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Structural Integrity of Functionally Graded Composite
Structure using Mindlin-type Element

O.O. Oyekoya, D.U. Mba1 and A.M. El-Zafrany

Abstract: In this paper, two new Mindlin-type plate bending elements have been
derived for the modelling of functionally graded plate subjected to various load-
ing conditions such as tensile loading, in-plane bending and out-of-plane bending.
The properties of the first Mindlin-type element (i.e. Average Mindlin-type ele-
ment) are computed by using an average fibre distribution technique which averages
the macro-mechanical properties over each element. The properties of the second
Mindlin-type element (i.e. Smooth Mindlin-type element) are computed by using
a smooth fibre distribution technique, which directly uses the macro-mechanical
properties at Gaussian quadrature points of each element. There were two types of
non-linearity considered in the modelling of the plate, which include finite strain
and material degradation. The composite plate considered in this paper is function-
ally graded in the longitudinal direction only, but the FE code developed is capable
of analysing composite plates with functional gradation in transverse and radial
direction as well. This study was able to show that the structural integrity enhance-
ment and strength maximisation of composite structures are achievable through
functional gradation of material properties over the structure.

Keyword: Functionally graded material, finite element methods, Mindlin-type
plate bending theory, finite strain, progressive damage analysis.

List of Symbols

B Matrix of shape function derivatives
F Nodal load vector
K Element stiffness matrix
R Residual vector
γγγ Transverse shear strain vector
σσσ x-y stress vector
τττ Transverse shear stress vector
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εεε x-y strain vector
U Strain energy
u, v, w Displacements
V Volume fraction
W Work done by actual load
X Longitudinal strength
Y Transverse strength
μ Shear modulus
ν Poisson ratio
( )1 Longitudinal direction of the material axis
( )2 Transverse direction of the material axis
( )c Compressive strength
( ) f Fibre
( )m Matrix
( )t Tensile strength
( )x Longitudinal direction of the local axis
( )y Transverse direction of the local axis
( )comp Traditional composite
( ) f gm Functionally graded material
( )L Lth layer of composite
( )o Midplane of composite
( )σ Non-linear terms

1 Introduction

Composite materials are often used in different engineering fields, especially in
the aerospace field. The advantage of composite materials is the high stiffness-to-
weight and strength-to-weight ratios. The limitations of composite materials are the
following: the weakness of interfaces between layers may lead to de-lamination,
extreme thermal loads may lead to de-bonding between matrix and fibre due to
mismatch of mechanical properties, and residual stresses may be present due to
difference in coefficients of thermal expansion of the fibre and the matrix. To over-
come the limitations, functionally graded materials (FGMs) were proposed. The
FGMs are made in such a way that the volume fractions of two or more materials
are varied continuously along a certain dimension. The FGMs can be made as re-
quired for different applications. For example, thermal barrier plate structures can
be made from a mixture of ceramic and metal for high temperature application.
The advantage of the FGM plate is that its material properties vary continuously
from one surface to the other, hence avoiding the interface problem that exists in
homogeneous composites. The FGM concept originated in Japan in 1984 during
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the space-plane project, in the form of a proposed thermal barrier material capa-
ble of withstanding a surface temperature of 2000 K and a temperature gradient of
1000 K across a cross section <10 mm.

In the modelling and simulation of FGMs, many researchers have implemented
different numerical techniques. These include boundary element method (BEM)
[Criado et. al. (2007), Chen and Liew (2004)], meshless local Petrov-Galerkin
(MLPG) method [Wen et. al. (2008), Liu et. al. (2008), Sladek et. al. (2008),
Ching and Chen (2006)] and finite element method (FEM) [Reddy (2000)].

Chen and Liew (2004) investigated the buckling behaviour of FGM rectangular
plates subjected to non-linearly distributed in-plane edge loads. They stated that
a mesh-free method which approximates displacements based on scattered nodes
(i.e. radial basis function and polynomial basis) was employed, in-order to avoid
complicated numerical procedures that arises in the FEM from the use of elements.
This FEM complication was dealt with in this paper. Reddy (2000) presented a
theoretical formulation and finite element models based on third order shear de-
formation theory for the analysis of through-thickness functionally graded plates.
The Navier solution for simply supported plates based on the linear third-order the-
ory and non-linear static and dynamic finite element results based on the first-order
theory were presented to show effects of volume fractions and modulus ratio of the
constituents on deflections and transverse shear stresses.

In comparison to existing publications, this paper has been able to give unique con-
tributions to the subject matter. These contributions include Mindlin-type element
formulation based on averaging of transverse shear distribution over plate thickness
using Lagrangian interpolation, finite strain modelling based on Green’s strain-
displacement equation and smooth fibre distribution technique based on numerical
computation of macro-mechanical properties at Gaussian quadrature points.

2 Micro-mechanics of Fibrous Composites

This section describes the micromechanics algorithm and the fibre distribution tech-
niques such as average and smooth fibre distribution technique. The elastic and
strength properties of a composite are expressed in terms of the fibre and matrix
properties as described by Daniel and Ishai (1994).

2.1 Fibre Distribution Techniques

This section explains the implementation of fibre distribution in the FE code. The
equation used for fibre distribution is given below.

Vf (ξ ) = V1 +(V2−V1)ξ p (1)
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where

ξ =
x−x1

x2 −x1
, ξ =

y−y1

y2 −y1
or ξ =

r− r1

r2 − r1

V1 = fibre volume fraction at x1,y1 or r1

V2 = fibre volume fraction at x2,y2 or r2

Manual Fibre Distribution

This fibre distribution technique enables the code user to manually specify the fi-
bre volume fraction for each element along the direction of fibre volume fraction
variation.

