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Wave Modes of An Elastic Tube Conveying Blood
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Abstract: The conventional theories for circulation of arteries are emphasized
on fluid behavior or some simplified models for experimental utility. In this study,
a new mathematical theory is proposed to describe the wave propagation through
the elastic tube filled with viscous and incompressible fluid. The radial, longitu-
dinal and flexural vibrations of a tube wall are introduced simultaneously. Mean-
while, the linearlized momentum and continuity equations of tube flow field are
expressed in the integral form. Based on these considerations, three wave modes
are obtained simultaneously. These wave modes are the flexural, Young and Lamb
modes, respectively. The characteristics of these modes are clearly demonstrated.
In the literature, according to different assumptions, the Young and Lamb modes
were independently derived. It is usually thought that all the energies of the Young
mode and the Lamb mode were transmitted through the liquid and the tube, respec-
tively. Because these conventional models are over simplified, the corresponding
investigations are incomplete and inaccurate. In this study, it is found that almost
all the energies of the flexural and Lamb modes are transmitted through the tube.
However, only about sixty percent of the energy of the Young mode is transmit-
ted through the liquid. Finally, the effects of several important parameters on the
dispersion curves and the energy transmissions of these modes are investigated.

Key words: artery, dispersion curve, energy propagation, and wave mode.

1 Introduction

No matter animals or human beings, the blood circulation plays an important role
in maintaining body working well. Many scientists investigated the heart vascular
system, and proposed several theories and models to explain the performances of
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the blood circulation system.

Since Harvey (1628) introduced the concept of the blood circulation, scientists have
developed several vital theories. Hales (1733) introduced the Winkessel model.
The Winkessel model regards the whole arteries system as an elastic cavity. If the
heart contracts, the cavity expands. In contrast, if the heart expends, the cavity re-
covers to original volume. But the Winkessel model is only suitable for predicting
quantity of each contraction, and fails to evaluate flow velocity. Assuming a steady
and laminar flow and a rigid tube, the Poiseuille’s equation explains the physical
characteristics of the blood capillary (1989). Fishman and Richards (1964) applied
the Poiseuille’s equation in their experiment. However, the Poiseuille’s equation
neglects that the pressure wave propagation in fluid creates an oscillation motion
of the wall in a radial direction. Moens and Korteweg (1878) developed a simple
equation called as the Moens-Korteweg equation to predict the pressure wave ve-
locity in long straight thin tube filled with an inviscid fluid. Because the effects
of viscosity of fluid, inertial and shear and bending deformations of a tube are ne-
glected, the Moens-Korteweg equation can derive the wave velocity only. Bergal
(1961) modified the Moens-Korteweg equation for a thick-walled tube. Womersley
(1955) considered a thin walled tube and the linearized Navier-Stokes equations
that the nonlinear convective acceleration terms were neglected. Meanwhile, the
radial vibration of tube wall was neglected. According to these assumptions, only
the Young and Lamb modes were found. Moreover, the Young and Lamb modes
represent the pressure wave modes propagating in the fluid and in the wall, respec-
tively. Note that neglecting the radial vibration of tube does not match the real wave
performance of artery. Tsangaris and Drikakis (1989) used the shell theory and the
Navier-Stokes equation to simulate the pressure wave traveling in anisotropic elas-
tic tube. The model neglected the effects of the radial vibration and the moving
boundary between the tube and the fluid. Demiray (1997) considered the dynamic
relation between the inner pressure and the radial oscillation of a tube. But the ef-
fect of flexural deformation of a tube and the viscosity of fluid were neglected. Then
only the Young mode which represent pressure wave propagating in the fluid could
be derived. Wang et al. (1997, 2000) considered an artery system as a transmission
system of the blood pressure wave. When the wave frequency of the artery was
consistent to the natural frequency of a tissue, the transmission efficiency was the
best. This model is called as the resonant model. However, this model was derived
too roughly to investigate the effects of the pre-pressure, the flow velocity and the
flexural and axial vibrations. Sarkar and Sonti (2007) studied the wavenumber of
a fluid-filled cylindrical shell vibrating in the axisymmetric mode. But the coupled
flow motion of fluid was not considered. Because the fluid-structure interaction
(FSI) play an important role in cardiovascular disease initiation and development,
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Yang et al. (2007) investigated the non-wave FSI of arteries by using the commer-
cial ADINA software. The maximum shear stress and the pressure distribution in
the arteries were presented.

