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Modeling of Structural Sandwich Plates with
‘Through-the-Thickness’ Inserts: Five-Layer Theory

Song-Jeng Huang1,2 and Lin-Wei Chiu2

Abstract: The composite sandwich plate is one of the most common composite
structures. Local stress concentrations can be caused by localized bending effects
where a load is introduced. Although a sandwich structure with an insert is one of
the classical load bearing structures, little work has been conducted on the adhe-
sive layers or inserts. This study involves a linear elasticity analysis of five-layer
sandwich plates with “through-the-thickness” inserts, using sandwich plate theory
to analyze deformation behavior. Governing equations are formulated as partial
differential equations, which are solved numerically using the multi-segment in-
tegration method. Sandwich plates with “through-the-thickness” inserts subjected
to axisymmetric external loading are considered as examples. Stress concentra-
tions closest to the intersection between the potting material, core and adhesive
layer are likely to fail, as observed. A comparison with degraded three-layer theory
and Thomsen’s theory [Thomsen and Rits (1998)] confirmed the accuracy of the
proposed five-layer theory. The finite element method results in this study were
obtained using the ABAQUS software and compared with analytical results. The
validity of the analytical solution (five-layer theory) was also demonstrated.

Keyword: sandwich, through-the-thickness insert, adhesive joints, elastic prop-
erties, multi-segment integration method.

Nomenclature

A radius of the whole sandwich structure
bi distance from the center of insert to the potting material
bp distance from the center of insert to the core
c thickness of the core
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Ei elastic modulus of the i-th layer (i = 1−5)
fi thickness of the i-th face (i = 1,2)
G total potential energy
Gi shear modulus of the i-th layer (i = 1−5)
ki coefficient of the displacement function (i = 1−32)
Mi coefficient of the governing equations (i = 1−78)
t thickness of the adhesive layer
ui displacement of the i-th layer in the r-direction (i = 1−5)
vi displacement of the i-th layer in the θ -direction (i = 1−5)
V work done by external loads
wi deflection of the i-th layer in the z-direction (i = 1−5)
υi Poisson’s ratio of the i-th layer (i = 1−5)
Γ strain energy
σz normal stress in the z-direction
σr normal stress in the r-direction
τrz shear stress

1 Introduction

Sandwich plates have been extensively used in aerospace, shipbuilding, construc-
tion and other industries. Fasteners or inserts of the “partially potted,” “through-
the-thickness” or “fully potted” type [Thomas (1998)], commonly introduce loads
into structural elements. This work considers the “through-the-thickness” type,
which is frequently adopted in aerospace sandwich plates to transfer severe exter-
nal loads.

Thomsen (1998) introduced a high-order sandwich plate theory to derive govern-
ing equations for sandwiches with both ‘through-the-thickness’ inserts and ‘fully
potted’ inserts. Governing equations were formulated as a set of coupled first-order
differential equations, which are solved numerically using multi-segment integra-
tion. Thomsen and Rits (1998) developed high-order sandwich plate theory to de-
rive governing equations for sandwiches with ‘through the thickness’ inserts. They
investigated the local effect of a structural sandwich plate insert. Sandwich plates
with “through-the-thickness” inserts under axisymmetric and non-axisymmetric
external loadings are considered as examples.

Huang and Lin (2004) studied the application of an electronic speckle pattern inter-
ferometer (ESPI) to single-inserted sandwich plates. The proposed ESPI measures
microscopic out-of-plane elastic region displacement without specimen waste in
advantageous full-field, non-destructive tests. Results of a finite element method
(FEM) analysis were compared with ESPI results around the inserts for valida-
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tion. Thomsen (1995) presented theoretical and experimental results concerning
local bending effects in a clamped circular foam-cored sandwich plate subjected
to a central point load. The theoretical study utilized a local bending analysis ap-
proximation method, while the experimental study employed holographic inter-
ferometry. Bozhevolnaya and Lyckegaard (2005) designed a new core insert that
significantly reduces the impairment caused by the local face effect. The new core
insert design and its design parameters were studied experimentally with the help
of finite element modeling.