Average Fibre Distribution

This fibre distribution technique enables the code user to either specify fibre volume
fractions V1 and V2 or the mean fibre volume fraction V and fibre volume fraction
V1. These fibre volume fractions are then used in computing the fibre volume
fractions at the midpoint of each element.

Smooth Fibre Distribution

This fibre distribution technique enables the code user to either specify fibre volume
fractions V1 and V2 or the mean fibre volume fraction V and fibre volume fraction
V1. These fibre volume fractions are then used in computing the fibre volume
fractions at each Gaussian quadrature point.

The plots of the fibre volume fraction distribution for all ten optimisation cases
considered in this paper were obtained using Eq.1 and they are as shown below.

2.2 Progressive Damage Analysis Algorithm

In this section, a progressive damage analysis algorithm has been presented. This
algorithm actually contains two types of non-linearity which are finite strain and
material degradation. In the case of finite strain, the geometrical non-linearity dur-
ing loading is modelled by applying load incrementally as shown in the figure be-
low. In the case of material non-linearity, during each load increment a check for
failure is undertaken using an interactive failure criterion. If failure is detected, ma-
terial properties of failed element are degraded and equilibrium is re-established.
In this paper the failure criteria employed include Tsai-Hill, Tsai-Wu and Hoff-
man failure criteria. Further details on the criteria and different progressive damage
techniques can be found in these references [Sleight (1999), Razzaq and El-Zafrany
(2005), Prusty et. al. (2001), Padhi et. al. (1998), Tolson and Zabaras (1991), Cr-
isfield et. al. (1997)].
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Figure 1: Smooth fibre ratio distribution
plot for cases with P=0 and P=0.5

Figure 2: Average fibre ratio distribu-
tion plot for cases with P=0 and P=0.5

Figure 3: Smooth fibre ratio distribution
plot for cases with P=0 and P=1 Figure 4: Average fibre ratio distribu-

tion plot for cases with P=0 and P=1

3 Derivation of Finite Element Equations

This section explains the Mindlin-type plate bending element theory and derives the
equation used in the finite element programming. The finite element formulation
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Figure 5: Smooth fibre ratio distribution
plot for cases with P=0 and P=2

Figure 6: Average fibre ratio distribu-
tion plot for cases with P=0 and P=2

of displacement equation, strain equation, stress equation, strain energy variation
and generalised equation of equilibrium have been summarised in this section. The
generalised equation of equilibrium is then linearised in-order to obtain the Mindin-
type element equation.

3.1 Displacement, Stress and Strain Equations

3.1.1 Displacement Components

Using Mindlin’s plate bending theory, the displacement components in the x, y and
z directions at any point (x,y, z) inside the plate are as described in the following
equations.

u(x,y, z) = uo(x,y)+ zθy(x,y) (2)

v(x,y, z) = vo(x,y)− zθx(x,y) (3)

w(x,y, z)≈ w(x,y) (4)

where uo,vo represent displacement values at the mid-plane of the plate and θx,θy

are average slope angles defined as follows:

θx = +[wy − γ̄yz]
, θy = − [wx − γ̄xz] (5)
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Figure 7: Progressive damage analysis algorithm

3.1.2 Strain Components

The transverse strain components at any point inside the plate are assumed infinites-
imal, they are negligible for thin plates, other components are defined in the x− y
plane and they may assume finite values. The strain component εz will always be
assumed negligible.

Transverse shear strains

Using Reissner’s theory, the transverse shear strains at any point (x,y,z) inside the
plate can be modelled as a parabolic distribution over the plate thickness as shown
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in the following equation.

γγγ =
[

γxz

γyz

]
≡ 3

2

(
1− 4z2

h2

)[
γ̄xz

γ̄yz

]
(6)

where γxz, γyz represents the average transverse shear strains over the plate thick-
ness.

The x-y strain components

The x−y strain component contains εx, εy and γxy. Using Green’s strain-displacement
equations, then:

εx = ux +0.5
[
u2

x +v2
x +w2

x

]
(7)

εy = uy +0.5
[
u2

y +v2
y +w2

y

]
(8)

γxy = uy +vx +[uxuy +vxvy +wxwy] (9)

where (ux, vx, wx) represents the displacement derivative with respect to x and (uy,
vy, wy) represents the displacement derivative with respect to y.

Using the previous equations, the x−y strain vector can be partitioned as follows:⎡
⎣ εx

εy

γxy

⎤
⎦= εo − zεb +

1
2

⎡
⎣ Am − zAθ

Aw

−zAm + z2Aθ

⎤
⎦

T ⎡
⎣θm

θw

θθ

⎤
⎦ (10)

Hence it can be shown that:

θθθ m(x,y) =
[
uo

x vo
x uo

y vo
y

]T
(11)

θθθ w(x,y) =
[
wx wy

]T
(12)

θθθ θ (x,y) =
[
−(θy)x (θx)x −(θy)y (θx)y

]T
(13)

Am(x,y) =

⎡
⎣uo

x vo
x 0 0

0 0 uo
y vo

y

uo
y vo

y uo
x vo

x

⎤
⎦ (14)

Aw(x,y) =

⎡
⎣wx 0

0 wy

wy wy

⎤
⎦ (15)

Aθ (x,y) =

⎡
⎣−(θy)x (θx)x 0 0

0 0 −(θy)y (θx)y

−(θy)y (θx)y −(θy)x (θx)x

⎤
⎦ (16)
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εεεo(x,y) =
[
uo

x vo
y uo

y +vo
x

]T
(17)

εεεb(x,y) =
[
−(θy)x (θx)y (θx)x − (θy)y

]T
(18)

where subscript x and y represents the derivatives with respect to x and y respec-
tively.