In this paper, a new mathematical model is proposed to describe the wave prop-
agation through the isotropic elastic tube filled with viscous and incompressible
fluid. The radial, longitudinal and flexural vibrations of a tube wall will be inves-
tigated simultaneously. The effects of several parameters on the dispersion curves
and the energy transmissions of the three modes are investigated. Moreover, the
characteristics of the three modes will be clearly discussed.

2 Governing equation of motion

2.1 Motion of an elastic tube

Consider an artery as uniform isotropic elastic tube. The tube is filled with the
blood. The blood flow field in the tube is assumed as steady and laminar. Us-
ing the Donnell’s shell theory simulates the motion of the blood tube. Donnell’s
assumptions (1974) are as follows:

a. The in-plane deflection due to bending is neglected.

b. The rotatory inertia is neglected.

c. The shear effect in the r-plane is neglected.

d. The effect of tube bending is considered.

e. The plane cross section of a tube wall remains plane during deformation.

It is different to a conventional thin-walled tube simulated by using the membrane
theory (1968). In the Donnell’s model, the strain-displacement relation for a tube
can be expressed as

εθ =
1
R

∂uθ

∂θ
+

ur

R
(1)

εz =
∂uz

∂ z
(2)

γθz =
∂uθ

∂ z
+

1
R

∂uz

∂θ
(3)

κz = −∂ 2ur

∂ z2 (4)
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κθ = − 1
R2

∂ 2ur

∂θ 2
(5)

κzθ = −2
1
R

∂ 2ur

∂θ∂ z
(6)

where ur, uθ , and uz are displacements in r-direction, in θ -direction and in z-
direction respectively. εr, εθ and εz are normal strain in r-direction, in θ -direction
and in z-direction respectively. γθz is shearing strain on θ − z plane, κz is bend-
ing curvature perpendicular to z-plane along θ -direction, κθ is bending curvature
perpendicular to θ -plane along z-direction, κzθ is torsional curvature perpendicular
to θ -plane along z-direction or perpendicular to z-direction along θ -plane, R is the
radius of elastic cylinder.

Moreover, the relations among the forces, the moments, the strain and the curva-
tures are (1974)

Nz =
Eh

1−ν2 (εz +νεθ ) (7)

Nθ =
Eh

1−ν2 (εθ +νεz) (8)

Nθz = Ghγθz (9)

Mz =
Eh3

12(1−ν2)
(κz +νκθ ) (10)

Mθ =
Eh3

12(1−ν2)
(κθ +νκz) (11)

Mθz =
(

1−ν
2

)
Eh3

12(1−ν2)
κθz (12)

where Nθ and Nz are normal force on θ -plane and z-plane per unit length respec-
tively. Nθz is shearing force perpendicular to θ -plane along z-direction or perpen-
dicular to z-plane along θ -direction per unit length, Mθ and Mz are bending moment
perpendicular to θ -plane along z-direction and one perpendicular to z-plane along
θ -direction per unit length respectively. E is the Young’s modulus, G is the shear
modulus, ν is the Poisson’s ratio, h is the thickness of the cylinder wall. The equi-
librium equations of motion are (1974)

∂Nz

∂ z
+

1
R

∂Nθz

∂θ
+qz = ρsh

∂ 2uz

∂ t2 (13)

∂Nzθ

∂ z
+

1
R

∂Nθ

∂θ
= 0 (14)
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∂ 2Mz

∂ z2
+2

1
R

∂ 2Mθz

∂θ∂ z
+

1
R2

∂ 2Mθ

∂θ 2
− Nθ

R
+qr = ρsh

∂ 2ur

∂ t2
(15)

where t is the time variable, ρs is the density of the tube wall, qz is the external
force in z-direction, qr is the external force in r-direction. Considering the axial
symmetry, the displacement uθ = 0 and the parameters are independent of the θ -
axis. Thus the equation of motion (14) is negligible. Substituting Eqs. (1-12) into
Eqs. (13) and (15), one can derive the equation of motion of an elastic tube (1968)

∂ 2uz

∂ z2 +
ν
R

∂ur

∂ z
=

1−ν2

E
ρs

∂ 2uz

∂ t2 − 1−ν2

Eh
τr (z, t) (16)

ν
R

∂uz

∂ z
+

h2

12
∂ 4ur

∂ z4 +
ur

R2 = −1−ν2

E
ρs

∂ 2ur

∂ t2 +
1−ν2

Eh
p(z, t) (17)

where τr and p are the shear stress and the liquid pressure at the wall, respectively.
They are derived in the next section.