Frostig and Peled (1995) presented high-order bending of a piecewise uniform
sandwich beam with a tapered transition zone and a transversely flexible core.
The tapered region inclined skin longitudinal and shear forces yielded concentrated
forces at the point where the skin longitudinal layout changes, causing extensive
peeling and shear stress concentrations at the interface between the skin and the
core, as well as a high local bending moment in the skin. Kim, Kim and Lee (2004)
combined the Koiter’s asymptotic method with the assumed strain solid shell ele-
ment formulation to conduct the postbuckling analysis of composite and sandwich
structures. Sharnappa, Ganesan and Sethuraman (2007) presented the study on
buckling and free vibration behavior of sandwich general shells of revolution under
thermal environment using Wilkins theory. The analysis is carried out for different
geometry such as truncated conical and hemispherical shells with various facing
and core materials under clamped-clamped boundary condition. Huang (2002) de-
veloped an analytical sandwich beam model, accounting for the contribution of the
adhesive layer to overall beam stiffness. Five constituent layer sandwich beam dis-
placements are computed in this model, considering overall sandwich beam conti-
nuity conditions. Analysis results were compared with experimental results. Huang
and Wang (2003) added the two-dimensional sandwich beam without an insert to
two viscoelastic adhesive layers on both sides of the core and facing sheets. Dis-
placement, stress and strain analytical formulations on structure interfaces were
previously derived based on the proposed geometric assumption. A referred nu-
merical case was based on analytical and finite element solutions). Huang and
Liu (2003) added three-dimensional sandwich plates without an insert to two vis-
coelasticity adhesive layers. They determined that the sandwich plate exhibited
creep over time. The mechanical behavior of the adhesive layer must be considered
in the structural analysis of a sandwich structure. Most researchers did not con-
sider an adhesive layer in sandwich plates with inserts, as the references show. The
presents study addresses structural analysis of five circular sandwich plate layers
with inserts, with adhesive layers added onto both core sides and facing sheets.
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2 Hypothesis of Proposed Analytical Model

Insert-sandwich plate system modeling assumes that the interactions between both
adjacent insert and an insert, and the plate boundaries or other sources of local dis-
turbances, are negligible. Figures 1 and 2 define constituent parts and the geometry
of a circular sandwich-insert plate with adhesive layers. The analytical model is
based on the simplest adhesively bonded sandwich, comprising two thin and stiff
facing sheets as well as two thin adhesive sheets, separated by a thicker layer of
low-density material (core) with lower stiffness and strength.

r

z

r

insertpotting compound 

Figure 1: Sandwich plate with insert and adhesive layers; 1: lower face, 2: upper
face, 3: core and potting compound, 4: lower adhesive, 5: upper adhesive

The formulation is based on the following restrictive assumptions.

a. The face sheets are treated as homogeneous, isotropic and linear elastic bodies.
The thickness of the facing sheet and the adhesive layer is much smaller than that
of the core. Facing sheets operate according to the Kirchhoff-Love hypothesis:
εz = γrz = γθz = 0;

b. The core, such as a honeycomb, is treated as an orthotropic body, resisting lon-
gitudinal and transversal forces;

c. Adhesive layers behave as isotropic elastic materials, but resist longitudinal and
transversal forces, with constant thickness throughout the structure;

d. The insert is treated as a rigid body to which the face sheets and potting material
are rigidly connected;
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Figure 2: Geometrical definition of sandwich plate structure

e. The potting materials are treated as isotropic elastic materials, which resist both
longitudinal and transverse forces.

3 Method of Formulation of Governing Equations

The energy method is utilized to derive equilibrium governing equations [Chiu
(2004)] to reduce the complexity of the formulation of the equations for all five
layers (two facing sheet layers, one core layer and two adhesive layers).

3.1 Displacements (refer to Figs. 1 and 2)

The displacement distributions of the core and the two adhesive layers are assumed
to be functions of r, θ and z. Core and adhesive layer displacements are given by

ui = Ai(r,θ )+Bi(r,θ ) · z
vi = Ci(r,θ )+Di(r,θ ) · z
wi = Ei(r,θ )+Fi(r,θ ) · z i = 3,4,5

(1)

where the subscript i = 3 designates core; 4 and 5 designate lower and upper adhe-
sive layers, respectively; Ai(r,θ ), Bi(r,θ ), Ci(r,θ ), Di(r,θ ), Ei(r,θ ) and Fi(r,θ ) can
be obtained by applying the following continuity conditions among the five layers.
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3.2 Interface continuity condition

Substituting the displacement field equations (Eq. (1)) into six continuity condi-
tions yields the values of the six preceding unknowns.

For the core, at the core and adhesive junction,

u3 = u5 v3 = v5 w3 = w5 as z =
c
2

(2a)

u3 = u4 v3 = v4 w3 = w4 as z = −c
2

(2b)

where c is the thickness of the core.

For the fourth layer (lower adhesive layer),

u4 = u0
3 +

c
2

dw3

dr
v4 = v0

3 +
c
2

(
1
r

dw3

dθ

)
w4 = w3 as z = −c

2
(3a)

u4 = u0
1 −

f1

2
dw1

dr
v4 = v0

1 −
f1

2

(
1
r

dw1

dθ

)
w4 = w1 as z = −c

2
− t (3b)

where subscript 1 denotes the lower facing sheet (first layer); superscript 0 denotes
the mid-plan of the core or the lower facing sheet; f1 is the thickness of the first
layer, and t is the thickness of the lower adhesive layers.

