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Evaluation of Explicit-form Fundamental Solutions for
Displacements and Stresses in 3D Anisotropic Elastic

Solids
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Abstract: The main impediment to the development of efficient algorithms for
the stress analysis of 3D generally anisotropic elastic solids using the boundary
element method (BEM) and the local boundary integral equation (LBIE) mesh-
less method over the years is the complexity of the fundamental solutions and the
computational burden to evaluate them. The ability to analytically simplify and re-
duce them into as explicit a form as possible so that they can be directly computed
will offer significant cost savings. In addition, they facilitate easy implementation
using existing numerical algorithms with the above-mentioned methods that have
been developed for isotropy. In this paper, the explicit, real-variable forms of the
fundamental solutions for the displacements and stresses are presented as algebraic
expressions in terms of Stroh’s eigenvalues. Although derived by one of the present
authors some years ago, they have never been utilized in BEM or LBIE methods
and their numerical evaluations have never been assessed. The veracity of these
expressions and the direct manner with which numerical values can be obtained are
demonstrated by some examples here.

Keyword: Fundamental solutions. Green’s functions, anisotropic elasticity, Stroh’s
eigenvalues, boundary integral equations, boundary element method.

1 Introduction

In the formulation of the direct formulation of the boundary element method (BEM)
and local boundary integral equation (LBIE) meshless methods, a key requirement
is the availability of the fundamental solutions or Green’s functions to the governing
differential equations for the physical problem. For elastostatics, they correspond
to the solutions for displacements and the stresses or tractions due to a unit point
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load in an infinite body. An efficient scheme to evaluate these Green’s functions is
important for the development of a robust and successful computational tool for the
stress analysis of 3D elastic solids. In isotropic elasticity, they can be expressed in
relatively simple, explicit forms; the computational effort for their evaluation has
therefore not been a serious issue. This is also the case for 2D anisotropic elasticity
[see, e.g., Shah et al. (2006), Shiah et al. (2006)]. Due to their mathematical
complexity, the same cannot be said for 3D general anisotropy, however, and their
numerical evaluation has remained a subject of research, particularly in the BEM
community.

Green’s functions have been developed for specific applications in anisotropic elas-
ticity and non-homogeneous isotropy [see, e.g. Yang and Tewary (2006), Criado
et al. (2007)]. For a 3D generally anisotropic elastic solid, the Green’s function
for the displacement field due to a unit point load has been derived by Lifschitz
and Rozentsweig (1947). It was expressed as a line integral around a unit circle
with the integrand containing the Christoffel matrix defined in terms of the elastic
material constants. The evaluation of this integral and its derivatives into simpler
analytical forms as well as the development of computationally efficient schemes
for their numerical evaluation have been a focus of several investigators in the past
several decades [see, e.g. Synge (1957), Barnett (1972), Wilson and Cruse (1978),
Chen and Lin (1995), Ting and Lee (1997), Nakamura and Tanuma (1997), Wang
(1997), Sales and Gray (1998), Pan and Yuan (2000), Tonon et al. (2001), Lee
(2003), Phan et al. (2004), and Wang and Denda (2007)]. Wilson and Cruse (1978)
were the first to implement a numerical formulation of the BEM for 3D stress anal-
ysis of a generally anisotropic solid using the solution of Lifschitz and Rozentsweig
(1947). In their algorithm, a data- base for the evaluated point load solutions and
their derivatives is generated, and interpolation of these values is performed in the
BEM calculations. Sales and Gray (1998) improved significantly on the efficiency
of the Wilson-Cruse approach by transforming the integrand of the line integral for
the Green’s function, using the calculus of residues, into a rational function. How-
ever, a concern of the Sales–Gray algorithm was its numerical instability when
multiple poles of the residue are present. This was, however, overcome by an ex-
tension of the work by Phan et al. (2004). Employing the Radon transform and the
calculus of residues, Wang (1997) derived an explicit algebraic expression for the
displacement Green’s function; no numerical results were presented, however. In-
stead, his work was implemented by Tonon et al. (2001) in a BEM formulation, and
the numerical evaluation of the Green’s function involves contour integration over
a rectangular parallelepiped. It is assumed in these works that the roots of the sextic
equation are distinct. Recently, Wang and Denda (2007) have also presented a BEM
algorithm for 3D generally anisotropic elasticity in which the Green’s function for
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displacements is expressed in terms of a contour integral over a semi-circle. Ana-
lytical solution of the integral is obtained over triangular boundary elements with
piecewise linear interpolation function in their BEM implementation.

