking, one may refer to Lee and Pian (1978), Rhiu and Lee
(1987), Kim and Lee (1988), and Park and Lee (1995).

In this study, a nine-node assumed strain solid shell element with quadratic dis-
placement through the thickness is presented. This approach, initially introduced
by Lee and Lee (2001), allows direct use of the constitutive equations developed
for three-dimensional solids. Moreover, for thin shells, the nodal degrees of free-
dom associated with the quadratic terms in the assumed displacement through the
thickness can be statically condensed out at the element level, under the premise
that the strain energy associated with these degrees of freedom (DOF) is negligi-
ble. Accordingly, the present approach does not introduce any additional degrees
of freedom at the global level. The assumed strain formulation is used to avoid
the element locking. Numerical tests are conducted on selected example problems
involving linear elastic material to demonstrate the validity and effectiveness of the
present approach, via comparing the present solid shell element with the existing
assumed strain solid shell element with linear displacement through the thickness.

2 Finite Element Formulation

A transversely quadratic solid shell element formulation is developed based on the
total Lagrangian description that employs the Green strain and the second Piola-
Kirchhoff stress, in conjunction with the assumed strain formulation.

2.1 Element geometry and kinematics of deformation

Figure 1 shows the reference surface of a nine-node solid shell element placed at
the midsurface.

For the solid shell element, the geometry of the element can be expressed as fol-
lows:

x = x0 +ς t
2

a3 (1)

where x0 is the position vector of a point on the shell mid-surface (ς = 0), ς is a
parental coordinate in the thickness direction, t is the shell thickness and a3 is a unit
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Figure 1: The reference surface of the nine-node solid shell element

vector in the thickness direction. The geometry of the element can be expressed in
terms of nodal values as follows:

x =
n

∑
i=1

Ni(ξ ,η)(x0)i +ς
n

∑
i=1

Ni(ξ ,η)(
t
2

a3)i (2)

where n is the number of element nodes and Ni, (x0)i is the mapping function and
the position vector for the ith node, respectively. Note that the mapping function is
expressed in terms of the parental coordinates ξ and η .

For the transversely linear solid shell element, we assume that the displacement
varies linearly along the thickness direction such that

u = u0 + zu1 = u0 +ς t
2

u1 (3)

where u0 is the displacement vector of a point on the mid-surface and z is equal to
ς t

2 . For the transversely linear shell element with the kinematics of deformation ex-
pressed in equation (3), the constitutive equation developed for three-dimensional
solids must be modified to properly represent shell behavior via avoiding the so-
called thickness locking.

Alternatively, in order to construct a shell element model that allows direct use of
three-dimensional constitutive equations, one may introduce transversely quadratic
displacement such that

u = u0 + zu1 + z2u2 (4)

The assumed displacement vector can be expressed in terms of nodal values as
follows:

u =
n

∑
i=1

Ni(u0)i +ς
n

∑
i=1

Ni(
t
2

u1)i +ς 2
n

∑
i=1

Ni(
( t

2

)2
u2)i (5)
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For a nine-node element, the shape function Ni for the ith node is a bi-quadratic
function of ξ and η . Accordingly, the displacement vector is consistently quadratic
with respect to the parental coordinates (ξ , η and ς ). Also, one may note that, in
contrast to the degenerated solid shell approach, no rotational angles are used in
this approach.

For geometrically nonlinear analysis, the unknown displacement vector u can be
written in terms of the displacement (n)u at the known state (n) and its increment
Δu as

u = (n)u+Δu (6)

Using equation (4), one can express the incremental displacement vector as

Δu = Δu0 + zΔu1 + z2Δu2 (7)

Equation (7) can be written in an expanded form as⎧⎨
⎩

Δu
Δv
Δw

⎫⎬
⎭ =

⎧⎨
⎩

Δu0

Δv0

Δw0

⎫⎬
⎭+ z

⎧⎨
⎩

Δu1

Δv1

Δw1

⎫⎬
⎭+ z2

⎧⎨
⎩

Δu2

Δv2

Δw2

⎫⎬
⎭ (8)