For the fifth layer (upper adhesive layer),

u5 = u0
3 −

c
2

dw3

dr
v5 = v0

3 −
c
2

(
1
r

dw3

dθ

)
w5 = w3 as z =

c
2

(4a)

u5 = u0
2 +

f2

2
dw2

dr
v5 = v0

2 +
f2

2

(
1
r

dw2

dθ

)
w5 = w2 as z =

c
2

+ t (4b)

where subscript 2 denotes the upper facing sheet (second layer); superscript 0 de-
notes the mid-plan of core or upper facing sheet; f2 is the thickness of the second
layer, and t is the thickness of the upper adhesive layer.

3.3 Layer displacements

After Eq. (1) is solved by applying continuity conditions, mathematical operations
can be performed to yield layer displacements:

u3 = k1u1 +k2u2 +k3
∂
∂ r

w1 +k4
∂
∂ r

w2 (5)

v3 = k5v1 +k6v2 +k7
1
r

∂
∂θ

w1 +k8
1
r

∂
∂θ

w2 (6)

w3 = k9w1 +k10w2 (7)
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u4 = k11u1 +k12u2 +k13
∂
∂ r

w1 +k14
∂
∂ r

w2 (8)

v4 = k15v1 +k16v2 +k17
1
r

∂
∂θ

w1 +k18
1
r

∂
∂θ

w2 (9)

w4 = k19w1 +k20w2 (10)

u5 = k21u1 +k22u2 +k23
∂
∂ r

w1 +k24
∂
∂ r

w2 (11)

v5 = k25v1 +k26v2 +k27
1
r

∂
∂θ

w1 +k28
1
r

∂
∂θ

w2 (12)

w5 = k29w1 +k30w2 (13)

where ki are constants that are composed of the geometric parameters (Appendix
A). Core and adhesive layer displacement fields can thus be expressed by various
face displacements, so governing equations can be expressed in face variable terms
(first and second layers), markedly simplifying computation.

3.4 Variation integral for the circular sandwich plate with insert

The strain can now be obtained using strain-displacement equations, since the five
layer displacement expressions have already been derived. Total potential energy
(G), comprising strain energy (Γ) and work done by external loads (V) can be
expressed in terms of layer strains, as given by Eq. (14):

G = Γ1 +Γ2 +Γ3 +Γ4 +Γ5 −V (14)

where the subscript i = 1, 2 designates lower and upper face strain energy; 3 desig-
nates core strain energy, and 4, 5 designates lower and upper adhesive layer strain
energy, respectively.

3.5 Governing equations for a circular sandwich plate with insert

The calculated total potential energy is substituted into the following Euler-Lagrange
equations to yield equilibrium equations in terms of the displacement of facing
sheets (ui,vi,wi, i = 1,2, where subscript i = 1 denotes the first face and 2 denotes
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the second face).

∂G
∂ I

− ∂
∂ r

· ∂G

∂
(

∂ I
∂r

) − ∂
∂θ

· ∂G

∂
(

∂ I
∂θ

) − ∂
∂ z

· ∂G

∂
(

∂ I
∂z

) +
∂ 2

∂ r2 ·
∂G

∂
(

∂2I
∂r2

)

+
∂ 2

∂θ 2 ·
∂G

∂
(

∂2I
∂θ 2

) +
∂ 2

∂ z2 ·
∂G

∂
(

∂2I
∂z2

) +2 · ∂ 2

∂ r∂ z
· ∂G

∂
(

∂2I
∂r∂z

) +2 · ∂ 2

∂θ∂ z
· ∂G

∂
(

∂2I
∂θ∂z

)

+2 · ∂ 2

∂ r∂θ
· ∂G

∂
(

∂2I
∂r∂θ

) = 0

(15)

where I denotes u1, u2, v1, v2, w1, w2, respectively.

The system of sandwich beam governing equations can finally be expressed:

M1u1 +M2u2 +M3
∂

∂θ
v1 +M4

∂
∂ r

w1 +M5
∂
∂ r

w2 +M6
∂ 2

∂ r2 u1

+M7
∂ 2

∂θ 2 u1 +M8
∂ 2

∂θ∂ r
v1 +M9

∂ 2

∂θ 2 w1 +M10
∂ 3

∂θ 2∂ r
w1 = 0

(16)

M11u1 +M12u2 +M13
∂

∂θ
v2 +M14

∂
∂ r

w1 +M15
∂
∂ r

w2 +M16
∂ 2

∂ r2 u2

+M17
∂ 2

∂θ 2 u2 +M18
∂ 2

∂θ∂ r
v2 +M19

∂ 2

∂θ 2 w2 +M20
∂ 3

∂θ 2∂ r
w2 = 0

(17)

M21v1 +M22v2 +M23
∂

∂θ
u1 +M24

∂
∂θ

w1 +M25
∂

∂θ
w2 +M26

∂ 2

∂θ∂ r
u1

+M27
∂ 2

∂ r2 v1 +M28
∂ 2

∂θ 2 v1 +M29
∂ 2

∂θ∂ r
w1 +M30

∂ 3

∂θ 3 w1 = 0

(18)