Also the variation of the total x−y strain vector can be represented in matrix form
as shown below:⎡
⎣dεx

dεy

dγxy

⎤
⎦= dεo − zdεb +

⎡
⎣ Am − zAθ

Aw

−zAm + z2Aθ

⎤
⎦

T ⎡
⎣dθm

dθw

dθθ

⎤
⎦ (19)

And the variation of the transverse shear strain vector is derived from Eq.6 as:

dγγγ = fγ(z)dγ̂γγ (20)

where

γ̂γγ =
[

γ̄xz

γ̄yz

]
≡
[

∂w
∂x +θy
∂w
∂y −θx

]
(21)

fγ(z) =
3
2

(
1− 4z2

h2

)
(22)

3.1.3 Stress Components

The relevant stress components at any point inside the lth layer of a composite
layered plate can be represented in terms of the transverse shear stress vector and
x-y stress vector. The transverse shear stress vector τττ (l) contains τxz and τyz. The
x-y stress vector σσσ (l) contains σ x and σ y. Using the constitutive equations for the
lth layer, the stress vectors can be expressed in terms of strain vectors as follows:

τττ (l) = μμμ(l)γγγ ≡ fγ(z)μμμ(l)γ̂γγ (23)

σσσ (l) = D(l)εεε (24)

3.1.4 Strain Energy Variation

The variation of strain energy density (strain energy per unit volume) due to a vari-
ation of displacement at any point inside the lth layer of the plate can be expressed
as follows:

dŪ (l) = σ (l)
x dεx +σ (l)

y dεy +τ (l)
xy dγxy +τ (l)

yz dγyz +τ (l)
xz dγxz (25)
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which can be represented in the following matrix form:

dŪ (l) = dγγγ tτττ (l) +dεεε tσσσ (l) (26)

The variation of strain energy per unit area of the plate surface is defined as follows:

dU ′ =
h/2∫

−h/2

(dŪ (l))dz (27)

and the variation of the strain energy of the plate is given by:

dU =
∫∫

x−y surface

(dU ′)dxdy (28)

Substituting from Eq.19 and Eq.20 into Eq.25, it can be deduced that:

dŪ (l) = fγ(z)dγ̂γγtτττ (l)

+ [dεεεo +Amdθθθ m +Awdθθθ w −z (dεεεb +Amdθθθ θ +Aθ dθθθ m)+ z2Aθ dθθθ θ
]
σσσ (l) (29)

i.e.

dŪ (l) = fγ(z)dγ̂γγtτττ (l)

+
[
dεεε t

o +dθθθ t
mAt

m +dθθθ t
wAt

w − z
(
dεεε t

b +dθθθ t
θ At

m +dθθθ t
mAt

θ
)
+ z2dθθθ t

θ Aθ
]
σσσ (l) (30)

3.2 Interpolated Equations

3.2.1 Displacement Components

Mindlin-type elements are based on Lagrangian interpolation, and for an n-node
element the mid-plane displacement components and average slope angles at any
point (x,y) in the mid-plane of the plate can be expressed in terms of nodal displace-
ments ui,vi,wi, (θx)i , (θy)i and Lagrangian shape functions Ni(x,y). The subscript
i represents the node number.

Usually, the two-dimensional Lagrangian shape functions are expressed in terms
of intrinsic coordinates (ξ ,η) and the relationships between Cartesian coordinates
(x,y) and intrinsic coordinates (ξ ,η) are obtained via isoparametric equations as
described by Attia and El-Zafrany (1999).
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3.2.2 Strain Components

Transverse shear strains

Substituting the interpolated displacement components into Eq.21 and subsequently
into Eq.6 to obtain:

γγγ(x,y, z) = fγ(z)Bγ(x,y)δδδb (31)

where Bγ is the matrix containing the Lagrangian shape functions and their deriva-
tives.

Total strain vector and its variation

The total strain vector can be represented in terms of nodal parameters as:⎡
⎣ εx

εy

γxy

⎤
⎦=

[
Bo + 1

2 AmGm − z
2 Aθ Gm

1
2 AwGw − z

(
Bb + 1

2AmGθ
)
+ z2

2 Aθ Gθ

]T [δo

δb

]
(32)

Also the variation of transverse shear strains can be obtained from Eq.31 as follows:

dγγγ(x,y, z) = fγ(z)Bγ(x,y)dδδδ b (33)

where B and G represents the matrices which contain the Lagrangian shape func-
tion derivatives.

Also the variation of the x− y strain vector can be represented in terms of nodal
parameters as shown below:⎡
⎣dεx

dεy

dγxy

⎤
⎦=

[
Bo +AmGm − zAθ Gm

AwGw − z (Bb +AmGθ )+ z2Aθ Gθ

]T [
dδo

dδb

]
(34)

Define the following non-linear B matrices:

Bpq = ApGq (35)

with p ≡ m,w,θ , q ≡ m,w,θ .