2.2 Strain fields

One may assume that the displacement-dependent strain vector ε̄εε is quadratic in ς
as

ε̄εε = ε̄εε0 +ςε̄εε1 +ς 2ε̄εε2 (9)

where the over-bar is used for displacement-dependent quantities in this paper. Its
incremental form is obtained using equation (6) and the strain-displacement rela-
tions can be written symbolically as follows:

ε̄εε =(n)ε̄εε0 +Δē0 +Δh̄0

+ς((n)ε̄εε1 +Δē1 +Δh̄1)

+ς 2((n)ε̄εε2 +Δē2 +Δh̄2)

(10)

where Δē0,1,2 and Δh̄0,1,2 are the incremental displacement-dependent strain vec-
tors that are linear and quadratic in Δu, respectively. Introducing the assumed dis-
placement, incremental strain vectors in equation (10) that are linear in Δu can be
expressed in matrix form as follows:

Δē0 = B0(ξ ,η)Δqe

Δē1 = B1(ξ ,η)Δqe

Δē2 = B2(ξ ,η)Δqe

(11)
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where the incremental element DOF vector Δqe consists of the nine DOFs at each
node as

Δqe =

⎧⎪⎨
⎪⎩

(Δu0,Δv0,Δw0,Δu1,Δv1,Δw1,Δu2,Δv2,Δw2)T
1

...
(Δu0,Δv0,Δw0,Δu1,Δv1,Δw1,Δu2,Δv2,Δw2)T

9

⎫⎪⎬
⎪⎭ (12)

For thin shells Δu2,Δv2,Δw2 at nodes can be statically condensed out at the ele-
ment level under the premise that the strain energy associated with these degrees of
freedom is negligible.

Shell elements based on the assumed displacement alone suffer from element lock-
ing. An assumed strain formulation uses an independently assumed strain field to
alleviate the element locking [Lee and Pian (1978)]. In general the independently
assumed strain vector may be expressed to be quadratic in ς as

εεε = εεε0 +ςεεε1 +ς 2εεε2 (13)

Element locking is associated with the ς–independent part of the strain. Accord-
ingly, for the present element, an assumed strain field is introduced only for ς–
independent strain vector such that

εεε = εεε0 +ςε̄εε1 +ς 2ε̄εε2 (14)

Note that the strain vectors εεε1 and εεε2 in equation (13) are replaced by the displacement-
dependent counterparts. The selection of a proper assumed strain field is vital to
the element performance. The independently assumed vector εεε0 can be divided into
two parts as

εεε0 = εεεL
0 +εεεH

0 (15)

where εεεL
0 is the lower-order part selected to alleviate locking and εεεH

0 is the higher-
order part introduced to suppress undesirable spurious kinematic modes. For the
transversely quadratic nine-node solid shell element, the lower-order part is as-
sumed bilinear in ξ and η as follows:

εL
0xx = α1 +α2ξ +α3η +α4ξη

εL
0yy = α5 +α6ξ +α7η +α8ξη

εL
0zz = α9 +α10ξ +α11η +α12ξη

εL
0xy = α13 +α14ξ +α15η +α16ξη

εL
0yz = α17 +α18ξ +α19η +α20ξη

εL
0zx = α21 +α22ξ +α23η +α24ξη

(16)
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where x,y are the local coordinates tangent to the shell midsurface while z is normal
to the midsurface. The details on construction of the local orthogonal coordinate
system have been described by Park and Lee (1995). The lower order part alone
triggers spurious kinematic modes. Accordingly, a higher-order part εεεH

0 is chosen
as follows to suppress the undesirable spurious kinematic modes:

εH
0xx = α25ξη2

εH
0yy = α26ξ 2η

εH
0zz = 0

εH
0xy = 0

εH
0yz = α27ξ 2η

εH
0zx = α28ξη2

(17)

Note that twenty eight parameters from α1 to α28 are used to express the assumed
strain field. The ς–independent assumed strain vector can be symbolically written
in matrix form as

εεε0 = P0ααα0 (18)

where P0(ξ ,η) is the assumed strain shape function matrix and ααα0 is a vector of
the assumed strain parameters whose entries are α1∼28.