M31v1 +M32v2 +M33
∂

∂θ
u2 +M34

∂
∂θ

w1 +M35
∂

∂θ
w2 +M36

∂ 2

∂θ∂ r
u2

+M37
∂ 2

∂ r2 v2 +M38
∂ 2

∂θ 2 v2 +M39
∂ 2

∂θ∂ r
w2 +M40

∂ 3

∂θ 3 w2 = 0

(19)
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M41w1 +M42w2 +M43
∂
∂ r

u1 +M44
∂
∂ r

u2 +M45
∂

∂θ
v1 +M46

∂
∂θ

v2

+M47
∂
∂ r

w1 +M48
∂ 2

∂θ 2 u1 +M49
∂ 2

∂θ∂ r
v1 +M50

∂ 2

∂ r2 w1 +M51
∂ 2

∂ r2 w2

+M52
∂ 2

∂θ 2 w1 +M53
∂ 2

∂θ 2 w2 +M54
∂ 3

∂θ 2∂ r
u1 +M55

∂ 3

∂θ 3 v1

+M56
∂ 3

∂θ 2∂ r
w1 +M57

∂ 4

∂ r4 w1 +M58
∂ 4

∂θ 4 w1

+M59
∂ 4

∂θ 2∂ r2 w1 = Z1

(20)

M60w1 +M61w2 +M62
∂
∂ r

u1 +M63
∂
∂ r

u2 +M64
∂

∂θ
v1 +M65

∂
∂θ

v2

+M66
∂
∂ r

w2 +M67
∂ 2

∂θ 2
u2 +M68

∂ 2

∂θ∂ r
v2 +M69

∂ 2

∂ r2
w1 +M70

∂ 2

∂ r2
w2

+M71
∂ 2

∂θ 2 w1 +M72
∂ 2

∂θ 2 w2 +M73
∂ 3

∂θ 2∂ r
u2 +M74

∂ 3

∂θ 3 v2

+M75
∂ 3

∂θ 2∂ r
w2 +M76

∂ 4

∂ r4 w2 +M77
∂ 4

∂θ 4 w2

+M78
∂ 4

∂θ 2∂ r2 w2 = Z2

(21)

where Z1,Z2 denote the surface forces along the z axes of the first and second layers.
Mi are the integral constants that are composed of elastic and geometric parameters
(Appendix B and Appendix C).

The dependency of the θ is eliminated by the Fourier series expansion of fun-
damental variables, which reduces the problem to a set of 16 first-order ordinary
differential equations, which can be solved numerically using the multi-segment
integration method.

4 Case Study

Circular sandwich plates with “through-the-thickness” inserts under axisymmetric
external loading are considered as an example.

4.1 Material properties and boundary conditions

Tables 1 and 2 present the geometry, material properties, external load and bound-
ary conditions. The circular sandwich plate consists of an insert, a potting com-
pound, the core, two adhesive layers and two face layers.
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Table 1: Geometry, material properties

geometry bi = 10mm, bp = 30mm, a = 150mm, c = 10mm, f1 =
f2 = 1mm, t = 0.1mm (see Fig. 2)

face (FRP-laminate) E1 = E2 = 40000N/mm2, υ1 = υ2 = 0.3
core (Hexcel honey-
comb)

E3r = 310N/mm2, G3rz = G3θz = 138N/mm2

adhesive (Film adhe-
sive)

E4 = E5 = 854.7N/mm2, υ4 = υ5 = 0.4

insert (r = bi ∼ bp) Same material properties as the face sheets
potting compound
(Bulk epoxy)

E3r = 2500N/mm2, G3rz = G3θz = 930N/mm2

Table 2: Boundary conditions

r = bi u1 = u2 = v1 = v2 = 0, d2u1
dr2 =

d2u2
dr2 = d2v1

dr2 = d2v2
dr2 = 0

The through-the-thickness insert is
considered an infinitely rigid body to
which face sheets, potting compound,
and adhesive are rigidly connected.

r = a w1 = w2 = d2w1
dr2 = d2w2

dr2 = 0,
d2u1
dr2 = d2u2

dr2 = d2v1
dr2 = d2v2

dr2 = 0

Face sheet mid-surfaces are assumed
as simply supported.

r = bi
d3w1
dr3 = 0, d3w2

dr3 = Q Out-of-plane load Q in the top of insert
(see Fig. 3).

4.2 Numerical solution: multi-segment integration method

The set of governing equations along with the boundary condition constitute a
boundary value problem. A general closed form solution to this problem is dif-
ficult to obtain, and a numerical solution approach is therefore developed [Kalnins
(1964)].

The boundary value problem is solved numerically by multi-segment integration.
This method has the following features.

a. Easily implemented;

b. Conveniently applied to first-order ordinary differential equation systems;

c. Permits arbitrary radial variations, including discontinuities, of all variables in
the problem.