Define also:

B̃o = Bo +AmGm ≡ Bo +Bmm (36)

and

B̃b = Bb +AmGθ ≡ Bb +Bmθ (37)

Hence, Eq.34 can be rewritten as follows:⎡
⎣dεx

dεy

dγxy

⎤
⎦=

[
B̃o − zBθm

Bww − zB̃b + z2Bθθ

]T [
dδo

dδb

]
(38)
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3.2.3 Variation of Strain Energy

Substituting Eq.33 and Eq.34 into Eq.26, then the variation of strain energy density
at any point inside the lth layer of the plate can be expressed as follows:

dŪ (l)(x,y, z) =
[
dδδδ t

bBt
γ
](

fγ(z)τττ(l)
)

+
[

dδo

dδb

]T [
Bt

o +Gt
mAt

m − zGt
mAt

θ
Gt

wAt
w − z

(
Bt

b +Gt
θ At

m

)
+ z2Gt

θ At
θ

]T

σ (l) (39)

Integrated stress vectors

(a) Integrated transverse shear stress

This is defined as follows:

τ̃ττ =

h/2∫
−h/2

fγ(z)τττ(l)dz (40)

Substituting from Eq.23 into Eq.40, then it can be deduced that:

τ̃ττ =

⎡
⎣ h/2∫
−h/2

f 2
γ (z)μμμ(l)dz

⎤
⎦γ̂γγ (41)

Define an integrated μμμ matrix as follows:

μμμγγ =

h/2∫
−h/2

f 2
γ (z)μμμ(l)dz ≡

h/2∫
−h/2

9
4

(
1− 4z2

h2

)2

μμμ(l)dz (42)

and for the special case of transversely isotropic plate, where all layers have the
same μμμ matrix, it can be proved that:

μμμγγ =
6
5

hμμμ (43)

Hence, it can be deduced that:

τ̃ττ = μμμγγγ̂γγ ≡ μμμγγBγδδδ b (44)

(b) Integrated x-y stress vectors



Structural Integrity of Functionally Graded Composite Structure 67

These can be defined generally as follows:

σσσn = (−1)n

h/2∫
−h/2

znσσσ (l)dz (45)

Eq.45 can also be expressed as:

σσσn = (−1)n [Dn (εεεo +εεεm +εεεw)−Dn+1 (εεεb +εεε mθ )+Dn+2εεεθ ] (46)

Defining integrated D matrices generally as follows:

Dn =

h/2∫
−h/2

znD(l)dz (47)

Integrating Eq.39 over the layers with respect to z, then it can be deduced that:

dU (l) = dδδδ t
bBt

γτ̃ττ +
(
dδδδ t

oB̃t
o +dδδδ t

bBt
ww

)
σσσ o +

(
dδδδ t

oBt
θm +dδδδ t

bB̃t
b

)
σσσ1 +dδδδ t

bBt
θθσσσ 2

(48)

3.3 Finite Element Equations

3.3.1 Generalized Equations of Equilibrium

The wok done by actual external loads can be expressed in terms of equivalent
nodal loading represented with the following vector:

F ≡
[

Fo

Fb

]
(49)

where

Fo =
{
(Fx)1 (Fy)1 (Fx)2 (Fy)2 · · · (Fx)m (Fy)m

}
(50)

Fb =
{
(Fz)1 (Mx)1 (My)1 · · · (Fz)m (Mx)m (My)m

}
(51)

and m is the total number of finite element mesh nodes.

From the principle of virtual work due to a variation of displacement:

dχ = dU −dW = 0 (52)
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Eq.52 can be expressed as:

Ne

∑
e=1

h/2∫
−h/2

∫∫
e

{[
dδo

dδb

]T [
Bt

o +Gt
mAt

m − zGt
mAt

θ
Gt

wAt
w − z

(
Bt

b +Gt
θ At

m

)
+ z2Gt

θ At
θ

]T

σ (L) +dδ t
bBt

γ fγτ (L)

}

dxdydz−dδ t
oFt

o −dδ t
bFt

b = 0 (53)

Since dδδδ o,dδδδ b represent arbitrary parameters, then their coefficients in the above
equation vanish, leading to:

Ne

∑
e=1

h/2∫
−h/2

∫∫
e

⎧⎪⎨
⎪⎩
[

Bt
o +Gt

mAt
m − zGt

mAt
θ

Gt
wAt

w − z
(
Bt

b +Gt
θ At

m

)
+ z2Gt

θ At
θ

]T

σ (L) +Bt
γ fψ τ (L)

⎫⎪⎬
⎪⎭dxdydz−[Fo Fb

]T = 0

(54)

which represent the generalized equations of equilibrium.

If an approximate solution is employed then the previous equations will lead to the
following residual vectors:

Ne

∑
e=1

h/2∫
−h/2

∫∫
e

⎧⎪⎨
⎪⎩
[

Bt
o +Gt

mAt
m − zGt

mAt
θ

Gt
wAt

w − z
(
Bt

b +Gt
θ At

m

)
+ z2Gt

θ At
θ

]T

σ (L) +Bt
γ fψ τ (L)

⎫⎪⎬
⎪⎭dxdydz−[Fo Fb

]T

=
[
Ro Rb

]T
(55)

When calculating the residual forces, the equation above is integrated analytically
with respect to z, leading to:

Ro = Fo −
Ne

∑
e=1

∫∫
e

{(
Bt

o +Gt
mAt

m

)
σσσ0 +

(
Gt

mAt
θ
)

σσσ1
}

dxdy (56)

Rb = Fb −
Ne

∑
e=1

∫∫
e

{
Bt

γ τ̃ +
(
Gt

wAt
w

)
σσσ0 +

(
Bt

b +Gt
θ At

m

)
σσσ1 +

(
Gt

θ At
θ
)

σσσ2
}

dxdy

(57)

3.3.2 Linearization of Equations of Equilibrium

To restore equilibrium, i.e. to make the residual vectors vanish we assume:

δδδ new = δδδ old +Δδδδ

σσσ (l)
new = σσσ (l)

old +Δσσσ
Anew = Aold +ΔA

(58)
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such that Ro → O, Rb → O.