An alternative, explicit solution of the displacement fundamental solution in a 3D
anisotropic body based on Stroh’s formalism has also been derived by one of the
present authors in Ting and Lee (1997). It is simpler in form to that obtained
by Wang (1997) and is expressed primarily in terms of Stroh’s eigenvalues. It
remains valid in the degenerate cases of equal eigenvalues. The explicit analytical
expressions for the derivatives of Green’s displacements for up to second order in
terms of these eigenvalues were further developed in Lee (2003) by following the
Fourier integral solutions developed by Barnett (1972), using the Cauchy residues
theorem. Surprisingly, these expressions have never been utilized in any numerical
method, such as the BEM or LBIE method, at least until very recently for the
special case of transverse isotropy [Tavara et al. (2008)]. This may be because
of no numerical evaluations are presented in the above-mentioned two papers, nor
have the issues, if any, involved in doing so, ever been discussed. Perhaps for
these reasons, these expressions have also mistakenly been perceived, as has been
reported by some, as being too complex, and involve tedious calculations. The aim
of this paper is to rectify the misperception.

The present authors have very recently demonstrated the relative ease of calcu-
lating the Green’s function for displacements using the explicit solution [Shiah et
al. (2008)]. However, the interpolation-finite difference scheme as proposed by
Tonon et al. (2001) to calculate the derivatives of displacements, and thence the
corresponding fundamental solution for the stresses, was employed in that study.
In this article, the formulations presented in Lee (2003) are further implemented
into a FORTRAN code to calculate the Green’s function for stresses in a generally
3D anisotropic medium. For completeness, those for the displacement fundamen-
tal solutions [Ting and Lee (1997)] are also presented here. The veracity of these
exact formulations and the direct manner in which these analytical solutions can
be computed, are demonstrated by two examples for which independent exact so-
lutions can be found. The interpolation-finite difference scheme mentioned above
to obtain the approximate solution for the stresses is also employed for comparison
of the numerical values obtained. It will be seen that the only numerical technique
required in the computations of these explicit forms of the Green’s functions is for
the determination of the Stroh’s eigenvalues.

2 Fundamental solution for displacements

The boundary integral equation (BIE), which relates the nodal displacements u j

and tractions t j at the boundary S of the homogeneous elastic domain, is written in
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indicial notation as

Ci jui(P)+
∫

S
ui(Q)Ti j(P,Q)dS =

∫
S

ti(Q)Ui j(P,Q)dS +
∫

Ω
Xi(q)Ui j(P,q)dΩ (1)

where the leading coefficient Ci j(P) depends upon the local geometry of S at the
source point P; Ui j(P,Q)≡ U(x), and T ∗

i j (P,Q) represent the fundamental solutions
of displacements and tractions, respectively, in the xi-direction at the field point Q
due to a unit load in the x j-direction at P in a homogeneous infinite body. Com-
putation of the fundamental solution of displacements, also often referred to as
the Green’s function, for generally anisotropic materials proposed in Ting and Lee
(1997) was very recently discussed in Shiah et al. (2008). The main focus of this
paper is to numerically evaluate the analytical spatial derivatives of this Green’s
function, Ui j,l (P,Q), from which the corresponding solutions for the stresses and
tractions are obtained. Nevertheless, for completeness, it is useful first to briefly
review the derivation of this explicit closed-form solution of the Green’s function
for displacements.

Let a concentrated unit load f be applied at the origin x=0 in the three-dimensional
space of a general anisotropic material. By taking Fourier transforms of the equi-
librium equation, solving for the transformed displacements, and performing the
inverse transforms, one may obtain the fundamental solution for displacements in
the infinite space expressed as [Ting and Lee (1997)]

U =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Z−1(k)e−ik·xdk1dk2dk3 (2)

where ki (i=1, 2, 3) is the transformed parameter; Z−1 is the inverse matrix of
Z ≡ Zik(k) = Ci jksk jks; and Ci jks ≡C is the elastic stiffness tensor of the anisotropic
material. The triple integration in eq. (2) can be transformed first into an integration
over a unit sphere, and then be further reduced to a contour integral around the unit
circle as [Barnett (1972), Synge (1957)]

Ui j =
1

8π2r

∫ 2π

0
Z−1

i j (k(ψ))dψ, (3)

where r is the radial distance between the source point at the origin and the field
point at x=(x1, x2, x3). In eq. (3), the integral is taken around the unit circle |n∗|= 1
on the oblique plane normal to x; the unit vector n∗ on the oblique plane can be
written in terms of an arbitrary parameter ψ as

n∗ = ncosψ +msinψ , (4)
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where the vectors n, m along with x/r form a right-handed triad [n,m,x/r]. With
reference to Figure 1, the general form of n and m can be expressed as

n = (cosφ cosθ , cosφ sinθ , −sinφ ),
m = (−sinθ , cosθ , 0).

