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Assessment of Mixed Uniform Boundary Conditions for
Predicting the Mechanical Behavior of Elastic and
Inelastic Discontinuously Reinforced Composites
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Abstract: The combination of heterogeneous volume elements and numerical
analysis schemes such as the Finite Element method provides a powerful and well
proven tool for studying the mechanical behavior of composite materials. Peri-
odicity boundary conditions (PBC), homogeneous displacement boundary condi-
tions (KUBC) and homogeneous traction boundary conditions (SUBC) have been
widely used in such studies. Recently Pahr and Zysset (2008) proposed a special
set of mixed uniform boundary conditions (MUBC) for evaluating the macroscopic
elasticity tensor of human trabecular bone. These boundary conditions are not re-
stricted to periodic phase geometries, but were found to give the same predictions
as PBC for the effective elastic properties of periodic open cell microstructures of
orthotropic symmetry. Accordingly, they have been referred to as “periodicity com-
patible MUBC” (PMUBC).
The present study uses periodic volume elements that contain randomly positioned
spherical particles or randomly oriented short fibers at moderate volume fractions
for assessing the applicability of PMUBC to modeling composite materials via vol-
ume elements that deviate from orthotropic symmetry. Macroscopic elasticity ten-
sors are evaluated with PBC, PMUBC and KUBC for elastic contrasts in the range
2 ≤ sr ≤ 30. For one configuration the isotropic contributions to the macroscopic
elastic tensors obtained with PBC and PMUBC are extracted and compared. In
addition, macroscopic elastic-plastic responses for different hardening behaviors
are studied with PBC and PMUBC. Only small differences between the predictions
obtained with PBC and PMUBC are found, validating the PMUBC for studying
volume elements the overall behavior of which shows minor contributions of lower
than orthotropic symmetry.

Keyword: Mixed Uniform Boundary Conditions, Periodicity Boundary Condi-
tions, Finite Element Simulation, Composites

1 Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology,
A-1040 Vienna, Austria



118 Copyright © 2008 Tech Science Press CMES, vol.34, no.2, pp.117-136, 2008

1 Introduction

By applying numerical engineering methods such as the Finite Element Method
(FEM) to the analysis of inhomogeneous volume elements (VEs) of various levels
of geometrical complexity the mechanical behavior of inhomogeneous materials
can be studied in considerable detail. Appropriate boundary conditions (BC) must
be specified for the volume elements, standard choices being kinematically uni-
form (KUBC), statically uniform (SUBC), and periodicity (PBC) boundary con-
ditions. SUBC lead to lower estimates and KUBC to upper estimates for the
macroscopic stiffness, compare Nemat-Nasser and Hori (1993), and predictions
based on PBC lie between the above, see e.g. Suquet (1987). Less well known are
uniform displacement–traction (orthogonal mixed) boundary conditions (MUBC),
which were proposed by Hazanov and Amieur (1995), Hazanov (1998) and Haz-
anov (1999). They give rise to predictions between those obtained with SUBC and
KUBC as shown by the order relations of Ostoja-Starzewski (2006). The use of
MUBC for obtaining apparent elastic moduli of inhomogeneous materials was re-
ported, e.g., by Jiang, Ostoja-Starzewski, and Jasiuk (2002) and Ostoja-Starzewski
(2006). Results generated with KUBC, SUBC and MUBC are apparent properties
in the sense of Huet (1990) in that they pertain to samples of small size. The use of
PBC, in contrast, implies studying periodic “model composites” and gives rise to
effective material properties.

In elasticity a considerable range of mixed uniform boundary conditions are possi-
ble. A specific set of such boundary conditions was proposed by Pahr and Zysset
(2008) for studying the macroscopic behavior of trabecular bone, a biological ran-
dom cellular medium. It was found that for microscopically orthotropic materials
(i.e., materials with phase arrangements of orthotropic symmetry) these MUBC
give rise to exactly the same macroscopic elastic properties as do PBC. Accord-
ingly, they are referred to as “periodicity compatible MUBC” (PMUBC).

Hazanov and Amieur (1995) as well as Hazanov (1998) showed that mixed uniform
boundary conditions that fulfill the Hill condition, equation (2), must be orthogonal.
In a strict sense, this limits their use to materials having at least orthotropic elastic
symmetry at the macroscale and to volume elements that are aligned with the prin-
cipal axes of orthotropy. The present work explores the applicability of PMUBC
to periodic multi-inclusion VEs for modeling the mechanical behavior of discon-
tinuously reinforced composite materials. Especially when they contain rather low
numbers of randomly positioned particles or fibers, such volume elements tend to
show low-symmetry contributions to their macroscopic responses and, accordingly,
do not fully comply with the requirements stated above.