The multi-segment method transforms the boundary value problem into a series
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of interconnected initial value problems. The insert-sandwich plate configuration
is divided into a finite number of segments, and the solution in OR each segment
is derived by direct integration. Further details of the multi-segment method of
integration can be found elsewhere [Kalnins (1964)]. The plate configuration herein
is divided into 2800 segments, to yield the best solution.

4.3 Results

The external out-of-plane loading Q is probably the typical load for industrial us-
age. In this case study, Q = 1kN is assumed to be loaded at the junction of the
insert and the upper facing sheet (Fig. 3).

Q

r

z

r=bi r=bp

Figure 3: Out-of-plane load Q

Figure 4 depicts the lateral deflections of the facing sheets (w1, w2, at z = -5.6,
5.6 mm) and the core mid-surface (w3, at z = 0 mm). In the third layer r ≤ 30mm
corresponds to the potting region, while r > 30mm corresponds to the honeycomb
region. Lateral deflections of the two facing sheets and the core material mid-
surface are almost identical, as the results reveal. As expected, the symmetry of
the sandwich plate makes lateral displacements of the two facing sheets w1 and w2

identical.

Figure 5 presents lateral deflections of the adhesive layers (w4, w5, at z = -5.05, 5.05
mm); r ≤ 30mm corresponds to the insert region, whereas r > 30mm corresponds
to the honeycomb region. Lateral deflections of the two adhesive layers appear to
be identical, because of the considered sandwich plate symmetry.

Figure 6 plots the core material stress distribution. The values of the transverse
normal stress σz are given at the interface between the upper adhesive layer and
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Figure 4: Lateral deflectionsw1, w2 and w3
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Figure 5: Lateral deflectionsw4 and w5
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Figure 6: Core stress components σ top
z , σbottom

z and τrz
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Figure 7: Normal stress of lower facing sheet σr,1 and upper facing sheet σr,2 in the
radius direction
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the core (σ top
z ) and at the interface between the lower adhesive layer and the core

(σbottom
z ). Figure 6 also plots the distribution of the transverse core shear stress

componentτrz, which is assumed to be constant over the height of core material.
When the σz-distribution is considered, transverse normal stress is observably a
very local phenomenon, as significant σz-contributions are present only close to r =
10mm (close to the insert) and close to r = 30mm (close to the potting-honeycomb
intersection). σ top

z and σbottom
z have opposite signs. The peak stress magnitudes

close to r = 30mm regions exceed those close tor = 10mm. Stress concentrations
closest to the interface between the potting material and the core are likely to fail.
However, stress concentrations at the potting-honeycomb intersection, and imme-
diately adjacent to it, may cause premature failure.

The overall core material shear stress distribution tendency is that τrz declines as r
increases. When the effects of combined normal transverse and shear stress compo-
nent on potting and honeycomb materials are considered, the mechanical properties
of the two materials differ significantly. Therefore, the stiffness and strength of the
honeycomb material are usually an order of magnitude lower than those of the pot-
ting compound.

Figure 7 plots the normal stress of the lower facing sheet σr,1 and the upper fac-
ing sheet σr,2 in the radial direction. Normal stresses of both facing sheets are
maximal at the junction with insert. Figure 8 plots the normal stress of the lower
adhesive layerσr,4 and the upper adhesive layer σr,5 in the radial direction. The nor-
mal stresses of both adhesive layers are maximal (in the vicinity of OR near) r=bp.
Normal stresses of both adhesive layers have a smaller magnitude than those of
the facing sheets. Facing sheets observably resist more normal stress than adhesive
layers in the radial direction, as revealed by comparing Figs. 7 and 8.

4.4 Comparison with degraded three-layer theory and Thomsen’s theory [Thom-
sen and Rits (1998)]

For validation, the present five -layer theory is degraded to be a three -layer theory
by replacing the mechanical properties of an adhesive layer with those of the face.
Then, the results are compared with the results of three-layer theory and Thomsen
and Rits (1998). Figure 9 to Figure 12 compare the aforementioned theories. The
degraded five-layer theory (three -layer theory) is very consistent with the theory
of Thomsen and Rits, which fact verifies the accuracy of the proposed five-layer
theory. Figures 10 and 11 reveal that the peak normal stress of the core close to
r = 30mm according to five -layer theory exceeds that close to r = 10mm, which
differs from result of other two theories, because the adhesive effect (reducing the
stiffness of the whole structure) is considered in the present five-layer analytical
model. However, the peak shear stress occurs near r = bi (r = 10mm) , as displayed
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Figure 8: Normal stress of lower adhesive layer σr,4 and upper adhesive layer σr,5
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Figure 9: Deflection of the 3rd layer (core) in the z-direction, compared with other
theories
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Figure 10: Normal stress σ top
z of the 3rd layer (z = 5mm), compared with other

theories
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Figure 11: Normal stress σbottom
z of the 3rd layer (z =−5mm), compared with other

theories
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Figure 12: Shear stress τ(rz) of the 3rd layer, compared with other theories

in Fig. 12.