(5)

x1

φ

θ

r

x2

x3 m

n

Figure 1: Definition of the unit vectors n, m

Equation (3) can thus be rewritten as

Zik(ψ) = Ci jks(n j cosψ +m j sinψ)(ns cosψ +ms sinψ). (6)

By defining the following three tensors [Ting (1996)],

Qik = Ci jksn jns,Rik = Ci jksn jms,Tik = Ci jksm jms, (7)

eq. (6) can be rewritten into a simple form,

Z(ψ) = cos2 ψΓΓΓ(p), (8)

where p = tanψ , and ΓΓΓ(p) is given by

ΓΓΓ(p) = Q+ p(R+RT )+ p2T. (9)
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By letting V = R+RT , eq. (9) may also be rewritten as

ΓΓΓ(p) = Q+ pV+ p2T. (10)

Setting the determinant, |ΓΓΓ(p)|, to zero leads to a sextic equation in p which has
six independent roots in general. By defining a matrix, H[x], which depends only
on the direction of x and not its magnitude (hence the notation [x] instead of (x) in
the term), as

H [x] =
1
π

∫ π/2

−π/2
Z−1(ψ)dψ , (11)

the Green’s displacements can be expressed as

U(x) =
1

4πr
H[x]. (12)

The limits of the integral in eq. (11) follows from the fact that Z(ψ) is periodic
in ψ . The six roots of the sextic equation are the Stroh eigenvalues; they must
be complex for the strain energy to be positive and they appear as three pairs of
complex conjugates. It can be proved [Hagedorn (2000)] that the sextic equation
is not analytically tractable. However, the computational effort to find these roots
numerically is not, by any means, as demanding as compared with the numerical
burden of performing the integration of eq. (11).

For an oblique plane, H[x] remains symmetric and positive definite and so is the
Green’s function U(x). By writing the complex roots as

pv = αv + iβv, βv > 0, (ν = 1,2,3), (13)

where both αv and βv are real, H[x] can be expressed as [Ting and Lee (1997)]

H[x] =
1
|T|

3

∑
t=1

Γ̂ΓΓ(pt)
βt (pt − pt+1) (pt − p̄t+1) (pt − pt+2)(pt − p̄t+2)

. (14)

In eq. (14), the subscript t follows the cyclic rule t = (t −3) if t > 3, and Γ̂ΓΓ is the
adjoint of ΓΓΓ which can be shown to be a polynomial in p of degree four. This equa-
tion provides an explicit expression of the Barnett-Lothe tensor H[x], and hence the
Green’s functionU(x), in terms of the Stroh eigenvalues pv for general anisotropic
elastic materials. It is evident that the expression for H[x] above cannot be valid
for the degenerate cases when there are repeated roots, i.e. when pt = pt+1 or
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pt = pt+2. This problem may be resolved [Ting and Lee (1997)] by rewriting H[x]
as

H[x] =
1
|T|

4

∑
n=0

qnΓ̂ΓΓ(n)
, (15)

where qn is given by

qn =

⎧⎪⎪⎨
⎪⎪⎩

−1
2β1β2β3

[
Re

{
3
∑

t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
for n = 0,1,2,

−1
2β1β2β3

[
Re

{
3
∑

t=1

pn−2
t p̄t+1 p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}]
for n = 3,4,

. (16)

In eq. (16), Re{} represents the operation of taking real part, and δmn is the Kro-

necker delta. The components of Γ̂ΓΓ(n)
, namely, Γ̂(n)

i j , may then be expressed as

Γ̂(n)
i j = Γ̃(n)

(i+1)( j+1)(i+2)( j+2)− Γ̃(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1,2, 3), (17)

following some basic algebraic manipulations. Also, in eq. (16), the subscript t

follows the cyclic rule as described before, and the 4-order tensor Γ̃ΓΓ(n)
is given by

Γ̃(4)
pqrs = TpqTrs,

Γ̃(3)
pqrs = VpqTrs +TpqVrs,

Γ̃(2)
pqrs = TpqQrs +TrsQpq +VpqVrs,

Γ̃(1)
pqrs = VpqQrs +VrsQpq,

Γ̃(0)
pqrs = QpqQrs.

(18)

Once the Stroh’s eigenvalues have been determined, the calculations in eqs. (15)-
(18) are relatively straightforward, involving just standard matrix multiplications;
they are easy to be programmed into a computer code.