Substituting Eq.58 into Eq.55, then it can be deduced that:

Ne

∑
e=1

∫∫∫
e

{[
Bt

o +Gt
m

(
At

m +ΔAt
m

)](
σσσ (l) +Δσσσ (l)

)

+ Gt
m

(
At

θ +ΔAt
θ
)
(−z)

(
σσσ (l) +Δσσσ (l)

)}
dxdydz−Fo = O (59)

Ne

∑
e=1

∫∫∫
e

{
Bt

γ f (
γ z)

(
τττ(l) +Δτττ (l)

)
+Gt

w

(
At

w +ΔAt
w

)(
σσσ (l) +Δσσσ (l)

)

+
[
Bt

b +Gt
θ
(
At

m +ΔAt
m

)]
(−z)

(
σσσ (l) +Δσσσ (l)

)
+ Gt

θ
(
At

θ +ΔAt
θ
)
(z2)

(
σσσ (l) +Δσσσ (l)

)}
dxdydz−Fb = O (60)

Expanding the previous expressions and ignoring high order terms, and using the
definitions of Ro,Rb given in Eq.55, then Eq.59 and Eq.60 can be reduced to:

Ne

∑
e=1

∫∫∫
e

{[
Bt

o +Gt
mAt

m

]
Δσσσ (l) +Gt

mAt
θ

(
−zΔσσσ (l)

)

+ Gt
mΔAt

mσσσ (l) + Gt
mΔAt

θ

(
−zσσσ (l)

)}
dxdydz = Ro (61)

Ne

∑
e=1

∫∫∫
e

{
Bt

γ fγ(z)Δτττ(l) +Gt
wAt

wΔσσσ (l) +
[
Bt

b +Gt
θ At

m

](−zΔσσσ (l)
)

+Gt
θ At

θ

(
z2Δσσσ (l)

)
+Gt

wΔAt
wσσσ (l)Gt

θ ΔAt
m(−z)σσσ(l) +Gt

θ ΔAt
θ (z2)σσσ(l)

}
dxdydz

= Rb (62)

Eq.61 and Eq.62 can be divided into two parts each. The first part contains the
terms which include Δσσσ and the second part has the terms with ΔA’s, as follows:

Ne

∑
e=1

[
(Re

i )Δσσσ +(Re
i )ΔA

]
= Ri (63)

with i = o,b.

Using the non-linear B matrices, it can be shown that

(Re
o)Δσσσ =

h/2∫
−h/2

∫∫
e

[
B̃t

oΔσσσ (l) +Bt
θm

(
−zΔσσσ (l)

)]
dxdydz (64)
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(Re
b)Δσσσ =

h/2∫
−h/2

∫∫
e

[
Bt

γ fγ(z)Δτττ(l) +Bt
wwΔσσσ (l) + B̃t

b

(
−zΔσσσ (l)

)
+Bt

θθ

(
z2Δσσσ (l)

)]

dxdydz (65)

(Re
o)ΔA =

h/2∫
−h/2

∫∫
e

[
Gt

mΔAt
mσσσ (l) +Gt

mΔAt
θ (−z)σσσ (l)

]
dxdydz (66)

(Re
b)ΔA =

h/2∫
−h/2

∫∫
e

[
Gt

wΔAt
wσσσ (l) +Gt

θ ΔAt
m(−z)σσσ (l)

+Gt
θ ΔAt

θ (z2)σσσ (l)

]
dxdydz (67)

3.3.3 Analysis of Δσ Terms

Using Eq.23 and Eq.31, the increment of transverse shear stress can be expressed
as follows:

Δτττ (l) = fγ(z)μμμ(l)Δγ̂γγ ≡ fγ(z)μμμ(l)Bγ Δδδδ b (68)

Hence, it can be deduced that:

h/2∫
−h/2

fγ(z)Δτττ(l)dz = μμμγγBγ Δδδδ b (69)

Similarly the increment of x− y stress can be obtained from Eq.24 and Eq.38, as
follows:

Δσσσ (l) = D(l)Δεεε ≡ D(l) [B̃oΔδδδo +BwwΔδδδ b − z
(
BθmΔδδδ o + B̃bΔδδδ b

)
+ z2 Bθθ Δδδδ b]

(70)

Using Eq.46, the following integrated stress increments can be deduced:

h/2∫
−h/2

Δσσσ (l)dz = Do
(
B̃oΔδδδ o +BwwΔδδδ b

)−D1
(
BθmΔδδδo + B̃bΔδδδ b

)
+D2 (Bθθ Δδδδ b)

(71)

h/2∫
−h/2

zΔσσσ(l)dz = D1
(
B̃oΔδδδ o +BwwΔδδδ b

)−D2
(
BθmΔδδδ o + B̃bΔδδδ b

)
+D3 (Bθθ Δδδδ b)