For assessing the validity of the resulting models, the two periodic volume elements
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Figure 1: Periodic unit cells containing 15 spherical particles (right), and 15 ran-
domly oriented cylindrical fibers (left) at a volume fraction of ξ=0.15 from Böhm,
Han, and Eckschlager (2004). The six faces of the volume element are denoted as
East, West, South, North, Bottom, and Top.

shown in Figure 1 are revisited. These “multi-inclusion unit cells” were used for
studying the mechanical behavior of particle and short fiber reinforced compos-
ites of moderate reinforcement volume fraction by Böhm, Eckschlager, and Han
(2002) as well as Böhm, Han, and Eckschlager (2004). In the present contribution
predictions for the apparent and effective elasticity tensors and moduli evaluated
for these VEs with KUBC, PMUBC and PBC are compared for elastic contrasts in
the range 2 ≤ sr ≤ 30. In addition, the macroscopic elastic-plastic responses under
tensile loading obtained with PBC and PMUBC are assessed for different matrix
hardening behaviors.

2 Methods

Numerical descriptors such as phase or volume averages of the microfields can
be used for assessing the results obtained from three-dimensional multi-inclusion
volume elements. The FEM code used in the present study, ABAQUS/Standard
(Simulia, Providence, RI), provides an option for accessing the volume correspond-
ing to a given integration point, so that the volume average of a function f (x) can
be approximated as

〈 f 〉=
1
Ω

∫
Ω

f (x)dΩ ≈ 1
Ω

IPN

∑
i=1

IP fi
IPΩi . (1)

Here, IP fi and IPΩi are the function value and the integration point volume, respec-
tively, associated with the i-th integration point, where the volume Ω contains IPN
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integration points.

The macroscopic elasticity tensor of a volume element can be evaluated from the
volume averaged stress and strain tensors obtained from six linearly independent
load cases. From the components of this elasticity tensor, in turn, estimates for the
macroscopic elastic moduli of the composite can be extracted.

2.1 Boundary Conditions

Table 1: The six linearly independent uniform strain load cases making up the
periodicity compatible mixed boundary conditions (PMUBC) proposed by Pahr
and Zysset (2008); East, West, North, South, Top, and Bottom denote the faces of
the volume element, compare Figure 1 (left).

East West North South Top Bottom
Tensile 1 u1 = 0ε11

l1
2 u1 = −0ε11

l1
2 u2 = 0 u2 = 0 u3 = 0 u3 = 0

t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0
Tensile 2 u1 = 0 u1 = 0 u2 = 0ε22

l2
2 u2 = −0ε22

l2
2 u3 = 0 u3 = 0

t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0
Tensile 3 u1 = 0 u1 = 0 u2 = 0 u2 = 0 u3 = 0ε33

l3
2 u3 = −0ε33

l3
2

t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0
Shear 12 u2 = 0ε21

l1
2 u2 = −0ε21

l1
2 u1 = 0ε12

l2
2 u1 = −0ε12

l2
2 u3 = 0 u3 = 0

u3 = 0, t1 = 0 u3 = 0, t1 = 0 u3 = 0, t2 = 0 u3 = 0, t2 = 0 t1 = t2 = 0 t1 = t2 = 0
Shear 13 u3 = 0ε31

l1
2 u3 = −0ε31

l1
2 u2 = 0 u2 = 0 u1 = 0ε13

l3
2 u1 = −0ε13

l3
2

u2 = 0, t1 = 0 u2 = 0, t1 = 0 t1 = t3 = 0 t1 = t3 = 0 u2 = 0, t3 = 0 u2 = 0, t3 = 0
Shear 23 u1 = 0 u1 = 0 u3 = 0ε32

l2
2 u3 = −0ε32

l2
2 u2 = 0ε23

l3
2 u2 = −0ε23

l3
2

t2 = t3 = 0 t2 = t3 = 0 u1 = 0, t2 = 0 u1 = 0, t2 = 0 u1 = 0, t3 = 0 u1 = 0, t3 = 0

Hill (1963) showed that the necessary and sufficient conditions for equivalence
between the energetically and mechanically defined properties of elastic materials
are contained in the so-called Hill condition

〈σ : ε〉= 〈σ〉 : 〈ε〉 . (2)

This condition states that the volume average of the product of the microscopic
stress and strain tensors, σ(x) and ε(x), equals the product of their volume aver-
ages, i.e., the macroscopic stresses and strains. Using the Gauss theorem the Hill
condition can be transformed into the expression
∫