3 Fundamental solution for stresses

The Green’s function for displacements and its derivatives are essential for evalu-
ating the elastic fields and energies associated with various inclusion and inhomo-
geneity problems of an anisotropic body. For use with numerical methods, such as
in the direct BEM formulation of eq. (1), computation of the fundamental solution
for tractions T ∗

i j is also required. This may be carried out using

T ∗
i j = (σikNk) j, (19)
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where σik is the fundamental solution for stresses at a field point due to a concen-
trated force applied in the x j direction at the source point, and Nk are components of
the outward normal vector on the surface at the former. To determine the stresses,
denoted also by σ j herein, the generalized Hooke’s law is applied, as follows,

σσσ j = Cεεε j, (20)

where

σσσ l = (σ11, σ22, σ33, σ23, σ13, σ12)
T
l , (21)

εεε l = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)
T
l . (22)

In eq. (22b), the strains (εik) j are computed using

(εi j)l =
(
Uil, j +Ujl,i

)
/2. (23)

From the foregoing, it is clear that the derivative of the fundamental solution for
displacements, Ui j,l , must first be obtained in order to evaluate the fundamental
solution for stresses or tractions. This will now be dealt with.

Instead of analytically differentiating Ui j, Tonon et al. (2001) suggested a relatively
simple way to obtain Ui j,l by a simple Lagrange interpolation scheme that results
in a finite difference equation:

Ui j,l(x)∼= Ui j(x+Δl)−Ui j(x−Δl)
2h

, (l = 1, 2, 3), (24)

where Δl represents an increment in the abscissa direction of xl due to an interval
change of h; they had used h = r × 10−6, in their study. In the present work,
however, emphasis is on the analytical formulation derived by one of the present
authors, Lee (2003); since it is analytically exact, the concern for the choice of
step size does not arise. The key steps in the derivation of the expressions and the
algorithm for computing the derivatives of the Green’s function for displacement
are presented below.

Using the spherical coordinate system, the unit position vector y = x
r are given by

y1 = sinϕ cosθ , y2 = sinϕ sinθ , y3 = cosϕ. (25)

By performing differentiation on eq. (3) and using the same integration procedure
as employed in reducing eq.(20) to eq (3), the first derivative of Green’s function
can be obtained as

Ui j,l =
1

4π2r2

∫ π

0

(
−ylZ−1

i j +klFi j

)
dψ , (26)
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where Fi j is given by

Fi j = CstnwZ−1
is Z−1

n j (ktyw +kwyt), (27)

Due to the complexity of the integrand in material anisotropy, the evaluation of
eq. (26) presents extreme difficulty for practical applications, and have only been
performed numerically for very limited cases in the past [Barnett (1972), Chen
and Lin (2001)]. Closer examination of the integrand of this integral reveals that
the result depends only on the forms of Z−1 and k, which are both functions of
ψ . Also, since the component of n is independent of ψ and will not affect the
integration result, one may introduce an integral M defined as follows:

Mi jklmn =
∫ π

0
kik jZ

−1
kl Z−1

mn dψ . (28)

Due to the symmetry of Z and Z−1, each sub-index of Z−1 appearing in M is inter-
changeable. As a consequence, the sub-indices i and j shown in M are interchange-
able too. According to the integral definition given by eq. (26), the derivative of
the Green’s function for displacements can thus be expressed as

Ui j,l =
1

4π2r2

[−πylHi j +Cpqrs
(
ysMlqipr j +yqMslipr j

)]
(29)

In the integral M of eq. (28), the terms ki and Z−1
kl are homogeneous and are of

degree +1 and −2 in cosψ , respectively. With the use of eq. (8) and the change of
variables as cos2 ψdp = dψ , the integral in eq. (28) becomes

Mi jklmn =
∫ ∞

−∞

Φi jklmn(p)
(p− p1)2(p− p2)2(p− p3)2 dp, (30)

where the function Φi jklmn(p) can be shown to be [Lee(2003)]

Φi jklmn(p) =
Bi j(p)Γ̂kl(p)Γ̂mn(p)

(p− p̄1)2(p− p̄2)2(p− p̄3)2 , (31)

and Bi j(p) is given by

Bi j(p) = nin j +(nim j +min j) p+mim j p
2. (32)

Using the Cauchy’s residue theorem, the explicit expression of Mi jklmn is given in
terms of the Stroh’s eigenvalue pt as

Mi jklmn =
2π i

|T|2
3

∑
t=1

[
Φ′

i jklmn(pt)−2Φi jklmn(pt)×
(

1
pt−pt+1

+ 1
pt−pt+2

)]
(pt − pt+1)

2 (pt − pt+2)
2 , (33)
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in which the prime denotes differentiation of Φ with respect to the argument p;
pt+1 and pt+2 follow the cyclic rule for t>2 as mentioned earlier. It is unnecessary
to rewrite the term Φ′

i jklmn(pt) in eq. (33) as a fully explicit expression, since it is

a relatively simple matter to program the functions B(p), Γ̂(p), (p− p̄t )2 and their
derivatives into subroutines in the computer code and then apply the chain rule in
the differentiation.