Then, equation (14) can be rewritten symbolically as follows:

εεε = P0(ξ ,η)ααα0 +ςε̄εε1 +ς 2ε̄εε2 (19)

For geometrically nonlinear formulation, the unknown strain vector εεε can be ex-
pressed as

εεε = (n)εεε +Δεεε (20)

where the incremental strain vector is expressed as

Δεεε = Δεεε0 +ςΔε̄εε1 +ς 2Δε̄εε2 (21)

with

Δεεε0 = P0(ξ ,η)Δααα0 (22)

Although the selection of the assumed strain field is carried out over a flat rectan-
gular element, the same assumed strain field is used for a curved element using a
local coordinate system, in which the z-axis is normal to the mid-surface and the x
and y axes are tangent to the surface [Park and Lee, (1995)].



260 Copyright © 2008 Tech Science Press CMES, vol.34, no.3, pp.253-272, 2008

2.3 Compatibility

The independently assumed strain vector εεε0 can be related to the displacement-
dependent strain vector ε̄εε0 via constructing a least square functional as

L =
1
2

∫

Ve

(εεε0 − ε̄εε0)T C(εεε0− ε̄εε 0)dV (23)

where C, the matrix of linear elastic stiffness constants, serves as a weighting ma-
trix. Alternatively, one may choose the identity matrix as the weighting matrix
instead of the C matrix. Substituting the strain terms in equations (10) and (18)
into the above equation and setting

∂L
∂ααα0

= 0 (24)

and neglecting the higher order terms in the incremental displacement vector leads
to

H0Δααα0 −F0 −G0Δqe = 0 (25)

where

F0 =
∫

Ae

PT
0 C0((n)ε̄εε0 − (n)εεε0)dA

G0 =
∫

Ae

PT
0 C0B0dA

H0 =
∫

Ae

PT
0 C0P0dA

(26)

Note that the volume integral in equation (23) has been transformed to the area
integral in equation (26). This can be done via assuming that the determinant J of
the Jacobian matrix is linear in ς as follows:

J(ξ ,η,ς) = J0(ξ ,η)+ςJ1(ξ ,η) (27)

With the above assumption, one can introduce the following relation

dV = (1+ rς)dςdA (28)

where r(ξ ,η) = J1/J0. Equation (27) allows analytical integration through the
shell thickness. The C0 matrix in equation (26) is obtained by analytically inte-
grating the matrix of linear elastic stiffness through the thickness as

C0 =
∫

C(1+ rς)dς (29)
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This feature is convenient in modeling of laminated composite structures [Kim and
Lee (1988)].

From equation (25), one can determine the incremental vector of the assumed strain
parameters as

Δααα0 = H−1
0 (G0Δqe +F0) (30)

Substituting equation (30) into equation (22), one can express the ς -independent,
incremental assumed strain vector as follows:

Δεεε0 = B̂0Δqe +P0H−1
0 F0 (31)

where

B̂0 = P0H−1
0 G0 (32)

Accordingly, the incremental assumed strain vector can be rewritten as

Δεεε = B̂0Δqe +P0H−1
0 F0 +ςΔε̄εε1 +ς 2Δε̄εε2 (33)

2.4 Equilibrium

For a solid in equilibrium,
∫

V
δε̄εεT σdV −δW = 0 (34)

where σ is the second Piola-Kirchhoff stress vector, δε̄εε is the virtual displacement-
dependent strain vector, δW is the virtual work due to the applied load and V rep-
resents the volume of the undeformed configuration. The stress vector is related to
the independent strain vector such that

σ = Cεεε (35)

The virtual displacement-dependent strain vector can be expressed in incremental
form as

δε̄εε = δε̄εε0 +ςδε̄εε1 +ς 2δε̄εε2

= (δ ē0 +δ h̄0)+ς(δ ē1 +δ h̄1)+ς 2(δ ē2 +δ h̄2)
(36)

where

δ ē0 = B0(ξ ,η)δqe

δ ē1 = B1(ξ ,η)δqe

δ ē2 = B2(ξ ,η)δqe

(37)
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Note that δ ē0,1,2 does not include any Δu term while δ h̄0,1,2 is linear in Δu. Using
equations (20), (28), (35) and (36), one can rewrite the equilibrium equation in
terms of area integration as follows:

∫

S

[
δε̄εεT

0 δε̄εεT
1 δε̄εεT

2

]
⎧⎨
⎩

(n)S0 +ΔS0
(n)S1 +ΔS1
(n)S2 +ΔS2

⎫⎬
⎭dA−δW = 0 (38)

where

(n)S0 =
∫

(n)σσσ (1+ rς)dς

(n)S1 =
∫

(n)σσσς(1+ rς)dς

(n)S2 =
∫

(n)σσσς 2(1+ rς)dς

ΔS0 =
∫

Δσσσ(1+ rς)dς

ΔS1 =
∫

Δσσσς(1+ rς)dς

ΔS2 =
∫

Δσσσς 2(1+ rς)dς

(39)

Using equation (36) and ignoring high-order terms in Δu, one can rewrite the equi-
librium equations as follows:

∫

S

[
δ ēT

0 δ ēT
1 δ ēT

2

]
⎧⎨
⎩

(n)S0
(n)S1
(n)S2

⎫⎬
⎭dA+

∫

S

[
δ h̄T

0 δ h̄T
1 δ h̄T

2

]
⎧⎨
⎩

(n)S0
(n)S1
(n)S2

⎫⎬
⎭dA

+
∫

S

[
δ ēT

0 δ ēT
1 δ ēT

2

]
⎧⎨
⎩

ΔS0

ΔS1

ΔS2

⎫⎬
⎭dA−δW ≈ 0 (40)

Dropping the higher order terms, the incremental stress in equation (39) can be
expressed as

Δσσσ = C(Δe0 +ςΔē1 +ς 2Δē2) (41)

At this stage, the virtual displacement-dependent strain vector δ ēT
0 in the first and

third terms of equation (40) is replaced by the virtual independent strain vector δeT
0
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such that

∫

S

[
δeT

0 δ ēT
1 δ ēT

2

]
⎧⎨
⎩

(n)S0
(n)S1
(n)S2

⎫⎬
⎭dA+

∫

S

[
δ h̄T

0 δ h̄T
1 δ h̄T

2

]
⎧⎨
⎩

(n)S0
(n)S1
(n)S2

⎫⎬
⎭dA

+
∫

S

[
δeT

0 δ ēT
1 δ ēT

2

]
⎧⎨
⎩

ΔS0

ΔS1

ΔS2

⎫⎬
⎭dA−δW ≈ 0 (42)

Setting the virtual independent strain vector as

δe0 = P0δααα0 (43)

for the least square fit of δe0 with δ ē0, one can show that

δe0 = B̂0δqe (44)

Using equations (37) and (44), one can rewrite the first term in equation (42) sym-
bolically as

∑δqT
e

∫

e

[
B̂T

0
(n)S0 BT

1
(n)S1 BT

2
(n)S2

]
dA ≡∑δqT

e
(n)Q (45)

where (n)Q is the load vector associated with the stress at state (n). The second
term in equation (42) can be expressed symbolically as

∫

S

[
δ h̄T

0 δ h̄T
1 δ h̄T

2

]
⎧⎨
⎩

(n)S0
(n)S1
(n)S2

⎫⎬
⎭dA = ∑δqT

e KsΔqe (46)

where Ks is the stiffness matrix due to the stress at state (n). Using equations (33),
(37), (39) and (44), one can rewrite the third term in equations (42) as

∑δqT
e

∫

e

[
B̂T

0 BT
1 BT

2

]
⎡
⎣C0 CI CII

CI CII CIII

CII CIII CIV

⎤
⎦

⎧⎨
⎩

B̂0

B1

B2

⎫⎬
⎭dAΔqe

+∑δqT
e

∫

e

[
B̂T

0 BT
1 BT

2

]
⎧⎨
⎩

C0

CI

CII

⎫⎬
⎭P0dAH−1

0 F0 ≡∑δqT
e (KBΔqe +Q0) (47)
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where

C0 =
∫

C(1+ rς)dς

CI =
∫

Cς(1+ rς)dς

CII =
∫

Cς 2(1+ rς)dς

CIII =
∫

Cς 3(1+ rς)dς

CIV =
∫

Cς 4(1+ rς)dς

(48)

The virtual work due to the applied load in equation (42) can be expressed as

∑δWe ≡∑δqT
e Qext (49)

where Qext is the load vector due to externally applied loads.