Γ

(
t(x)−〈σ〉n

)
·
(

u(x)−〈ε〉x
)

dΓ = 0 , (3)

compare Hazanov (1998). Here Γ is the boundary of a volume element and t,
u, n, and x are the traction, displacement, surface normal, and position vectors,
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respectively. For an infinite homogeneous body this condition is trivially satisfied,
but for a finite heterogeneous volume it requires loading in specific ways on the
boundary Γ. As was pointed out by Hazanov and Amieur (1995) as well as Ostoja-
Starzewski (2006) this is the case for three types of uniform boundary conditions,

1. uniform displacement (Dirichlet, kinematic, KUBC) boundary conditions:

u(x) = 0ε x ∀x ∈ Γ , (4)

2. uniform traction (Neumann, static, SUBC) boundary conditions:

t(x) = 0σ n ∀x ∈ Γ , (5)

3. uniform displacement–traction (orthogonal mixed, MUBC) boundary condi-
tions:(

t(x)− 0σ n
)
·
(

u(x)− 0ε x
)

= 0 ∀x ∈ Γ , (6)

where 0ε and 0σ denote constant tensors, prescribed a priori on the VE. In addition
to the above cases, for periodic microstructures the Hill condition, equation (2), is
fulfilled by periodicity boundary conditions (PBC), compare Suquet (1987), An-
thoine (1995), Pahr (2003), as well as Pahr and Rammerstorfer (2006). Here, the
boundary Γ must consist of pairs of parallel faces denoted as k+ and k−, for which
the condition

k+
u(x)− k−u(x) = 0ε Δkx ∀x ∈ kΓ (7)

holds, where Δkx is a constant distance vector between the two faces making up a
pair.

MUBC that fulfill equation (6) can be obtained via different combinations of pre-
scribed boundary vectors. Each such set of mixed BC yields a different appar-
ent stiffness tensor. The special set of mixed boundary conditions referred to as
PMUBC by Pahr and Zysset (2008) is summarized in Table 1, where l1, l2 and l3
are the side lengths of the hexahedral VE in the 1-, 2- and 3-directions, respec-
tively. The PMUBC can handle shear loading, which allows apparent elasticity
tensors to be evaluated and thus extends earlier work using MUBC in elasticity,
such as Hazanov (1998) as well as Jiang, Ostoja-Starzewski, and Jasiuk (2002).
For periodic volume elements of orthotropic symmetry the PMUBC give the same
predictions for the macroscopic elasticity tensor as do PBC. A related behavior of
specific MUBC was reported by Jiang, Jasiuk, and Ostoja-Starzewski (2002) in the
context of thermal conduction in two-dimensional composites.
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Having been developed for the FE-based analysis of cellular materials, PMUBC are
formulated to avoid prescribing nonzero boundary tractions. The boundary condi-
tions compared in the present study, KUBC, PMUBC and PBC, can be directly
applied to displacement based Finite Element models.

2.2 Finite Element Modelling

The periodic multi-inclusion unit cells employed for the present study contain 15
randomly positioned identical spheres or 15 randomly positioned and randomly
oriented identical cylindrical fibers of aspect ratio a=5. The nominal reinforcement
volume fraction of both VEs takes the moderate value of ξ=0.15.

The unit cells were each meshed with some 100000 10-node tetrahedral elements.
Compatible meshes were enforced on pairs of opposite faces as required for spec-
ifying the periodicity BC. Note that the latter provision is necessary for PBC, but
not for PMUBC, SUBC and KUBC.

The elastic behavior and the elastic-plastic responses of the unit cells under tensile
loading were evaluated with ABAQUS/Standard, geometrically nonlinear analyses
being employed for the inelastic models. An in-house code was used to define
the multi-point constraints required for applying the periodicity boundary condi-
tions. KUBC and PMUBC were implemented by specifying appropriate boundary
displacements. SUBC are not considered in the present study.

The elastic-plastic material behavior of the matrix is described by J2-plasticity with
isotropic linear hardening, a linear elastic description is employed for the reinforce-
ments, and a perfectly strong interface between reinforcements and matrix is spec-
ified. The material parameters used in the study are summarized in Table 2, where
the Young’s moduli E and the Poisson numbers ν of the two isotropic constituents
are given. Different elastic contrasts, sR = EI/EM, were obtained by varying the
Young’s modulus of the matrix, EM. Simulations using a fixed initial yield stress
σY,M combined with two different hardening moduli EH,M for the matrix as well as
two elastic contrasts were employed for assessing the macroscopic elastic-plastic
responses.