It should be noted that although eq. (33) appears to be in a complex form, its
imaginary part will eventually disappear to yield real variables. Also it should
be mentioned that this expression is ill-defined when repeated roots of the sextic
equation occurs (i.e. pt = pt+1 or pt = pt+1 = pt+2). However, this situation is not
commonly encountered and a simple way to overcome this problem if it occurs is
to introduce a small perturbation to one of the repeated roots when computing eq.
(33). Work is currently in progress to seek an analytical remedy to this issue.

4 Numerical examples

In this section, some example results of the numerical evaluation of the above exact
expressions for the 3D fundamental solutions of displacements and stresses in a
generally anisotropic solid are presented. Except for some care that may be exer-
cised to determine the Stroh’s eigenvalues on the oblique plane normal to the radial
vector between the source and field points, the steps and calculations involved to
obtain the displacement and stress components are relatively straightforward in-
deed. In the present work, Laguerre’s method (see, e.g. Press et al. (1990)) is
employed to solve the sextic equations for the eigenvalues. As has been discussed
earlier, explicit, exact, analytical solutions for the displacement and stress Green’s
functions for a generally anisotropic body are very scarce indeed in the literature.
The veracity of the present formulations can, however, still be established using
those for transverse isotropy where several closed-form expressions exist; they have
been derived using various approaches [see, e.g., Willis (1965), Elliot (1948), Chen
(1966), Pan and Chou (1976), and Loloi (2000)]. In the present study, the exact
solutions of Pan and Chou (1976) are used for comparison. To this end, numeri-
cal solutions for the displacements and stresses at an arbitrary field point are first
obtained for this degenerate case of transverse isotropy using a set of material con-
stants. To check the case for general anisotropy, it is also possible to still use the
same transversely isotropic material, as follows. By rotating the material axes suc-
cessively about the x2-axis and x3-axis, a fully populated stiffness matrix C will
be obtained which has all the features of general anisotropy. The exact solutions
for this set of properties can be determined by carrying out the corresponding co-
ordinate transformations of the closed-form solutions for transverse isotropy. This
allows comparison of the results using the above general anisotropic formulations.
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Consider, as Example 1, a transversely isotropic, linearly elastic solid with its
isotropic plane parallel to the x1 −x2 plane and having the following material con-
stants for its stiffness matrix C:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

120 90 70 0 0 0
90 120 70 0 0 0
70 70 50 0 0 0
0 0 0 30 0 0
0 0 0 0 30 0
0 0 0 0 0 15

⎤
⎥⎥⎥⎥⎥⎥⎦
×107N/m2. (34)

At the source point which is located at the origin of the coordinate system, a unit
load (1 N) is applied. The displacements and stresses at a field point located at x =
(-1.2, 0.6, 1) (m) are to be determined. The choice of this field point is arbitrary and
is purely for the purpose of demonstration here. The computed Green’s function
solution for the displacements using the above formulation of Ting and Lee (1997)
at this field point are listed in Table 1 together with the corresponding values ob-
tained using the closed-form solution of Pan and Chou (1976). As can be seen,
the percentage deviation between the two sets of exact solutions is typically of the
order of 10−7.

As explained in the previous section, two possible means of computing the Green’s
function for stresses may be employed. One is based on Lagrange interpolation
which leads to a finite difference scheme of the displacement fundamental solution
to obtain its derivatives for the strains, and from which the constitutive relations are
invoked to obtain the stresses. The second is the exact formulation presented above
using the explicit real-variable explicit expressions based on Lee’s (2003) solution
for the derivatives of Green’s function for displacement. The computed values of
the Green’s function for the stresses at this field point using both these approaches
are shown in Table 2. For the results using the former approach, an interval h =
(r × 10−6) is employed; the choice of this value will be further discussed later
below. Also shown are the closed-form solutions of Pan and Chou (1976). As can
be seen, the agreement of the numerical results is excellent indeed. The percentage
deviations of those values calculated directly from the exact formulations are in the
order of 10−9 to 10−7; the corresponding percentage deviations of the results based
on the finite difference scheme, although still very small, are typically two to three
orders larger.