4.5 Comparison with FEM Solution

A finite element method (FEM) model of the five-layered sandwich plates with a
“through-the-thickness” insert is generated using the finite element package ABAQUS.
The model consists of numerous 20-node quadratic hexahedral elements with six
degrees of freedom in each node for the whole sandwich structure (Fig. 13). A
study of mesh density is performed to validate the finite element results, and in-
dicates that the displacement and stress results converge as the total number of
elements ranges from 44820 to 70070 with a calculation time of 4 to 9 minutes
(on a PC with CPU: 2.13GHz and RAM: 0.99G). Accordingly, the total number
of elements used in this FEM model is 66500. The geometry, material properties,
boundary conditions and load conditions are the same as in the analytical model
(Tables 1 and 2).

Figures 14 and 15 demonstrate the analytic and FEM deflections of difference for
the 2nd facing layer and the 5th adhesive layer, respectively. The FEM deflection
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Figure 13: Finite element mesh
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Figure 14: Deflection of the 2nd layer in the z-direction, compared with FEM
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Figure 15: Deflection of the 5th layer in the z-direction, compared with FEM
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Figure 16: Normal stress σ top
z of the 3rd layer (z = 5mm), compared with FEM
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Figure 17: Normal stress σbottom
z of the 3rd layer (z =−5mm), compared with FEM
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Figure 18: Shear stress τ(rz) of the 3rd layer, compared with FEM
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magnitudes of the second and fifth layers always exceed the analytical values. Fig-
ures 16, 17 and 18 show analytical solution of normal and shear stresses of the
3rd layer, compared with the FEM solutions. Core transverse normal stress is ob-
servably a very local phenomenon, as significant σz-contributions are present only
close to r = 10mm (close to the insert) and close to r = 30mm (close to the potting-
honeycomb core intersection). Peak normal stress magnitudes close to r = 30mm
exceed those close to r = 10mm. Strong agreement exists between the analytical
solution and the FEM solution, as revealed by Figs. 14 and 18. The comparisons
also confirm the accuracy of the analytical results.

5 Conclusions

A new five-layered sandwich plate theory is developed and adapted for sandwich
plate inserts. The present formulation is developed for sandwich plates with pot-
ted through-the-thickness inserts, but can be extended and adapted to analyze fully
and partially potted insert-sandwich plates by considering the effect of the adhe-
sive layer. Insert-sandwich plate problems are specified mathematically as sets of
first-order differential equations, which are solved numerically in a convenient and
cost-effective manner using multi-segment integration. The sandwich plate normal
stress is maximal at the intersection between (the potting material, the core, and the
adhesive layer, where failure occurs.
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Appendix A. Constants ki (i = 1 ∼ 32)

k1 =
1
2

; k2 =
1
2

;

k3 =
−1
4

(
−4z2 f1 +c2 f1 −4ztc

c2 −4z2 );

k4 =
1
4
(

c2 f2−4z2 f2 +4ztc
c2 −4z2

);

k5 =
1
2

; k6 =
1
2

;

k7 =
−1
4

(
−4z2 f1 +c2 f1 −4ztc

(c2 −4z2)
);

k8 =
1
4
(

c2 f2−4z2 f2 +4ztc
(c2 −4z2)

);

k9 =
1
2

; k10 =
1
2

;
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k11 =
1
4
(

c+2t +2z
t
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c+2t +2z
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Appendix B. Constants Mi(i = 1 ∼ 78)
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Appendix C. Integral Constants Ji(i = 1 ∼ 125)
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)

dz

J15 =
∫ 1

2 c

− 1
2 c

2

(
∂
∂ z

k5(z)
)(

∂
∂ z

k8(z)
)

+2k10(z)
(

∂
∂ z

k5(z)
)

dz
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J16 =
∫ 1

2 c

− 1
2 c

2

(
∂
∂ z

k6(z)
)(

∂
∂ z

k7(z)
)

+2k9(z)
(

∂
∂ z

k6(z)
)

dz

J17 =
∫ 1

2 c

− 1
2 c

2

(
∂
∂ z

k6(z)
)(

∂
∂ z

k8(z)
)

+2k10(z)
(

∂
∂ z

k6(z)
)

dz

J18 =
∫ 1

2 c

− 1
2 c

2k9(z)k10(z)+2

(
∂
∂ z

k8(z)
)

k9(z)+2k10(z)
(

∂
∂ z

k7(z)
)

+ 2

(
∂
∂ z

k7(z)
)(

∂
∂ z

k8(z)
)

dz

J19 =
∫ 1

2 c

− 1
2 c

k9(z)2 +2k9(z)
(

∂
∂ z

k7(z)
)