Three different tensile loading scenarios were investigated in the elastic-plastic
regime: Macroscopic uniaxial strain conditions (positive displacements in the 1-
direction plus zero displacements in the 2- and 3-directions), uniaxial stress condi-
tions (positive displacements in the 1-direction plus unconstrained displacements in
the 2- and 3-directions), as well as simple shear in the 12-plane with zero displace-
ments in 3-direction. The second of these load cases cannot be generated with the
PMUBC listed in Table 1, but appropriate mixed uniform boundary conditions can
be obtained by replacing zero displacement components with zero traction compo-
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Table 2: Material parameters used for the simulations. Five different elastic con-
trasts sR and two different hardening moduli of the matrix material EH,M are inves-
tigated.

Property Inclusion Matrix (sR=2/5/10/20/30)
Elastic (sR=2/5/10/20/30)

E (GPa) 400 200/80/40/20/13.3
ν 0.17 0.3

Plastic (“weak hardening”/“marked hardening”)
σY,M (MPa) - 100
EH,M (MPa) - 1/1900

nents in load case “Tensile 1” in Table 1. Results pertaining to the latter bound-
ary conditions are denoted as “MUBC” in the following sections. The maximum
macroscopic strains in the elastic-plastic analyses reached a value of 5%.

The number of reinforcements contained in the multi-inclusion unit cells shown in
Figure 1 is insufficient for making them proper representative volume elements as
discussed, e.g., by Hill (1963) or Stroeven, Askes, and Sluys (2004). The effec-
tive and apparent elastic properties obtained from these microgeometries deviate
to some extent from the macroscopic isotropy associated with composites rein-
forced by spherical particles or randomly oriented fibers, compare Böhm, Han, and
Eckschlager (2004). The latter behavior is actually desirable in the present context
because it allows to assess the suitability of PMUBC for studying volume elements
that show low-symmetry perturbations from the ideal macroscopic symmetry.

3 Results

3.1 Elastic Response

The “raw” elasticity tensors obtained from sets of six linearly independent load
cases were orthotropized and, in the case of PMUBC, symmetrized, as discussed
in section 4.1. Elastic moduli extracted from these tensors for the two volume
elements are presented in Figures 2 and 3, where the relative differences of the
macroscopic Young’s moduli E (left), shear moduli G (center) and bulk moduli
K (right) with respect to the pertinent PBC results are plotted as functions of the
elastic contrast. Direction averages are shown for the Young’s and shear moduli,
and the minimum and maximum values due to the anisotropy of the volume ele-
ments are indicated by error bars. Proper representative volume elements for both
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Figure 2: Elastic responses of composites reinforced by spheres of equal size: The
relative differences between predictions obtained with PBC, PMUBC and KUBC
for the Young’s modulus (left), shear modulus (center), and bulk modulus (right)
are shown as functions of the elastic contrast sR. In addition the pertinent three-
point bounds are given.

Figure 3: Elastic responses of composites reinforced by randomly oriented cylin-
drical fibers of aspect ratio a = 5: The relative differences between predictions
obtained with PBC, PMUBC and KUBC for the Young’s modulus (left), shear
modulus (center), and bulk modulus (right) are shown as functions of the elastic
contrast sR.

types of composites must follow the bounds of Hashin and Shtrikman (1963) for
the elastic behavior of macroscopically isotropic inhomogeneous materials. In ad-
dition, three point bounds as discussed, e.g., in Torquato (2002) are available for
the sphere reinforced composite. These improved bounds were evaluated with sta-
tistical parameters for hard spheres of equal size proposed by Torquato, Lado, and
Smith (1987) as well as Miller and Torquato (1990), are much tighter than bounds
of Hashin and Shtrikman (1963) and are shown in Figure 2.
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For the particle reinforced composite the predictions obtained with PBC and PMUBC
are in excellent agreement for the shear and bulk moduli, with the estimates based
on PMUBC tending to be slightly below the PBC values for G and slightly above
them for K. The Young’s moduli obtained with PMUBC show stronger anisotropy
and their directional averages exceed those generated with PBC by up to 1.66%. At
low elastic contrasts, where the bounds are very tight, the predictions obtained with
PBC and PMUBC are slightly below the Hashin–Shtrikman and 3-point bounds, the
relative difference being of order 10−3 or less. The apparent moduli obtained with
the KUBC, while remaining within the Hashin–Shtrikman bounds, consistently ex-
ceed the three-point upper bounds, the difference to the PBC-based estimates being
more than 40% for the macroscopic Young’s and shear moduli.

Table 3: “Raw” macroscopic elasticity tensors EPBC,raw and EPMUBC,raw obtained
from the short fiber reinforced volume element shown in Figure 1 (right) with a
matrix Young’s modulus of EM=13.3 GPa.