2.2 Coupled motion of fluid and tube

In general, the blood flow velocity in a tube is small. The corresponding Reynold’s
number is low. Thus the flow filed is laminar. Moreover, when a wave propagates
through a tube, the flow field in the tube is assumed to be well developed. The
velocity distribution is expressed as

η = ηmax(z, t)
[

1−
( r

R

)2
]
, (18)

where ηmax is the maximum flow velocity at the center of tube. The average shear
stress at the wall along a tube length of dz is

τr = μ
∂
∂ r

(
η +

1
2

∂η
∂ z

dz

)
wall

(19)

Substituting Eq. (18) into Eq. (19) and Eq. (16), one obtains

∂ 2uz

∂ z2 +
ν
R

∂ur

∂ z
=

1−ν2

E
ρs

∂ 2uz

∂ t2 − 2μ
(
1−ν2

)
REh

ηmax (20)

It is well known that the conservation of linear momentum for liquid is

Fb +Fs =
∂
∂ t

∫
c.v.

�vρ f dV +
∫

c.s.
�vρ f�v · n̂dA (21)
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where the body force Fb is negligible here. As shown in Figure 1, the surface force
is

Fs = −
(

p+
∂ p
∂ z

dz

)
·π

(
R+ur +

∂ur

∂ z
dz

)2

+ pπ (R+ur)
2 −τw ·2πr ·dz (22)

Where�v is the flow velocity, ρ f is the density of fluid, V is the volume of the fluid
element, A is the surface area. n̂ Is the normal direction of surface. Substituting
the pressure and the shear stress at the wall into Eq. (21) and considering a small
amplitude, i.e., ur � R, the momentum equation can be written as

(−R2 −2Rur
) ∂ p

∂ z
−2Rp

∂ur

∂ z
−4μηmax =

1
2

Rρ f
∂
∂ t

[
ηmaxR2 +2Rηmaxur

]
+

1
3

ρ f

(
2Rη2

max
∂ur

∂ z
+

(
2ηmaxR2 +4ηmaxRur

) ∂ηmax

∂ z

)
(23)
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dz

z z+dz

C.V 

Figure 1: Control volume of blood flow in a circular cylinder.

Meanwhile, if the amplitude of wave is small, the mass conservative equation can
be expressed as

πρ
(

2Rηmax
∂ur

∂ z
+

(
R2 +2Rur

) ∂ηmax

∂ z

)
+4πRρ f

∂ur

∂ t
= 0. (24)

In this study, a new mathematical model simulating the wave propagation through
an elastic thin-walled tube conveying a liquid has been constructed completely. The
new wave propagation model is composed of the coupled characteristic equations
(17, 20, 23, 24).
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3 Solution method

Consider that there exists a pre-stressed pressure and a flow rate in the tube. The
pressure and the velocity are composed of the factors of the steady state and the
wave perturbation as follows:

p(z, t) = p0,z (z)+ p1 (z, t) , ηmax (z, t) = ηmax0 (z)+ηmax1 (z, t) , (25)

where p0,z is the pre-stressed steady pressure at the position of z, p1 the disturbed
wave pressure, ηmax0 the average maximum flow velocity corresponding the given
flow rate, and ηmax1 the disturbed wave flow velocity.

In general, a steady pressure loss Δp through a tube is determined by using the
Darcy-Weisbach Equation as follows:

Δp = f
L
D

ρ f η2
a

2
(26)

where ηa is the average flow velocity which is determined via Eq. (18) and ηa =
ηmax0/2. L is the tube length, D is the diameter of the tube, and f is the friction
factor. In this study, because the flow is laminar, the friction factor f = 64/Re. Sub-
stituting it back into Eq. (26), the relation between the velocity and the difference
between the pressures at the position of 0 and z is

p0,0 − p0,z =
64μηmax0 z

R2 . (27)

In general, because the elastic wave propagation is small, the disturbed wave pres-
sure and velocity {p1, ηmax1} are small. Substituting Eqs. (25) and (27) into the
coupled characteristic equations (17, 20, 23, 24) and considering the condition of
small wave propagation, the linearlized coupled characteristic equations are ob-
tained
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∂ z2 +
ν
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∂ z
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E
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1
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+