+
(

∂
∂ z

k7(z)
)2

dz

J20 =
∫ 1

2 c

− 1
2 c

k10(z)2 +2k10(z)
(

∂
∂ z

k8(z)
)

+
(

∂
∂ z

k8(z)
)2

dz

J21 =
∫ 1

2 c

− 1
2 c

(
∂
∂ z

k5(z)
)2

dz J22 =
∫ 1

2 c

− 1
2 c

(
∂
∂ z

k6(z)
)2

dz

J23 =
∫ 1

2 c

− 1
2 c

2

(
∂
∂ z

k5(z)
)(

∂
∂ z

k6(z)
)

dz J24 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k19(z)
)2

dz

J25 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k19(z)
)(

∂
∂ z

k20(z)
)

dz J26 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k20(z)
)2

dz

J27 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k14(z)
)

k20(z)+
(

∂
∂ z

k14(z)
)2

+k20(z)2dz

J28 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k11(z)
)(

∂
∂ z

k12(z)
)

dz

J29 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k11(z)
)(

∂
∂ z

k13(z)
)

+2

(
∂
∂ z

k11(z)
)

k19(z)dz

J30 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k11(z)
)(

∂
∂ z

k14(z)
)

+2

(
∂
∂ z

k11(z)
)

k20(z)dz

J31 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k12(z)
)

k13(z)+2

(
∂
∂ z

k12(z)
)

k19(z)dz

J32 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k12(z)
)(

∂
∂ z

k14(z)
)

+2

(
∂
∂ z

k12(z)
)

k20(z)dz
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J33 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k13(z)
)(

∂
∂ z

k14(z)
)

+2

(
∂
∂ z

k13(z)
)

k20(z)+2k19(z)
(

∂
∂ z

k14(z)
)

+ 2

(
∂
∂ z

k11(z)
)2

dz

J34 =
∫ − 1

2 c

− 1
2 c−t

2k13(z)k20(z)dz J35 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k12(z)
)2

dz

J36 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k13(z)
)2

+k19(z)2 +2

(
∂
∂ z

k13(z)
)

k19(z)dz

J37 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k15(z)
)(

∂
∂ z

k17(z)
)

+2k19(z)
(

∂
∂ z

k15(z)
)

dz

J38 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k15(z)
)(

∂
∂ z

k18(z)
)

+2k20(z)
(

∂
∂ z

k15(z)
)

dz

J39 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k16(z)
)(

∂
∂ z

k17(z)
)

+2k19(z)
(

∂
∂ z

k16(z)
)

dz

J40 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k16(z)
)(

∂
∂ z

k18(z)
)

+2k20(z)
(

∂
∂ z

k16(z)
)

dz

J41 =
∫ − 1

2 c

− 1
2 c−t

2k19(z)k20(z)+2

(
∂
∂ z

k18(z)
)

k19(z)+2k20(z)
(

∂
∂ z

k17(z)
)

+ 2

(
∂
∂ z

k17(z)
)(

∂
∂ z

k18(z)
)

dz

J42 =
∫ − 1

2 c

− 1
2 c−t

k19(z)2 +2k19(z)
(

∂
∂ z

k17(z)
)

+
(

∂
∂ z

k17(z)
)2

dz

J43 =
∫ − 1

2 c

− 1
2 c−t

k20(z)2 +2k20(z)
(

∂
∂ z

k18(z)
)

+
(

∂
∂ z

k18(z)
)2

dz

J44 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k15(z)
)2

dz J45 =
∫ − 1

2 c

− 1
2 c−t

(
∂
∂ z

k16(z)
)2

dz

J46 =
∫ − 1

2 c

− 1
2 c−t

2

(
∂
∂ z

k15(z)
)(

∂
∂ z

k16(z)
)

dz J47 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k29(z)
)2

dz

J48 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k29(z)
)(

∂
∂ z

k30(z)
)

dz J49 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k30(z)
)2

dz
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J50 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k24(z)
)

k30(z)+
(

∂
∂ z

k24(z)
)2

+k30(z)2dz

J51 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k21(z)
)(

∂
∂ z

k22(z)
)

dz

J52 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k21(z)
)(

∂
∂ z

k23(z)
)

+2

(
∂
∂ z

k21(z)
)

k29(z)dz

J53 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k21(z)
)(

∂
∂ z

k24(z)
)

+2

(
∂
∂ z

k21(z)
)

k30(z)dz

J54 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k22(z)
)

k23(z)+2

(
∂
∂ z

k22(z)
)

k29(z)dz

J55 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k22(z)
)(

∂
∂ z

k24(z)
)

+2

(
∂
∂ z

k22(z)
)

k30(z)dz

J56 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k23(z)
)(

∂
∂ z

k24(z)
)

+2

(
∂
∂ z

k23(z)
)

k30(z)+2k29(z)
(

∂
∂ z

k24(z)
)