Next, in Example 2, consider the same material constants as in the first example but
with rotations of the material axes. By successive rotations of the x2-axis and x3-
axis by 450 and 1500 counter-clockwise, respectively, the following elastic stiffness
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Table 1: Comparison of the Green’s function solution for displacements- Example
1

(i, j) Ui j ×10−10(m)
[present;Ting and Lee (1997)]

Ui j ×10−10(m)
[Pan & Chou (1976)]

|Error%|

(1,1) 2.9458898019269 2.945889814144619 4.15E-07
(1,2) -0.6620028549991 -0.662002856228628 1.86E-07
(1,3) -1.9820333647348 -1.982033378913727 7.15E-07
(2,2) 1.9528855224043 1.952885529805554 3.79E-07
(2,3) 0.9910166884868 0.991016689456864 9.79E-08
(3,3) 4.6467329250087 4.646732946994783 4.73E-07

matrix which has the features of general anisotropy may be obtained:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

114.84 75.78 55.62 −13.43 −10.28 −5.14
75.78 121.09 71.87 −0.31 −13.53 −0.27
55.62 71.87 107.49 −8.75 −15.15 −14.07
−13.43 −0.31 −8.75 18.75 −6.49 1.62
−10.28 −13.53 −15.15 −6.49 11.25 −4.68
−5.14 −0.27 −14.07 1.62 −4.68 18.28

⎤
⎥⎥⎥⎥⎥⎥⎦
×107(N/m2).

(35)

In the rotated coordinate system, the field point has new coordinates (1.6472193,
0.258202, -0.1414213). The analytical solution for this case can now be obtained
by coordinate transformation of the closed-form solution of Pan and Chou (1976).
The Green’s displacements and stresses computed by the present algorithms and
the closed-form solutions are listed in Table 3 and Table 4, respectively. From
these tables, it can be seen that the numerical solutions obtained by the present
algorithms which directly computed the exact explicit formulations, are indeed in
excellent agreement with the closed-form solutions of Pan and Chou (1976), the
percentage deviations being typically of the order of 10−6. For those solutions of
the stresses obtained using the finite difference scheme, the percentage deviations,
are typically a few orders of magnitude larger; the significance of this percentage
error will now be discussed.

The percentage error in the numerical results for the stresses using the finite dif-
ference scheme depends on the interval size h. It is therefore worth investigating
the effects of varying this interval size. Figures 2-4 show the percentage errors of
the stress components obtained using this scheme when h is varied from (r×10−3)
to (r × 10−6) for the two examples above; it can be seen that the errors clearly
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Table 2: Comparison of the Green’s function solution for stresses σl ×10−2 (N/m2)-
Example 1

(i, j) Pan and Chou (1976)
A Finite difference scheme |Error%|
B Present; Lee (2003)

(l=1)

(1,1) 7.7611796589675
A 7.7611812101652 1.99E-05
B 7.7611796843199 3.26E-07

(1,2) -2.7321608867554
A -2.7321607493153 5.03E-06
B -2.7321608687902 6.57E-07

(1,3) -5.9568612502977
A -5.9568610938445 2.62E-06
B -5.9568612074077 7.20E-07

(2,2) 5.3806830859151
A 5.3806855438633 4.56E-05
B 5.3806830837096 4.09E-08

(2,3) 3.4443631969267
A 3.4443623004460 2.60E-05
B 3.4443631851774 3.41E-07

(3,3) 4.8302346086816
A 4.8302361640289 3.22E-05
B 4.8302346100601 2.85E-08

(l=2)

(1,1) -5.2547856369595
A -5.2547798735480 1.09E-06
B -5.2547856287880 1.55E-09

(1,2) 0.3354335881748
A 0.3354334327371 4.63E-07
B 0.3354335867710 4.18E-09

(1,3) 3.4443631969936
A 3.4443645953013 4.05E-07
B 3.4443631773097 5.71E-09

(2,2) -1.3161457366876
A -1.3161396455678 4.62E-06
B -1.3161457448772 6.22E-09

(2,3) -0.7903164557164
A -0.7903178618048 1.77E-06
B -0.7903164567530 1.31E-09

(3,3) -2.4151173046279
A -2.4151130794400 1.74E-06
B -2.4151173081502 1.45E-09

(l=3)