2
3R

ρ f η2
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∂ur

∂ z
+

2
3

ρ f ηmax0
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∂ z
(30)
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2
R

ηmax0

∂ur

∂ z
+

∂ηmax1

∂ z
+

4
R

∂ur

∂ t
= 0 (31)

The wave solutions of the linearlized coupled characteristic equations (28-31) can
be expressed as

ηmax1 = η̄ei(kz−ωt), p1 = p̄ei(kz−ωt),

ur = Ur0 (z)+Ure
i(kz−ωt), uz = Uz0 (z)+Uze

i(kz−ωt) (32)

where η̄ is the amplitude of the disturbed flow velocity due to wave propagation,
p̄ the amplitude of the disturbed pressure, Ur0 the static deflection in r-direction
due to pre-stressed, Uz0 the static deflection in z-direction, Ur the amplitude of the
vibration in r-direction due to wave propagation, Uz the amplitude of the vibration
in z-direction, kthe wave number, and ω the angular frequency.

Substituting the solution (32) into the linear characteristic equations (28-31), the
general system is divided into dynamic and static subsystems as following:

(a) Dynamic subsystem is composed of four following equations:

p̄ =
[
−ρsω2 +

Eh
(1−ν2)

(
1

R2 +
h2

12
k4

)]
Ur + i

kvEh
R(1−ν2)

Uz (33)

η̄ =
2
R

(
2ω
k

−ηmax0

)
Ur (34)

(ik)2Uz + ik
ν
R

Ur = (−iω)2 1−ν2

E
ρsUz −

2μ
(
1−ν2

)
REh

η̄ (35)

− ikp̄− 128μηmax0

R3 Ur − i
2kp0,0

R
Ur − 4

R2 μη̄ = −iω
1
2

ρ f η̄ − iω
1
R

ρ f ηmax0Ur

+ ik
2

3R
ρ f η2

max0
Ur + ik

2
3

ρ f ηmax0η̄ (36)

(b) Static subsystem is composed of three following equations:

U ′′
z0 +

ν
R

U ′
z0 = 0 (37)

ν
R

U ′
z0 +

h2

12
U (4)

r0 +
1

R2Ur0 =
1−ν2

Eh
p0,0 (38)

−64μηmax0

R2 − 128μηmax0

R3 Ur0− 2
R

p0,0U
′
r0 = 0 (39)
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Note that Eqs. (37-39) are the relations among the static displacements {Ur,0, Uz,0},
the pre-pressure p0,0 and flow velocity ηmax0 . On the other hand, Eqs. (33-36) are
the characteristic equations due to wave propagation. Substituting Eqs. (33-34)
into Eqs. (35-36), one can obtain the following equation in terms of the variables
Uz and Ur[

α11 α12

α21 α22

][
Uz

Ur

]
=

[
0
0

]
(40)

where

α11 =ω2k
1−ν2

E
ρs −k3

α12 =ik2 ν
R

+ω
8μ

(
1−ν2

)
R2Eh

−k
4μηmax0

(
1−ν2

)
R2Eh

α21 =− v
R

k3

α22 =−
(
−16μ

R2 + i2ωρ f

) ω
(
1−ν2

)
REh

+

(
1−ν2

)
Eh

[
i
8ωρ f ηmax0

3R
+

120μηmax0

R3

]
k

+ i

(
1−ν2

)
Eh

[
−ρsω2 +

Eh
R2 (1−ν2)

− 2ρ f η2
max0

3R
+

2p0,0

R

]
k2 + i

h2

12
k6

(41)

If Uz and Ur are zero, it is trivial. Thus the determinant
∣∣αi j

∣∣ must be zero. It is the
characteristic equation and expressed as follows:

k8ar8 +k6ar6 +k4ar4 +k3 (ar3 + iai3)+k2 (ar2 + iai2) +k (ar1 + iai1)+(ar0 + iai0)
= 0 (42)

where

ar8 = −h2

12

ar6 =
ω2ρsh2

(
1−ν2

)
12E

ar4 =

(
1−ν2

)
Eh

[
ρsω2 +

2ρ f η2
max0

3R
− 2p0,0

R

]
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R2

ar3 =
−8ωρ f ηmax0

(
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)
3REh
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(
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(30+ν)
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ar2 =
2ω2ρ f
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1−ν2

)
REh
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ω2ρs
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E2h