+ 2

(
∂
∂ z

k21(z)
)2

dz

J57 =
∫ 1

2 c+t

1
2 c

2k23(z)k30(z)dz J58 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k22(z)
)2

dz

J59 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k23(z)
)2

+k29(z)2 +2

(
∂
∂ z

k23(z)
)

k29(z)dz

J60 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k25(z)
)(

∂
∂ z

k27(z)
)

+2k29(z)
(

∂
∂ z

k25(z)
)

dz

J61 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k25(z)
)(

∂
∂ z

k28(z)
)

+2k30(z)
(

∂
∂ z

k25(z)
)

dz

J62 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k26(z)
)(

∂
∂ z

k27(z)
)

+2k29(z)
(

∂
∂ z

k26(z)
)

dz

J63 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k26(z)
)(

∂
∂ z

k28(z)
)

+2k30(z)
(

∂
∂ z

k26(z)
)

dz
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J64 =
∫ 1

2 c+t

1
2 c

2k29(z)k30(z)+2

(
∂
∂ z

k28(z)
)

k29(z)+2k30(z)
(

∂
∂ z

k27(z)
)

+ 2

(
∂
∂ z

k27(z)
)(

∂
∂ z

k28(z)
)

dz

J65 =
∫ 1

2 c+t

1
2 c

k29(z)2 +2k29(z)
(

∂
∂ z

k27(z)
)

+
(

∂
∂ z

k27(z)
)2

dz

J66 =
∫ 1

2 c+t

1
2 c

k30(z)2 +2k30(z)
(

∂
∂ z

k28(z)
)

+
(

∂
∂ z

k28(z)
)2

dz

J67 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k25(z)
)2

dz J68 =
∫ 1

2 c+t

1
2 c

(
∂
∂ z

k26(z)
)2

dz

J69 =
∫ 1

2 c+t

1
2 c

2

(
∂
∂ z

k25(z)
)(

∂
∂ z

k26(z)
)

dz J70 = f1

J71 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)dz J72 =
∫ − 1

2 c−t

− 1
2 c−t− f1

k31(z)2dz J73 = f1

J74 = 2 f1 J75 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)dz J76 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)dz

J77 = f1 J78 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)dz J79 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)dz

J80 =
∫ − 1

2 c−t

− 1
2 c−t− f1

k31(z)2dz J81 =
∫ − 1

2 c−t

− 1
2 c−t− f1

2k31(z)2dz J82 =
∫ − 1

2 c−t

− 1
2 c−t− f1

k31(z)2dz

J83 = f1 J84 = f1 J85 = −2 f1

J86 = f1 J87 = −2 f1 J88 = 2 f1

J89 = −4 f1 J90 =
∫ − 1

2 c−t

− 1
2 c−t− f1

4k31(z)dz J91 =
∫ − 1

2 c−t

− 1
2 c−t− f1

4k31(z)2dz

J92 =
∫ − 1

2 c−t

− 1
2 c−t− f1

4k31(z)dz J93 =
∫ − 1

2 c−t

− 1
2 c−t− f1

−4k31(z)2dz J94 =
∫ − 1

2 c−t

− 1
2 c−t− f1

4k31(z)2dz

J95 =
∫ − 1

2 c−t

− 1
2 c−t− f1

−4k31(z)dz J96 =
∫ − 1

2 c−t

− 1
2 c−t− f1

4k31(z)dz J97 =
∫ − 1

2 c−t

− 1
2 c−t− f1

−8k31(z)2dz

J98 = f2 J99 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)dz J100 =
∫ 1

2 c+t+ f2

1
2 c+t

k32(z)2dz
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J101 = f2 J102 = 2 f2 J103 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)dz

J104 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)dz J105 = f2 J106 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)dz

J107 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)dz J108 =
∫ 1

2 c+t+ f2

1
2 c+t

k32(z)2dz J109 =
∫ 1

2 c+t+ f2

1
2 c+t

2k32(z)2dz

J110 =
∫ 1

2 c+t+ f2

1
2 c+t

k32(z)2dz J111 = f2 J112 = f2

J113 = −2 f2 J114 = f2 J115 = −2 f2

J116 = 2 f2 J117 = −4 f2 J118 =
∫ 1

2 c+t+ f2

1
2 c+t

4k32(z)dz

J119 =
∫ 1

2 c+t+ f2

1
2 c+t

4k32(z)2dz J120 =
∫ 1

2 c+t+ f2

1
2 c+t

4k32(z)dz J121 =
∫ 1

2 c+t+ f2

1
2 c+t

−4k32(z)2dz

J122 =
∫ 1

2 c+t+ f2

1
2 c+t

4k32(z)2dz J123 =
∫ 1

2 c+t+ f2

1
2 c+t

−4k32(z)dz J124 =
∫ 1

2 c+t+ f2

1
2 c+t

4k32(z)dz