EPBC,raw =

⎛
⎜⎜⎜⎜⎜⎜⎝

23.87 9.58 10.16 0.01 −0.25 −0.22
9.58 25.12 10.10 0.22 −0.16 −0.26

10.16 10.10 26.94 0.63 −1.01 −0.08
0.01 0.22 0.63 7.90 −0.11 −0.20

−0.25 −0.16 −1.01 −0.11 7.94 0.09
−0.22 −0.26 −0.08 −0.20 0.09 7.27

⎞
⎟⎟⎟⎟⎟⎟⎠

EPMUBC,raw =

⎛
⎜⎜⎜⎜⎜⎜⎝

23.88 9.54 10.00 0.04 −0.17 −0.16
9.54 25.79 9.97 0.10 −0.18 −0.21

10.00 9.96 26.78 0.38 −0.73 −0.03
0.00 0.05 0.20 7.77 −0.02 −0.23

−0.14 −0.22 −0.89 −0.06 7.70 0.10
−0.14 −0.25 0.04 −0.25 0.06 7.22

⎞
⎟⎟⎟⎟⎟⎟⎠

The same trends are evident in the effective and apparent moduli evaluated for the
composite reinforced by randomly oriented short fibers, see Figure 3. The direction
dependence of the Young’s and shear moduli, however, is more marked for this VE.
With the exception of the bulk modulus for sR=2 all numerical estimates fulfill the
Hashin–Shtrikman bounds. Interestingly, the upper estimates obtained with the
KUBC deviate from the PBC-based reference values to a lesser degree than is the
case for the sphere reinforced composite.
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Table 4: Phase averages of the stress components (in units of MPa) for the sphere
reinforced unit cell shown in Figure 1 (left) at a macroscopic uniaxial strain of 0.1%
in 1-direction predicted with PBC, PMUBC and the three-point estimates (TPE) of
Torquato (1997). The Young’s modulus of the matrix is set to EM=13.3 GPa.

PBC PMUBC TPE
Matrix Particles Matrix Particles Matrix Particles

σ11 20.79 36.86 20.78 38.25 20.78 37.45
σ22 8.88 12.24 8.88 11.82 8.87 12.02
σ33 8.88 12.06 8.88 11.83 8.87 12.02
σ12 0.00 -0.21 0.02 0.09 0.0 0.0
σ13 0.00 -0.38 -0.08 -0.74 0.0 0.0
σ23 0.0 -0.09 -0.02 -0.09 0.0 0.0

Table 3 lists the “raw” macroscopic elasticity tensors obtained with PBC and PMUBC,
EPBC,raw and EPMUBC,raw, respectively, for the volume element containing randomly
oriented short fibers shown in Figure 1 (right), which displays considerable macro-
scopic anisotropy. The two elasticity tensors are given in contracted Nye notation
as 6×6 matrices (engineering shear strains being used in the strain quasi-vectors),
pertain to a matrix Young’s modulus of EM=13.3 GPa, and are given in units of
GPa.

Figure 4: Elastic–plastic response of sphere reinforced composites with weak ma-
trix hardening: Macroscopic stress–strain curves predicted with PBC and PMUBC
for two different stiffness ratios and three tensile loading scenarios, uniaxial strain
(left), uniaxial stress (center), and simple shear (right).
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Figure 5: Elastic–plastic response of random short fiber reinforced composites with
weak matrix hardening: Macroscopic stress–strain curves predicted with PBC and
PMUBC for two different stiffness ratios and three tensile loading scenarios, uni-
axial strain (left), uniaxial stress (center), and simple shear (right).

By applying equation (1) to integration points pertaining to either the reinforce-
ments or the matrix, phase averages of the stress and strain tensors can be extracted
from the FE results. Table 4 lists the phase averaged stress components evaluated
with PBC and PMUBC for the sphere reinforced composite, Figure 1 (left), using a
matrix Young’s modulus of EM=13.3 GPa and a macroscopic uniaxial tensile strain
of 0.1%. In addition, predictions for the microfields obtained with the three-point
estimates of Torquato (1997), marked as TPE, are given. As with the three-point
bounds shown in Figures 2 and 3, the statistical parameters proposed by Torquato,
Lado, and Smith (1987) as well as Miller and Torquato (1990) were used for eval-
uating the three-point estimates.