[(
−ρsω2 +

Eh
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)
− 2ρ f η2
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3R
+

2p0,0
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]
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8ωμ

(
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)
R3Eh
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8ω3ρ f ηmax0ρs
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3RE2h

ai1 = −120ω2μηmax0 ρs
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−2ω4ρsρ f
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)2

RE2h
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−16ω3ρsμ

(
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)2

R3E2h

(43)

The wave number k of a wave mode can be determined via Eq. (42). Substituting
it back into Eq. (40), one can derive the mode shape {Ur, Uz} of the tube. Fur-
ther, substituting the mode shape into Eqs. (1-3) and (33-34), the corresponding
strains, the pressure and the flow velocity of the wave mode are derived. Finally,
the corresponding stresses of the tube can be determined by using the Hook’s law.

4 Energy propagation

It is well known that the wave energy is stored in both the tube and the liquid.
Milnor (1989) found by experiment that for an in situ artery, over 90% of the energy
is stored in the arterial wall and less than 10% is stored in the blood flow. However,
the mechanism about the wave energy propagation has not been completely and
clearly investigated yet. In this study, the energy transmission via different mode is
investigated.

The energy propagation stored in the liquid is a product of the pressure p and the
flow velocity η and expressed as following:

El =
∫

A
〈p(t),η(t)〉dA, (44)

where the average energy rate is 〈p(t),η(t)〉 =
∫ T

0 Re(p)Re(η)dt/T . The energy
in the tube is composed of the normal strain energy and the shear strain energy and
is written as

Et =
∫

A

〈
σx,

∂ux

∂ t

〉
dA+

∫
A

〈
τrx,

∂ur

∂ t

〉
dA, (45)
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where the average normal strain energy is 〈σx,∂ux/∂ t〉=
∫ T

0 Re(σx)Re [∂ux/∂ t]dt/T
and the average shear strain energy is 〈τrx,∂ur/∂ t〉 =

∫ T
0 Re(τrx)Re [∂ur/∂ t]dt/T .

Substituting the pressure and the flow velocity of a wave mode into Eq. (44) and
the stresses and the displacements of a wave mode into Eq. (45), the corresponding
energy propagations stored in the blood liquid and the tube can be obtained.

5 Numerical results

Given a wave frequency ω , one can easily find four sets of conjugated complex
wave numbers of Eq. (42), kn (ω) = kr,n (ω)± iki,n (ω), n = 1,2,3,4. Each set of
conjugated roots represent both a forward wave and a backward wave, respectively.
If ki,n is positive, the wave amplitude decays with a forward wave. But if ki,n is neg-
ative, the wave amplitude increases with a forward wave. This solution is trivial.
Based on these facts, one can obtain the dispersion curves of several wave modes.
In this study, the wave propagation through both the blood and the artery are con-
sidered [Cox. 1990]. One finds that three sets of conjugated roots are reasonable,
but one is trivial. Each reasonable solution represents one wave mode. In other
words, three kinds of wave modes shown in Figure 2 can be found simultaneously
by using this proposed theory.

Figure 2a shows the displacements of the points {p, Q} at the inner and outer walls
of tube for the first mode. It is found from the numerical result that the longitudi-
nal displacement Uz at the middle of tube thickness is very small. In addition, the
phenomenon can be also observed from Figure 2a by averaging the longitudinal
displacements Uz of the points {p, Q}. It is concluded that the first mode is domi-
nated by a flexural motion of a tube wall. In order to investigate the detail of energy
propagation through blood and tube, the ratio of the amplitude of fluid velocity to
that of the dominated radial displacement of tube, η̄/Ur, is determined and found
to be small to about 1.8 (1/sec) for the first mode. Because the bending deflection
of tube is large and the fluid velocity is small, the majority of the wave energy must
be propagated through the tube in the bending motion. Figure 2b shows the second
and third mode shapes. The second mode is usually called as the Young mode. The
second mode is a longitudinal motion of a tube accompanying small radial motion
of a tube and relatively very large amplitude of fluid velocity. The ratio of the am-
plitude of fluid velocity to that of the dominated longitudinal displacement of tube,
η̄/Uz, is about 50 (1/sec). Therefore, the majority of the wave energy must be prop-
agated through fluid in the pressure wave motion. The third mode is usually called
as the Lamb mode. The third mode is a large longitudinal motion of a tube accom-
panying a negligible radial motion of a tube and small amplitude of fluid velocity.
The ratio of the amplitude of fluid velocity to that of the longitudinal displacement
of tube, η̄/Uz, is about 0.1 (1/sec). Therefore, the majority of the wave energy must
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Figure 2: Three kinds of mode shapes. [Poisson Ratioν=0.5, Young’s Modulus
E=3 MPa, outer radius of tube Ro=0.23 cm, thickness of tube wall h = 0.03 cm,
density of tube ρt = 1100 Kg/m3, density of fluid ρ f = 1056 Kg/m3, viscosity μ =
3.5×10−3 N·Es/m2, pre-pressure p0=10 kPa]. a): mode 1; b): modes 2 and 3.
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be propagated through the tube in the longitudinal motion.