(1,1) -10.0932019147208
A -10.093203557786 1.62E-05
B -10.093201932100 1.72E-07

(1,2) 2.6152256766399
A 2.6152261501253 1.81E-05
B 2.6152256474065 1.11E-06

(1,3) 7.6445199610860
A 7.6445205876963 8.19E-06
B 7.6445199101068 6.66E-07

(2,2) -6.1703633997610
A -6.1703672410638 6.22E-05
B -6.1703634028720 5.04E-08

(2,3) -3.8222599805430
A -3.8222568519541 8.18E-05
B -3.8222599699090 2.78E-07

(3,3) -6.3704333009050
A -6.3704353431351 3.20E-05
B -6.3704333023360 2.24E-08
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decrease to very small values when h = (r × 10−6). This is consistent with the
investigation carried out by Tonon et al.(2001) mentioned earlier who had sug-
gested h = (r × 10−6) be used. Notwithstanding the simplicity of this approach,
the uncertainty of the errors introduced for a given interval size may remain an is-
sue for some physical problems, such as when the distance r between the source
and field points becomes relatively small. Thus, the exact real-variable expressions
for the stress fundamental solution presented above should be preferred in LBIE
and BEM formulations, not least because they are analytically exact. Interestingly,
checks on the computational effort in their numerical evaluation for the two prob-
lems above show execution times which are quite similar to the finite difference
scheme. This can be attributed to the fact that calculations involving much higher
order tensors are involved using the exact analytical expressions, even though the
Lagrange interpolation-finite difference scheme requires the computation of the
displacement tensor at six points in the neighbourhood of the field point.

Finally, the use of the perturbation method to obtain the numerical values of the
fundamental solution for the stresses in the degenerate case of repeated roots, eq.
(13), of the sextic equation is demonstrated here.

Table 3: Comparison of the Green’s function solution for displacements- Example
2

(i, j) Ui j ×10−10(m)
[Present; Ting and Lee (1997)]

Ui j ×10−10(m)
[Pan and Chou (1976)]

|Error%|

(1,1) 5.8342437246382 5.8342435575081 2.86E-06
(1,2) 1.0720418072674 1.0720417719273 3.30E-06
(1,3) 0.8528106727866 0.8528106367402 4.23E-06
(2,2) 1.8969867699750 1.8969867317808 2.01E-06
(2,3) 0.2237317760902 0.2237317807810 2.10E-06
(3,3) 1.8142780193840 1.8142780016556 9.77E-07

For practical problems, it is usually not possible to pre-determine when the de-
generacy occurs, as it depends on the position of the field point and the material
properties. For the purpose of demonstration here, the field point is arbitrarily cho-
sen to be (-0.1, 0.8, 1.5) and the roots are taken to be p1 = p2 = p3 = 1.0i. The
corresponding material properties which would give rise to these repeated roots
were obtained in an inverse manner as
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Table 4: Comparison of the Green’s function solution for stresses σl ×10−2 (N/m2)-
Example 2

(i, j) Pan and Chou (1976)
A Finite difference scheme |Error%|
B Present; Lee (2003)

(l=1)

(1,1) -22.6566146252610
A -22.6566218728510 3.19E-05
B -22.6566151547170 2.33E-06

(1,2) -2.7569131706591
A -2.7569149714364 6.53E-05
B -2.7569133235326 5.54E-06

(1,3) 1.8831988920288
A 1.8832019742508 1.63E-04
B 1.8831988659465 1.38E-06

(2,2) -5.9400247001547
A -5.9400331105838 1.41E-04
B -5.9400246520744 8.09E-07

(2,3) 2.2325888473228
A 2.2325901584591 5.87E-05
B 2.2325889664050 5.33E-06

(3,3) -0.7624389063255
A -0.7624469411729 1.05E-03
B -0.7624385273813 4.97E-05

(l=2)

(1,1) -5.6007670907344
A -5.6007704514293 6.00E-05
B -5.6007672545850 2.92E-06

(1,2) 0.9302943734292
A 0.9302917325645 2.83E-04
B 0.9302943411858 3.46E-06

(1,3) -0.1468636258801
A -0.1468629347811 4.70E-04
B -0.1468636116680 9.67E-06

(2,2) -0.9843275650484
A -0.9843319656283 4.47E-04
B -0.9843275921341 2.75E-06

(2,3) 0.1475933736669
A 0.1475949712153 1.08E-03
B 0.1475933740711 2.73E-07

(3,3) 0.0108181822340
A 0.0108186958769 4.74E-03
B 0.0108182792238 8.96E-04

(l=3)