Finally, equation (42) leads to the equation for iterative analysis as

∑δqT
e (KeΔqe −ΔQe) = 0 (50)

where the element stiffness matrix and element load vector is as follows:

Ke = Ks +KB

ΔQe = Qext − (n)Q−Q0
(51)

The DOF vector corresponding to quadratic displacement through the thickness
direction is statically condensed out at the element level to maintain the number of
element DOF at 54.

3 Numerical Tests

Several numerical tests are conducted to examine the performance of the new solid
shell element in comparison with that of the existing nine-node solid shell ele-
ment. Examples chosen are geometrically nonlinear plates and shells of simple
geometries under static loading conditions. For convenience of presenting numeri-
cal results, the following designations are used for the new element and the existing
element.

SHELL9-3D: a nine-node assumed strain solid shell element with quadratic dis-
placement through the thickness direction and with fully 3D constitutive equations.
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SHELL9: a nine-node assumed strain solid shell element with linear displacement
through the thickness direction and with modified constitutive equations [Kim and
Lee (1988), Park, Cho, and Lee (1995)]

It is well to mention that, as shown by Park and Lee (1995), the SHELL9 element
passes patch tests carried out for flat plates under uniform tension and bending
moment. The SHELL-3D is simply an element with more degrees of freedom
added to the SHELL element in the thickness direction. Accordingly, it also passes
the patch tests.

Also, it is to be noted that, for the SHELL9-3D element, all calculations are carried
out using the version in which the degrees of freedom for the quadratic displace-
ment through the thickness are eliminated at the element level.

3.1 A clamped square plate under a point force

A square plate shown in Fig. 2 is clamped on all edges. The length L of the plate is
2" and the thickness t is 0.002". The material is isotropic with a Young’s modulus
E = 1.7472× 107 psi and a Poisson’s ratio ν = 0.3. The plate is subjected to a
transverse load at point C in Fig. 2. Due to the geometric and load symmetry, only
one quarter of the plate is modeled using a uniform 4×4 mesh as shown in Fig. 2.

Figure 2: A clamped square plate

Geometrically nonlinear analysis is carried out using the SHELL9-3D and the
SHELL9 elements. The results of the geometrically nonlinear analysis are shown in
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Fig. 3 where the solution obtained by the SHELL9-3D element is almost identical
to that by the SHELL9 element.

Figure 3: Load vs. transverse displace-
ment/thickness at point C for L/t=1000

Figure 4: Pressure/E vs. transverse
displacement/thickness at point C for
L/t=100

Figure 5: Pressure/E vs. transverse
displacement/thickness at point C for
L/t=1000

Figure 6: Pressure/E vs. transverse
displacement/thickness at point C for
L/t=10000

3.2 A clamped square plate under uniform pressure

The clamped square plate in Fig. 2 is revisited. The length L of the plate is 2"
and the thickness t is 0.02". The plate is subjected to transverse uniform pressure.
Geometrically nonlinear analysis is carried out using both the SHELL9-3D element
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and the SHELL9 element. The results of the geometrically nonlinear analysis are
shown in Fig. 4 where the solution obtained by the SHELL9-3D element is almost
identical to that by the SHELL9 element.

Subsequently, two plates with the thickness equal to 0.002" and 0.0002" are con-
sidered. The results of geometrically nonlinear analysis are shown in Fig. 5 and
Fig. 6, demonstrating that performance of the SHELL9-3D element is comparable
with that of the SHELL9 element.

3.3 A circular ring under line loads

A circular ring, subjected to two opposite line loads, as shown in Fig. 7, serves
as a simple example problem to examine the membrane locking of curved shell
elements.