Based on the relations (44) and (45), one can determine the quantities of energy
transmission through the tube and the liquid. As shown in Figure 3, all the energies
of the first and third modes are transmitted almost through the tube. However, only
about forty percent of the energy of the second mode is transmitted through the
tube. The detailed are expressed as follows:

It has been found that the first mode is a wall flexural motion accompanying with
small fluid velocity. Because both the bending rigidity and the flexural deformation
of a tube wall are large, almost all the wave energy is transmitted through the tube.
Similarly, the third mode is with a large longitudinal motion of a tube accompany-
ing with a negligible radial motion and small flow velocity. Therefore, almost all
the wave energy is also transmitted through the tube. However, the second mode is
a large longitudinal motion of a tube accompanying with small radial motion and
very large flow velocity. It is well known that the flexural and longitudinal motions
of tube are neglected in the conventional Moens-Korteweg model for determining
the Young mode. According to this simplification, it is usually concluded that the
Young mode represents pressure wave propagation in the fluid and all the energy is
transmitted through the liquid. It is not reasonable. In this study, Figure 3 shows
that about forty per cent of the wave energy is transmitted through the tube.

Figure 4 shows the relations between the wave speed and the wave frequency for
the three modes. It is observed that the wave speed of the first mode is less than
those of the second and third modes. Increasing the wave frequency from zero
greatly increases the wave speed of the three modes. When the wave frequency
is larger than 10 (rad/s), the wave speeds of the second and third modes are al-
most constant, but that of the first mode always increases with the wave frequency.
Conventionally, the general system is usually simplified into a limiting case to de-
termine independently the second mode or the third. By using these conventional
and over-simplified theories, the corresponding wave speeds are independent to the
wave frequency.

It is well known that the wave speed of the Young mode in the Moens-Korteweg
model is c0 =

√
Eh/ [2(R−h/2)ρ f ]. Obviously, the corresponding wave speed

is independent to the wave frequency. This model is not applicable for determin-
ing the energy propagation. Moreover, increasing the ratio h/R greatly increases
the wave speed. Considering the ratio h/R from 0.04 to 0.14, it is observed that
the numerical results in the Moens-Korteweg model are slightly larger than those
determined by using the present method especially for the larger ratio h/R. It is be-
cause the effects of kinetic viscosity and flexural deformation are neglected in the
Moens-Korteweg model.
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Figure 3: Relation between the energy propagation through the tube and the wave
frequency.

Figure 4: Relations between the frequency ω and three kinds of wave velocities c.
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In other way, the wave speed of the Lamb mode in the Klip model (1968) is c0 =√
E/ [ρ f (1−ν2)]. Obviously, the corresponding wave speed is also independent

to the wave frequency. This model is not applicable for determining the energy
propagation. Considering the ratio h/R from 0.04 to 0.14, it is observed that the
numerical results in the Klip model are slightly less than those determined by using
the present method by 1.5%. Moreover, the wave speed is independent of the ratio
‘h/R’. It is because the Lamb mode is the longitudinal wave propagation through
the wall only and the flexural motion of a tube wall is not considered.

In addition to the Moens-Korteweg theory, several methods are used to investigate
the dispersion curves of the Young mode shown in Figure 5. It is found that the
wave speed determined by Wang et al. (1997) is overestimated and that by Cox
(1970) is underestimated. Further, Figure 6 shows the relation between the trans-
mission per wavelength and the wave frequency of the Young mode. It is observed
that the transmission per wavelength increases with the wave frequency. If the
wave frequency is large enough, the transmission per wavelength approaches con-
stant. Moreover, it is found that the transmission determined by Wang et al. (1997)
is over estimated.