(1,1) -2.1743905752618
A -2.1743940943342 1.61E-04
B -2.1743906697108 4.34E-06

(1,2) -0.8025185590599
A -0.8025183553638 2.53E-05
B -0.8025185982651 4.88E-06

(1,3) 0.1187374636871
A 0.1187370785341 3.24E-04
B 0.1187374941262 2.56E-05

(2,2) -0.9463894936384
A -0.9463929723737 3.67E-04
B -0.9463894574277 3.82E-06

(2,3) 0.3542444914073
A 0.3542458308903 3.78E-04
B 0.3542444971618 1.62E-06

(3,3) -0.1756819265565
A -0.1756829781131 5.98E-04
B -0.1756818880558 2.19E-05



220 Copyright © 2008 Tech Science Press CMES, vol.34, no.3, pp.205-226, 2008

(a) Example 1:  

(b) Example 2:  

Figure 2: The percentage error of the stress calculations using the finite difference
scheme for unit load applied in the x1-direction.
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(a) Example 1: 

(b) Example 2: 

Figure 3: The percentage error of the stress calculations using the finite difference
scheme for unit load applied in the x2-direction.
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(a) Example 1: 

(b) Example 2: 

Figure 4: The percentage error of the stress calculations using the finite difference
scheme for unit load applied in the x3-direction.
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C =

⎛
⎜⎜⎜⎜⎜⎜⎝

23.9953 23.5869 23.5894 0 0 0
23.5869 23.9953 23.5894 0 0 0
23.5894 23.5894 24 0 0 0

0 0 0 0.204124 0 0
0 0 0 0 0.204124 0
0 0 0 0 0 0.204165

⎞
⎟⎟⎟⎟⎟⎟⎠

GPa

The perturbation is automatically set by the Laguerre algorithm employed in the
present work [Press et al. (1990)], and the roots for this set of material properties
at the field point are numerically found to be

p1 = (−0.5317745E−02+0.1003090E +01i)
p2 = (0.0000000E +00+0.9938080E +00i)
p3 = (0.5317599E−02+0.1003101E +01i)

Table 5 lists the computed results for the stress components when the unit load is
applied in the x1-direction at the load point (l =1) using the present Green’s func-
tion as well as the finite difference approach. The results are compared with those
obtained from Pan and Chou’s (1976) analytical solution again. It can be seen that
the percentage deviations of the Green’s function solutions with the perturbation,
when compared with Pan and Chou’s (1976) solution, remain relatively small, al-
though they are now of the same order of magnitude as those obtained using the
finite difference approach of the displacement fundamental solution. Similar find-
ings were obtained when the unit load at the source point is applied in the other two
directions, i.e. when l = 2 and 3, and hence they are not shown here.

5 Conclusions

In this paper, explicit, real-variable, closed-form algebraic expressions for the fun-
damental solutions (or Green’s functions) for the displacements and stresses in a
3D generally anisotropic solid have been presented. Only the Stroh’s eigenval-
ues need to be numerically obtained in their evaluation; the formulations to deter-
mine the numerical values for the displacement and stress components are relatively
straightforward indeed. Two examples, one involving transverse isotropic material
properties and another having features of general anisotropy, have been presented to
demonstrate the veracity of the formulations. An alternative procedure employing
a Lagrange interpolation-finite difference scheme, used in other formulations pre-
viously, was also employed to check the numerical values of the Green’s function
for the stresses obtained with the present exact formulation. Although the Green’s
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Table 5: Comparison of the Green’s function solution for stresses σl (N/m2) - Ex-
ample 3

(i, j) Pan and Chou (1976)
A Finite difference scheme |Error%|
B Present; Lee (2003)

(l=1)

(1,1) 0.80199483368655
A 0.8020735905499 9.82E-04
B 0.8019178301599 9.60E-04

(1,2) -0.64150690788477
A -0.6415058306542 1.68E-05
B -0.6415059961551 1.42E-05

(1,3) -1.20287734683087
A -1.2028783129801 8.03E-05
B -1.2028789009552 1.29E-05

(2,2) 0.49902858493179
A 0.4991050636860 1.53E-03
B 0.4989507014977 1.56E-03

(2,3) 0.95166560312409
A 0.9516663639051 7.99E-05
B 0.9516663080837 7.41E-05

(3,3) 1.77581631892687
A 1.7758944194638 4.32E-04
B 1.7757408412432 4.25E-04

function for the stresses is ill-defined for repeated Stroh’s eigenvalues, the problem
can be circumvented by a perturbation method. This has also been demonstrated in
the paper. The explicitness of these exact fundamental solutions makes it suitable
for relatively easy implementation into, e.g., existing BEM computer codes for 3D
elastostatics. This has been achieved by the present authors, a full report of which
will appear in a forthcoming paper when it has been fully tested.
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