A

B

Figure 7: A circular ring sub-
jected to line loads

Figure 8: Load vs. displacement/radius at
point A and B for the pinched ring

The radius R of the ring is 100" and the width d is 1". The ring material is isotropic
with a Young’s modulus E = 1×107 psi and a Poisson’s ratio ν = 0.3. Due to the
symmetry in geometry and loading conditions, only one quarter in the circumfer-
ential direction and one half in the width direction is modeled with an 1×4 uniform
mesh. A geometrically nonlinear analysis is conducted for the radius-to-thickness
ratios of R/t = 100. Figure 8 shows the displacement in the direction normal to the
surface at two points. As shown in the figure, there is no difference between the
SHELL9 and SHELL9-3D solutions. Both elements perform well, exhibiting no
signs of element locking. Deformed shapes of the pinched ring are shown in Fig.
9.
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P

P

A

B

Figure 9: Undeformed and de-
formed configurations of the
pinched ring for P=0, 100, 200,
300, 400 and 500 (lbs)

Figure 10: Load vs. displacement/radius at
point A and B for the pulled ring

Subsequently, the ring subjected to the line loads in the opposite direction is consid-
ered. The results of geometrically nonlinear analysis are shown in Fig. 10, where
solutions obtained by using the SHELL9 element and the SHELL9-3D element are
almost identical. Deformed configurations of the pulled ring are shown in Fig. 11.

A

B

P

P

Figure 11: Undeformed
and deformed configura-
tions of the pulled ring
for P =0, 200, 400, 600,
800 (lbs)

Free

Free

Sym 
Sym 

A
B

2P 
A

2P 

2P
B

2P 

18° 

Figure 12: A hemisphere subjected to alternating
point loads
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Figure 13: Load vs. radial displacement
at point A and B for the cut-out hemi-
sphere

2P

2P

2P

2P

Figure 14: Deformed configuration of
the cut-out hemisphere for P = 250
(lbs)

3.4 A cut-out hemisphere subjected to alternating point loads

A hemispherical shell with an eighteen-degree hole cut-out is subjected to alternat-
ing point loads as shown in Fig 12. The radius R of the hemisphere is 10" and the
thickness t is 0.04". The hemisphere material is isotropic with a Young’s modulus
E = 6.825×107 psi and a Poisson’s ratio ν = 0.3. Due to the symmetry in geometry
and loading conditions, only one quarter is modeled with an 8×8 uniform mesh.
A geometrically nonlinear analysis is conducted using the SHELL9 element and
the SHELL9-3D element. Figure 13 shows the displacement in the direction nor-
mal to the surface at the two points. As shown in the figure, there is no difference
between the SHELL9 and SHELL9-3D solutions. Both elements perform well, ex-
hibiting no signs of element locking. Figure 14 shows a deformed configuration of
the hemisphere for P=250 (lbs).

4 Conclusions

The results of numerical tests, conducted on geometrically nonlinear plates and
shells, demonstrate the validity and the effectiveness of the newly developed solid
shell element with quadratic displacement through the thickness. For the cases
involving linear elastic material, the differences between the SHELL9 element
with linear displacement through the thickness and the SHELL-3D element with
quadratic displacement through the thickness are negligible. For the SHELL9-3D
element, the nodal degrees of freedom associated with the quadratic terms in the
assumed displacement through the thickness are statically condensed out at the
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element level with the understanding that the strain energy associated with these
degrees of freedom is negligible. Accordingly, the present approach does not intro-
duce any additional degrees of freedom at the global level.

It is to be noted that the effectiveness of the present solid shell approach which
allows direct use of the 3D constitutive equations can be appreciated only when it
is applied to analysis of nonlinear shells such as elastoplastic shells using the full
Newton-Raphson iteration with the tangent stiffness matrix. For shells of linear
elastic materials, it is adequate to use an element such as the SHELL9 with the
linear displacement though thickness in conjunction with the modified constitutive
equation. It remains to be seen how the present approach will fare in comparison
with other formulations reported in the literature that also allow 3D constitutive
equations.
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Office of Naval Research for the support of this work.
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