Structural Integrity of Functionally Graded Composite Structure 71

(72)

h/2∫
−h/2

z2Δσσσ (l)dz = D2
(
B̃oΔδδδo +BwwΔδδδ b

)−D3
(
BθmΔδδδ o + B̃bΔδδδ b

)
+D4 (Bθθ Δδδδb)

(73)

Using Eq.69 and Eq.71 – Eq.73 then Eq.64 and Eq.65 can be reduced as follows:

(Re
o)Δσσσ = KooΔδδδ o +KobΔδδδ b (74)

(Re
b)Δσσσ = KboΔδδδ o +KbbΔδδδ b +Kγγ Δδδδ b (75)

where

Koo =
∫∫
e

[
B̃t

oDoB̃o − B̃t
oD1Bθm −Bt

θmD1B̃o

+Bt
θmD2Bθm

]
dxdy (76)

Kob =
∫∫
e

[
B̃t

oDoBww − B̃t
oD1B̃b −Bt

θmD1Bww + B̃t
oD2Bθθ +Bt

θmD2B̃b

−Bt
θmD3Bθθ

]
dxdy (77)

Kbo =
∫∫
e

[
Bt

wwDoB̃o − B̃t
bD1B̃o −Bt

wwD1Bθm +Bt
θθ D2B̃o + B̃t

bD2Bθm

−Bt
θθ D3Bθm

]
dxdy ≡ Kt

ob (78)

Kγγ =
∫∫
e

Bt
γμμμγγBγdxdy (79)

Kbb =
∫∫
e

[
Bt

wwDoBww −Bt
wwD1B̃b − B̃t

bD1Bww + B̃t
bD2B̃b +Bt

wwD2Bθθ

+ Bt
θθ D2Bww − B̃t

bD3Bθθ −Bt
θθ D3B̃b + Bt

θθ D4Bθθ

]
dxdy (80)
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3.3.4 Analysis of ΔA Terms

Using the integrated stress defined by Eq.45, then Eq.66 and Eq.67 can be simpli-
fied as follows:

(Re
o)ΔA =

∫∫
e

[
Gt

mΔAt
mσσσo +Gt

mΔAt
θσσσ1

]
dxdy (81)

(Re
b)ΔA =

∫∫
e

[
Gt

wΔAt
wσσσo +Gt

θ ΔAt
mσσσ 1 +Gt

θ ΔAt
θσσσ2

]
dxdy (82)

Using matrix manipulations, the following theorems can be proved:

ΔAt
mσσσn ≡ SnΔθθθ m = SnGmΔδδδ o (83)

ΔAt
θσσσn ≡ SnΔθθθ θ = SnGθ Δδδδ b (84)

ΔAt
wσσσo ≡ SwΔθθθ w = SwGwΔδδδ b (85)

where

Sn =

⎡
⎢⎢⎢⎣

σ (n)
x 0 τ (n)

xy 0

0 σ (n)
x 0 τ (n)

xy

τ (n)
xy 0 σ (n)

y 0

0 τ (n)
xy 0 σ (n)

y

⎤
⎥⎥⎥⎦ (86)

and

Sw =

[
σ (0)

x τ (0)
xy

τ (0)
xy σ (0)

y

]
(87)

Substituting from Eq.83 – Eq.85 into Eq.81 and Eq.82, then it can be deduced that:

(Re
o)ΔA = Kσ

mmΔδδδ o +Kσ
mθ Δδδδ b (88)

(Re
b)ΔA = Kσ

θmΔδδδ o +(Kσ
ww +Kσ

θθ )Δδδδb (89)

where

Kσ
mm =

∫∫
e

Gt
mSoGmdxdy (90)

Kσ
mθ =

∫∫
e

Gt
mS1Gθ dxdy (91)
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Kσ
θm =

∫∫
e

Gt
θ S1Gmdxdy (92)

Kσ
ww =

∫∫
e

Gt
wSwGwdxdy (93)

Kσ
θθ =

∫∫
e

Gt
θ S2Gθ dxdy (94)

3.3.5 Final Matrix Equations of the Element

Substituting from Eq.74, Eq.75, Eq.88, Eq.89 into Eq.63, it can be deduced that:

Ne

∑
e=1

{KooΔδδδo +KobΔδδδ b +Kσ
mmΔδδδo +Kσ

mθ Δδδδb} = Ro (95)

Ne

∑
e=1

{
KboΔδδδ o +

(
Kγγ +Kbb

)
Δδδδ b +Kσ

θmΔδδδ o +(Kσ
ww +Kσ

θθ )Δδδδb
}

= Rb (96)

which can be rewritten as follows:

Ne

∑
e=1

{
(K+Kσ )

[
Δδδδ o

Δδδδ b

]}
=
[

Ro

Rb

]
(97)

and the element stiffness matrices are defined as follow:

K =
[

Koo Kob

Kbo Kbb +Kγγ

]
(98)

Kσ =
[

Kσ
mm Kσ

mθ
Kσ

θm Kσ
ww +Kσ

θθ

]
(99)

4 Finite Element Modelling and Result Validation

Composite Material Data

The composite material data used for all the cases studies are tabulated below.