Finally, the effects of the poison ratio of a tube ν , the viscosity of a liquid μ , and
the pre-stressed pressure P0 on the wave speeds and the energy dissipation of the
three modes are investigated as follows: Unless the parameters are stated specially,
all parameters are the same as those in Figure 2.

As to the first mode, it is found that the effects of the liquid viscosity μ , and the
pre-stressed pressure P0 on the wave speeds of the first mode are negligible. If the
wave frequency is small, the wave speed of the first mode is independent of the
Poisson ratio ν . But if the wave frequency is large, the wave speed will increase
slightly with the Poisson ratio ν . Moreover, it is found that the energy transmission
of the first mode is independent of these parameters.

As to the second mode, it is observed from Figure 7 that if the wave frequency
is small, the effect of the liquid viscosity μ on the wave speed is obvious. On the
other hand, when the wave frequency is large, the effect of the pre-stressed pressure
P0 is obvious. But the effect of the Poisson ratio ν on the wave speed is negligible.
It is not presented here. Note that in the Moens-Korteweg theory the effects of the
Poisson ratioν , the viscosity of a liquid μ , the pre-stressed pressure P0, and the
wave frequency on the wave speeds, are neglected. Therefore, by using the Moens-
Korteweg theory one can derive only the relation between the ratio ‘h/R’ and the
wave speed.

Moreover, it is found that the energy transmission of the second mode is indepen-
dent of the pre-stressed pressure P0. However, as shown in Figure 8, the energy
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Figure 5: Comparison of wave speeds of the second mode in different models.

Figure 6: Comparison of dispersion curves of the second mode in different models.
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Figure 7: Influence of the pre-pressure p0 and the kinetic viscosity μ of liquid on
the wave speed of the second mode.

Figure 8: Influence of the Poisson ratio ν and the kinetic viscosity μ on the energy
dispersion of the second mode.
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transmission of the second mode increases greatly with the wave frequency. The
effect of the Poisson ratio on the energy transmission is small. But the effect of the
liquid viscosity μ is great. It is because more than a half of the wave energy of the
second mode is transmitted through the liquid.

As to the third mode, Figure 9 shows that the effect of the Poisson ratio ν on the
wave speed is great. The fact has been presented in the Klip model. When the
wave frequency is small, the effect of the liquid viscosity μ on the wave speed is
significant. However, the effect of the pre-stressed pressure P0 is negligible. It is
not presented here. Note that in the Klip theory the effects of the viscosity of a
liquid μ , the pre-stressed pressure P0, and the wave frequency on the wave speed
are neglected. Therefore, by using the Klip theory one can derive only the relation
between the Poisson ratio and the wave speed.

Finally, as shown in Figure 10, when the wave frequency is increased from zero, the
energy transmission of the third mode is abruptly decreased. If the wave frequency
is over a critical value, the energy transmission increases with the wave frequency.
If the wave frequency is large enough, the energy transmission will be constant.
This phenomenon of the third mode is greatly different to that of the first and second
modes. Moreover, the effects of the Poisson ratio and the liquid viscosity on the
energy transmission of the third mode are great.

6 Conclusion

In this paper, it presents a new theory simulating the wave propagation of a elastic
tube conveying blood. The analytical solution of the system is derived. By using
this new theory, the flexural, Young and Lamb modes can be obtained simultane-
ously. The effects of several important parameters on the wave propagation are
investigated. It is found that

(1) Almost all the energies of the flexural and Lamb modes are transmitted through
the tube. However, only about sixty percent of the energy of the Young mode
is transmitted through the liquid.

(2) The energy transmission of the flexural mode is independent of the Poisson
ratio ν , the liquid viscosity μ , and the pre-stressed pressure P0, and the wave
frequency ω .

(3) The energy transmission of the Young mode increases greatly with the wave
frequency. The effect of the Poisson ratio on the energy transmission of the
second mode is small.

(4) When the wave frequency is increased from zero, the energy transmission of
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Figure 9: Influence of the kinetic viscosity μ and the Poisson ratio ν on the wave
speed of the third mode.

Figure 10: Influence of the Poisson ratio ν and the kinetic viscosity μ on the energy
dispersion of the third mode.
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the Lamb mode is abruptly decreased. If the wave frequency is over a crit-
ical value, increasing the wave frequency increases the energy transmission.
Moreover, the effects of the Poisson ratio and the liquid viscosity on the energy
transmission of the Lamb mode are great.
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