3.2 Elastic-Plastic Response

Figures 4 and 5 present the elastic-plastic responses to the three loading scenar-
ios described in section 2.2 predicted for the two VEs when weak strain hardening
was specified for the matrix. The axial and shear components of the macroscopic
stresses are plotted versus the corresponding strain components, which were eval-
uated from volume averages of the nominal stresses and strains, respectively. The
stresses and strains were obtained from ABAQUS at integration point level us-
ing equation (1). Two curves corresponding to elastic contrasts between inclusion
and matrix of sr=5 and sr=30, respectively, are displayed in each plot. Excellent
agreement between the predictions obtained with PBC and PMUBC/MUBC can
be observed for both values of the elastic contrast considered. A close inspection
shows some minor effects of the elastic contrast, the predictions obtained with the
mixed uniform boundary conditions being minimally softer for the uniaxial stress
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and shear load cases compared to the PBC results.

Figure 6: Elastic–plastic response of sphere reinforced composites with marked
matrix hardening: Macroscopic stress–strain curves predicted with PBC and
PMUBC for two different stiffness ratios and three tensile loading scenarios, uni-
axial strain (left), uniaxial stress (center), and simple shear (right).

Figure 7: Elastic–plastic response of random short fiber reinforced composites with
marked matrix hardening: Macroscopic stress–strain curves predicted with PBC
and PMUBC for two different stiffness ratios and three tensile loading scenarios,
uniaxial strain (left), uniaxial stress (center), and simple shear (right).

Analogous results obtained for a matrix material with marked strain hardening are
displayed in Figures 6 and 7. The effect of matrix hardening is directly visible
in the predicted macroscopic stress–strain curves. For the composite reinforced
by randomly oriented short fibers subjected to uniaxial tensile stress the differences
between the predictions obtained with the two sets of boundary conditions are more
pronounced than for the other situations considered, the mixed uniform BC leading
to slightly lower macroscopic hardening.
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4 Discussion

For phase arrangements that show mirror symmetry with respect to three mutu-
ally normal planes the PMUBC listed in Table 1 are directly related to periodic
solutions. Accordingly, they provide effective elasticities for orthotropic compos-
ites, whereas apparent elasticity tensors are returned for microgeometries of lower
symmetries. PBC, which are based on translatory symmetry, are not restricted
in terms of the macroscopic symmetries of VEs and, accordingly, are well suited
to providing reference solutions against which predictions obtained with PMUBC
can be checked. Multi-inclusion unit cells employing a low number of reinforce-
ments approach macroscopic isotropy but display low-symmetry contributions to
their overall response. Accordingly, they provide suitable scenarios for assessing
the applicability of PMUBC to VEs that are not perfectly orthotropic.

4.1 Elastic Response

Table 5: Orthotropized and, where applicable, symmetrized macroscopic elasticity
tensors EPBC,ortho and EPMUBC,ortho obtained from the “raw” elasticity tensors listed
in table 3 for the short fiber reinforced volume element shown in Figure 1 (right)
with a matrix Young’s modulus of EM=13.3 GPa.

EPBC,ortho =

⎛
⎜⎜⎜⎜⎜⎜⎝

23.87 9.58 10.16 0 0 0
9.58 25.12 10.10 0 0 0

10.16 10.10 26.94 0 0 0
0 0 0 7.90 0 0
0 0 0 0 7.94 0
0 0 0 0 0 7.27

⎞
⎟⎟⎟⎟⎟⎟⎠

EPMUBC,ortho =

⎛
⎜⎜⎜⎜⎜⎜⎝

23.88 9.54 10.00 0 0 0
9.54 25.79 9.97 0 0 0

10.00 9.97 26.78 0 0 0
0 0 0 7.77 0 0
0 0 0 0 7.70 0
0 0 0 0 0 7.22

⎞
⎟⎟⎟⎟⎟⎟⎠

This section concentrates on the macroscopic elasticity tensors obtained with PBC
and PMUBC from the volume element displayed in Figure 1 (right), which contains
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15 randomly oriented short fibers and shows noticeable macroscopic anisotropy.
The pertinent “raw” elasticity tensors, EPBC,raw and EPMUBC,raw, see Table 5, may
be viewed as consisting of two parts, viz., tensor components that are nonzero in an
orthotropic elasticity tensor in principal orientation (in Nye notation, the matrix ele-
ments in the upper left 3×3 submatrix and the lower left diagonal) and “anisotropic
coupling terms” (all other tensor components). Both sets of components show some
anisotropy and direction dependence in each tensor, the anisotropic coupling terms
being at least an order of magnitude smaller than the orthotropic ones for the ex-
ample considered. The elasticity tensor obtained with PBC is perfectly symmetric,
whereas the one evaluated using PMUBC shows some asymmetry, which is due to
applying these boundary conditions to a VE of sub-orthotropic macroscopic sym-
metry. This asymmetry tends to grow with decreasing macroscopic symmetry of
the volume element and with increasing elastic contrast of the constituents. The
asymmetry of the “raw” elasticity tensors can be removed by symmetrization to ob-
tain a proper elasticity tensor. Both EPBC,raw and EPMUBC,raw were “orthotropized”
by setting the anisotropic coupling terms to zero. When this procedure is applied to
the “raw” tensors listed in table 3, the tensors EPBC,ortho and EPMUBC,ortho presented
in Table 5 are obtained. Tensors of this type were used in generating Figures 2 and
3.