A rectangular plate made of a typical FGM with its mid-plane as shown in Figure
8 was considered. A 72 element mesh was employed for all the three validation
case studies. The elements used in the validation exercise include 4-noded Av-
erage Mindlin-type element, 4-noded Smooth Mindlin-type element and 4-noded
Ordinary Mindlin-type element. The boundary condition applied in the three case
studies is that edge x=0 is a clamped edge. A load of 0.1kN was applied as an
equivalent nodal loading at edge x=2 for all load cases.
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Table 1: Composite material data

Parameters Values
E f , Fibre young modulus 330GPa
Em, Matrix young modulus 5GPa
ν f , Fibre Poisson ratio 0.3625
νm, Matrix Poisson ratio 0.3
ρ f , Fibre density 1.0Kg/m3

ρm, Matrix density 1.0Kg/m3

Stacking sequence ((-45,0,45)2)S

Ply thickness 2.5mm
XMT , Matrix tensile strength 0.05 MPa
XMC, Matrix compressive strength 0.08 MPa
XMS, Matrix shear strength 0.04 MPa
XFT , Fibre tensile strength 7.5 MPa
XFS, Fibre shear strength 4 MPa
SEGRM , Maximum radial residual stress 0.0
SKC , Longitudinal stress concentration factor 1
SKS, Shear stress concentration factor 1
V1, Fibre ratio at the clamped end 0.5, 0.55 or 0.6
V , Average fibre ratio 0.4
P, Power term in the fibre distribution equation 0, 0.5, 1 or 2

Figure 8: Mesh

4.1 Code Validation using Tension Case

Figure 9 and Figure 10 show the displacement validation results of the nodes along
the axis that passes through y=0 and z=0. The in-plane displacement results for the
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average, smooth and ordinary Mindlin programs were in good agreement.

Figure 9: u-displacement validation for
the tension case at the y=0 edge

Figure 10: v-displacement validation
for the tension case at the y=0 edge

4.2 Code Validation using Bending Case

In-plane Bending Case

Figure 11 and Figure 12 show the displacement validation results of the nodes along
the axis that passes through y=0 and z=0. The in-plane displacement results for the
average, smooth and ordinary Mindlin programs were in good agreement.

Out-of-plane Bending Case

Figure 13 shows the displacement validation results of the nodes along the axis that
passes through y=0 and z=0. The out-of-plane displacement results for the average
and ordinary Mindlin programs were in good agreement. The smooth program was
not in good agreement with the other two programs. This can be explained by the
fact that the smooth fibre distribution technique is a more accurate representation of
the distribution equation because fibre ratios are computed at the Gaussian quadra-
ture points of each element and not at the mid-point of each element as is the case
for the average and ordinary program. Hence, it can be shown that the use of finer
meshes in the average and ordinary programs brings about reduction in the result
discrepancies with the smooth program.



76 Copyright © 2008 Tech Science Press CMES, vol.34, no.1, pp.55-85, 2008

Figure 11: u-displacement validation
for the in-plane bending case at the y=0
edge

Figure 12: v-displacement validation
for the in-plane bending case at the y=0
edge

Figure 13: w-displacement validation for the out-of-plane bending case at the y=0
edge

5 Optimisation Result

The optimisation technique used in this paper can be described as a fail-safe design
technique which involves the imposition of constraints to ensure that the physi-
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Figure 14: Optimisation technique

Figure 15: u-displacement result com-
parison for tension cases with P=0 and
P=1

Figure 16: v-displacement result com-
parison for tension cases with P=0 and
P=1
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Figure 17: u-displacement result com-
parison for tension cases with P=0 and
P=2

Figure 18: v-displacement result com-
parison for tension cases with P=0 and
P=2

Figure 19: u-displacement result com-
parison for tension cases with P=0 and
P=0.5

Figure 20: v-displacement result com-
parison for tension cases with P=0 and
P=0.5
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Figure 21: u-displacement result com-
parison for in-plane bending cases with
P=0 and P=1

Figure 22: v-displacement result com-
parison for in-plane bending cases with
P=0 and P=1

Figure 23: u-displacement result com-
parison for in-plane bending cases with
P=0 and P=2

Figure 24: v-displacement result com-
parison for in-plane bending cases with
P=0 and P=2
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Figure 25: u-displacement result com-
parison for in-plane bending cases with
P=0 and P=0.5

Figure 26: v-displacement result com-
parison for in-plane bending cases with
P=0 and P=0.5

Figure 27: w-displacement result com-
parison for out-of-plane bending cases
with P=0 and P=1

Figure 28: w-displacement result com-
parison for out-of-plane bending cases
with P=0 and P=2
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Figure 29: w-displacement result comparison for out-of-plane bending cases with
P=0 and P=0.5

cal limitations of materials or structural properties required for satisfactory perfor-
mance are not exceeded. This optimisation technique involves changing the fibre
distribution parameters and running the three FE codes for the given fibre distribu-
tion, checking to see if all constraints have been satisfied. The constraint that has
been considered is the displacement constraints. The flow chart below is a good
description of this optimisation technique concept.

5.1 Fibre Distribution Effect on Progressive Damage Analysis Result

In this section, progressive damage analysis was carried on a cantilever plate with
ten different fibre ratio distribution cases, subjected to tension loading, in-plane and
out-of-plane bending. The results obtained are presented below.

Tension Case

Figure 15 and Figure 16 show the comparison of the displacement results for the
tension cases with P=0 and P=1. In this tension case, the parameter that is of ma-
jor interest is the u-displacement. Minimisation of u-displacement is usually the
desired effect for design purposes. Hence Figure 15 shows that the traditional com-
posite case (i.e. P=0 and V1=Vav) satisfied the minimum u-displacement constraint
with a u-displacement of 0.0121mm at edge x=2.