Further improvements of the estimates for the macroscopic elasticity tensors can
be achieved by invoking the known overall elastic isotropy of the composites to
be modeled. For the two volume elements considered here this implies finding the
isotropic elasticity tensors that are closest to EPBC,ortho and EPMUBC,ortho, respec-
tively. Such isotropic macroscopic elasticity tensors, EPBC,iso and EPMUBC,iso, can
be obtained in the form of the isotropic term of a generalized spherical harmonics
expansion of the orthotropic elongation and bulk modulus orientation distribution
functions, using the expressions developed by He and Curnier (1997). Table 6 lists
the isotropic elasticity tensors obtained this way from EPBC,ortho and EPMUBC,ortho.

From the above isotropic elasticity tensors estimates of EPBC,iso = 19.69 GPa and
EPMUBC,iso = 19.90 GPa for the macroscopic Young’s modulus, GPBC,iso = 7.68
GPa and GPMUBC,iso = 7.77 GPa for the macroscopic shear modulus, as well as
KPBC,iso = 15.05 GPa and KPMUBC,iso = 15.12 GPa for the macroscopic bulk modu-
lus were evaluated. Despite the anisotropy of the underlying volume element good
agreement is evident between results obtained with PBC and PMUBC, the relative
errors in terms of the moduli being less than 1.2%. The estimates for the macro-
scopic moduli fall within the Hashin–Shtrikman bounds and are close to the lower
bounds.

Phase averaged stress components evaluated via equation (1) from macroscopic
uniaxial tensile strain analysis using PBC and PMUBC, respectively, are listed
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Table 6: Isotropic macroscopic elasticity tensors EPBC,iso and EPMUBC,iso obtained
from the orthotropized elasticity tensors listed in table 5 for the short fiber rein-
forced volume element shown in Figure 1 (right) with a matrix Young’s modulus
of EM=13.3 GPa.

EPBC,iso =

⎛
⎜⎜⎜⎜⎜⎜⎝

25.29 9.93 9.93 0 0 0
9.93 25.29 9.93 0 0 0
9.93 9.93 25.29 0 0 0

0 0 0 7.68 0 0
0 0 0 0 7.68 0
0 0 0 0 0 7.68

⎞
⎟⎟⎟⎟⎟⎟⎠

EPMUBC,iso =

⎛
⎜⎜⎜⎜⎜⎜⎝

25.48 9.94 9.94 0 0 0
9.94 25.48 9.94 0 0 0
9.94 9.94 25.48 0 0 0

0 0 0 7.77 0 0
0 0 0 0 7.77 0
0 0 0 0 0 7.77

⎞
⎟⎟⎟⎟⎟⎟⎠

in Table 4. These phase averages correspond to the “raw” elasticity tensors and
show clear evidence of the anisotropy of the underlying unit cell. Even though
the macroscopic load case is uniaxial strain, the shear components of the phase
averaged stresses and, by implication, of the macroscopic stresses obtained with
both PBC and PMUBC do not vanish, i.e., there is coupling between the normal
and shear terms. In contrast, the stress tensor evaluated with the three-point esti-
mates, which pertain to perfectly isotropic behavior, shows no such effects. The
agreement between the phase averaged stresses evaluated with PBC and PMBUC
is good, especially for the matrix averages of the normal stress components.

Taken together, the above results indicate that PMUBC are a valid choice for mod-
eling the elastic behavior of composites with statistically isotropic macroscopic be-
havior when periodic volume elements containing a sufficiently high number of re-
inforcements are used to approximate macroscopic isotropy. In addition, PMUBC
are well suited for application to “simply periodic” unit cells describing, e.g., cu-
bic arrangements of spheres or hexagonal arrays of fibers, which by design have
higher than orthotropic macroscopic symmetry. Some care is required, however,
when PMUBC are applied to VEs the macroscopic behavior of which shows con-
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siderable contributions with sub-orthotropic symmetries, such as volume elements
containing a very small number of randomly positioned reinforcements. For the
VEs considered in the present study, PMUBC always gave rise to estimates that are
markedly closer to the solutions for periodic composites than are results obtained
with kinematically uniform boundary conditions.