Figure 17 and Figure 18 show the comparison of the displacement results for the
tension cases with P=0 and P=2. And it shows that the traditional composite case
(i.e. P=0 and V1=Vav) satisfied the minimum u-displacement constraint with a
u-displacement of 0.0121mm at edge x=2.

Figure 19 and Figure 20 show the comparison of the displacement results for the
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tension cases with P=0 and P=0.5. And it shows that all four curves overlay on top
of each other with negligible result discrepancies. Hence all four fibre distribution
cases satisfied the minimum u-displacement constraint with a u-displacement of
0.0121mm at edge x=2.

In summary, the above results showed that all the ten fibre ratio distribution cases
had no significant effect on the tension case because all ten cases gave identical
u-displacement results with negligible discrepancies.

In-plane Bending Case

Figure 21 and Figure 22 show the comparison of the displacement results for the in-
plane bending case with P=0 and P=1. In this in-plane bending case, the parameter
that is of major interest is the v-displacement. Minimisation of v-displacement
is usually the desired effect required for design purposes. Hence Figure 21 shows
that the case with P=1 and V1=0.6 satisfied the minimum v-displacement constraint
with a v-displacement of 0.019mm at edge x=2.

Figure 23 and Figure 24 show the comparison of the displacement results for the
in-plane bending case with P=0 and P=2. And it shows that the curves of the
cases with P=2 overlay on top of each other and their v-displacements are lower
in comparison to the traditional composite case (i.e. P=0 and V1=Vav). Hence all
the three cases with P=2 satisfied the minimum v-displacement constraint with a
v-displacement of 0.019mm at edge x=2.

Figure 25 and Figure 26 show the comparison of the displacement results for the in-
plane bending case with P=0 and P=0.5. And it shows that the case with P=0.5 and
V1=0.6 satisfied the minimum v-displacement constraint with a v-displacement of
0.02mm at edgex=2.

In summary, the above results showed that the in-plane bending case with P=1&2
and V1=0.6 gave the minimum v-displacement at edge x=2 in all ten fibre ratio dis-
tribution cases. Hence this fibre ratio distribution case is the best case that satisfied
the minimum v-displacement constraint.

Out-of-plane Bending Case

Figure 27 shows the comparison of the displacement results for the out-of-plane
bending case with P=0 and P=1. In this out-of-plane bending case, the parameter
that is of major interest is the w-displacement. Minimisation of w-displacement is
usually the desired effect required for design purposes. Hence Figure 27 shows that
the case with P=1 and V1=0.5 satisfied the minimum w-displacement constraint
with a w-displacement of 2.25mm at edge x=22.

Figure 28 shows the comparison of the displacement results for the out-of-plane
bending case with P=0 and P=2. And it shows that the case with P=2 and V1=0.55
satisfied the minimum w-displacement constraint with a w-displacement of 1.25mm
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at edge x=2.

Figure 29 shows the comparison of the displacement results for the out-of-plane
bending case with P=0 and P=0.5. And it shows that the traditional composite case
(i.e. P=0 and V1=Vav) satisfied the minimum w-displacement constraint with a
w-displacement of 2.3mm at edge x=2.

In summary, the above results showed that the out-of-plane bending case with P=2
and V1=0.55 gave the minimum w-displacement at edge x=2 in all ten fibre ratio
distribution cases. Hence this case is the best case that satisfied the minimum w-
displacement constraint.

5.2 Optimum Design

In this paper, the optimum design criterion employed, is one that nearly satisfies the
minimum deflection design criteria. Hence, using the definition of design criterion
above, the results in the previous sections were tabulated as shown below and the
optimum design was determined from the table.

Table 2: Optimum design

P V1 Tension In-plane Bending Out-of-plane Bending
(u f gm/ucomp) (v f gm/vcomp) (wf gm/wcomp)

0.5 0.5 1.03 0.94 1.95
0.5 0.55 1.03 0.91 1.33
0.5 0.6 1.03 0.88 1.73
1 0.5 1.03 0.93 0.98
1 0.55 1.08 0.89 1.85
1 0.6 1.17 0.84 1.72
2 0.5 1.08 0.89 1.81
2 0.55 1.25 0.84 0.59
2 0.6 1.66 0.93 0.89

The optimum fibre distribution result for each load cases have been highlighted in
the above table. Since the fibre distribution case with P=2 and V1=0.55 has the
most common optimum fibre distribution results, then this fibre distribution case
can be said to give the overall optimum design for most load cases. Although this
optimum fibre distribution case had adverse results of 125% u-deflection in tension
and 92% buckling load relative to the traditional composite case, prioritisation of
the constraints need to be undertaken in determining whether these adverse results
are good enough trade-offs.
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6 Conclusion

In this paper, two new Mindlin-type elements have been formulated and used in per-
forming a finite strain analysis and progressive damage analysis of a functionally
graded composite structure. It was shown in the validation exercise that the Smooth
Mindlin-type element gave a more accurate result for the out-of-plane bending case
because the Average Mindlin-type element requires finer mesh for its result to con-
verge to the result of Smooth Mindlin-type element. After the validation exercise,
the Smooth Mindlin-type element was then employed for the design optimisation
of the functionally graded composite structure. A methodical approach was used
in demonstrating the design optimisation process and an optimum fibre distribution
was obtained for the load cases considered. Also this paper achieved its objec-
tive by presenting a detailed explanation of the functional graded technology from
theoretical concept through to optimum design application. Future work recom-
mendation would be to extend this work to cover non-linear dynamics and thermo-
elasticity.
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