4.2 Elastic-Plastic Response

The results of the simulations of the elastic-plastic response of the volume ele-
ments under loading conditions pertinent to materials characterization presented
in Figures 4 to 7 show very good agreement between results obtained with PBC
and PMUBC. The only case where differences are non-trivial is that of randomly
oriented fibers under macroscopic uniaxial tensile stress and using strong matrix
hardening. However, whereas in the elastic regime the superposition principle al-
lows any macroscopic stress or strain state to be modelled on the basis of the six
independent load cases defining the PMUBC as listed in Table 1, path dependence
in the elastic-plastic regime acts to markedly restrict the states attainable by this set
of boundary conditions. In general, PBC are much more flexible in modeling the
elastic-plastic and other non-linear behaviors of composites compared to PMUBC
and the latter are not applicable to general multi-scale analysis.

4.3 Computational Issues

Another issue of interest are the requirements in terms of computation time and
memory usage posed by FE simulations employing PBC and PMUBC. As is evi-
dent from their definition in Table 1, PMUBC imply displacement controlled anal-
ysis. Periodicity boundary conditions, in contrast, can be combined with both dis-
placement and load control, the same unique estimate for the overall elastic tensor
being obtained. Load controlled procedures typically are computationally more
efficient for obtaining the elasticity tensor in displacement-based FE procedures,
because evaluating and inverting the global stiffness matrix once is sufficient for
analyzing the required six linearly independent load cases. Displacement control,
in contrast, requires carrying out the above operations for each of the six load cases.
Consequently, for periodic VEs the combination of load controlled analysis with
PBC typically poses the lowest requirements in terms of CPU time. If only dis-
placement controlled analysis is considered a different picture emerges. In such
situations PMUBC are markedly more efficient than PBC because the multi-point
constraints required for the latter set of boundary conditions substantially increase
the bandwidth of the system equations. Figure 8 shows normalized data on CPU
time and memory usage obtained for the two multi-inclusion unit cells shown in
Figure 1 using a work station with 4 Xeon 5160 processors and 64 GByte of mem-
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ory, on which the analyses ran in-core. Note that PMUBC are less memory in-
tensive than PBC, the multi-point constraints required for implementing the latter
degrading the band structure of the system matrix. This may translate into advan-
tages for PMUBC when very large models are studied or when memory resources
are very limited.
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Figure 8: Comparison of memory usage (left) and required CPU time (right) per-
taining to the multi-inclusion unit cells shown in Figure 1 evaluated with PBC for
displacement controlled (PBC-U) and load controlled (PBC-F) analyses as well as
PMUBC.

PMUBC enjoy a practical advantage over PBC with respect to preprocessing be-
cause the former do not require compatible meshes on opposite faces of volume
elements, which can considerably simplify meshing. In addition, the prescribed
displacements are constant and the prescribed tractions are zero over any given face,
making PMUBC easier to handle with general-purpose FE preprocessors compared
to KUBC and, especially, SUBC.

The scope of the present study is restricted to periodic volume elements for which
predictions based on PMUBC can be compared against reference results obtained
with PBC. A major strength of PMUBC, however, is that they do not require pe-
riodic phase arrangements. The main conclusions of the above discussion, viz.
that — provided the the behavior of the volume element shows only small devia-
tions from macroscopic orthotropy — PMUBC give excellent predictions for the
apparent elasticity tensors and for the elastic-plastic stress–strain responses along
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attainable load paths, can be expected to hold for non-periodic microgeometries,
too. Such behavior was reported by Pahr and Zysset (2008).

5 Summary

A special set of mixed uniform boundary conditions proposed by Pahr and Zysset
(2008) were applied to periodic multi-inclusion unit cells used in previous work for
modelling the macroscopic elastic-plastic behavior of MMCs reinforced by par-
ticles or randomly oriented fibers at moderate volume fractions. A considerable
range of elastic contrasts of the constituents as well as weak and strong strain hard-
ening of the matrix were studied. PMUBC were found to give valid results for all
cases considered which, on the one hand, allows the conclusion that they can be
a useful alternative to periodicity boundary conditions when periodic volume ele-
ments are used to study the mechanical behavior of matrix–inclusion composites.
On the other hand, PMUBC are not limited to periodic phase arrangements and, ac-
cordingly, provide an attractive option for studying non-periodic microgeometries.

Acknowledgement: Discussions with P. Zysset are gratefully acknowledged.
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