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Node based Method of Moments Solution to Combined
Layer Formulation of Acoustic Scattering

B. Chandrasekhar1

Abstract: In this work, a novel numerical technique, based on method of mo-
ments solution, is presented to solve the Combined layer formulation (CLF) to
insure unique solution to the exterior acoustic scattering problem at all frequencies.
A new set of basis functions, namely, Node based basis functions are used to rep-
resent the source distribution on the surface of rigid body and the same functions
are used as testing functions as well. Combined layer formulation (CLF) is defined
by linearly combining the Single layer formulation (SLF) and Double layer formu-
lation (DLF) with complex coupling parameter. The matrix equations for the SLF
and DLF are derived and same equations are extended to the CLF. The surface of
the body is modeled by triangular patch modeling. Results of numerical technique
presented in this paper, using node based basis functions, are compared with the
exact solutions wherever available. Also, condition numbers of the impedance ma-
trices of SLF, DLF and CLF are plotted, for some objects of canonical shapes, to
show that only CLF is free from resonance problem.

Keyword: Acoustic scattering, Method of moments, Node based basis function,
Boundary integral equations, Acoustic resonance problem, Non-uniqueness.

1 Introduction

The non-uniqueness of the solution of exterior acoustic problems is widely dis-
cussed in the recent literature and has been one of the interesting areas of research
for long time. Non-uniqueness of solution is the breakdown of the formulations
when the frequency of incident acoustic wave matches with the eigen-frequencies
of the corresponding interior problem. Though exterior acoustic scattering prob-
lems do not have any characteristic frequencies associated with it, the integral
equations do fail at certain frequencies due to the boundary integral equation for-
mulation. More details regarding the fictitious frequencies can be found in the
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ref. [Chen and Chen (2006), Chen, Chen and Chen (2006)]. The adjoint of these
boundary integral equations represent the interior acoustic problems which has got
well known characteristic frequencies. Hence boundary integral equations for the
exterior acoustic problems fail when the incident wave frequency matches with the
characteristic frequencies of the surface bounding the scattering volume. Two pop-
ularly known methods to resolve the non-uniqueness problem in the exterior acous-
tic problems are 1. Combined Helmholtz Integral Equation Formulation (CHIEF)
and 2. Burton and Miller’s approach.

CHIEF, proposed by Schenck [Schenck (1968)] is very popular among various en-
gineering applications. CHIEF is basically addition of some interior relations to
the surface Helmholtz integral equation thus resulting in a over determined system
of equations. This over determined system of equations may be solved by the least
squares technique. One of the major drawbacks of this formulation is the selection
of CHIEF points to insure a uniqueness of the solution. A “good” CHIEF point to
be chosen in such a way that it should be away from the neighborhood of nodal
point of the corresponding interior eigenmode. Although CHIEF is very popular, it
is heuristic and prone to inaccuracies especially at higher frequencies.

Another popular method of resolving the non-uniqueness issue is Burton and Miller’s
(BM) approach. BM approach [Burton and Miller (1971)] basically suggests lin-
early combining the Helmholtz integral equation and its normal derivative with
a complex coupling parameter. Leis [Leis (1965)], Panich [Panich (1965)], and,
Brakhage and Werner [Brakhage and Werner (1965)] also demonstrated that by
combining the single layer and double layer potentials with a complex coupling
parameter, the non-uniqueness problem can be averted. Burton and Miller proved
mathematically that, this linearly combined integral equation insures unique solu-
tion at all frequencies. But, the normal derivative of the Helmholtz integral equa-
tion involves the evaluation of hyper-singular integral. Many researchers [Amini
and Wilton (1986), Meyer, Bell, Zinn, and Stallybras (1978), Chien, Raliyah and
Alturi (1990), Yan, Cui and Hung (2005)] attempted to evaluate the hyper-singular
integral which may be used in the BM procedure to overcome the internal reso-
nance problem. The usual procedure is to regularize the hyper–singular integral
and the regularization technique is computationally very expensive and it is diffi-
cult to incorporate in a general-purpose code. Also, there are other methods which
reduce the hyper singular kernel to a strongly singular kernel and their solution is
based on Petrov-Galerkin schemes [Qian, Han, and Atluri (2004)] and collocation-
based boundary element method [Qian, Han, Ufimtsev, and Atluri (2004)]. A de-
singularized boundary integral formulation is also one of the recently proposed
method [Callsen, von Estorff, and Zaleski (2004)] to overcome the problems of
singularity.
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Recently, Chandrasekhar and Rao [Chandrasekhar and Rao (2004b)] extended con-
cept of BM approach by linearly combining the integral equations based on layer
potentials in contrast to combining the Helmholtz integral equation and its normal
derivative as suggested by Burton and Miller. They adapted the method of mo-
ments solution as a numerical technique to implement the combined layer formu-
lation (CLF). The procedure [Chandrasekhar and Rao (2004a)] that they followed
neither regularizes the hyper-singular integral nor implements complex integration
schemes. They also extended the same numerical procedure to the acoustic scat-
tering from open bodies and intersecting bodies [Chandrasekhar and Rao (2005)].
The method of moments solution that they proposed was based on defining the basis
functions on the edges of the triangular patch modeling of the surface of the scat-
tering body. As the method of moments solution results in a full matrix, the size of
the resulting impedance matrix, based on defining the basis functions on the edges,
is large. Recently, author [Chandrasekhar (2005)] has implemented the method of
moments solution of single layer and double layer formulations based on defining
the basis functions on the nodes in contrast to defining it on the edges. For a closed
body, the relationship between the number of nodes Nn, edges Ne and patches Nf

in the triangular patch modeling is given by Nn − Ne + Nf = 2 and Nf = 2Ne/3
[Oneill]; this results into Nn = 2+Ne/3. Thus the order of the resulting matrix,
defining the basis functions on the nodes, is almost one third to that of defining
the basis functions on edges. As the storage matrix is smaller, time required for
the solution of simultaneous linear system of equations is smaller and hence, much
larger problems can be solved without increasing the solution time compared to
the existing solutions based on method of moments with face based basis functions
[Raju, Rao, Sun (1991), Rao and Sridhara (1991), Rao, Raju, and Sun (1992), Rao
and Raju, (1989)] and with edge based basis functions [Chandrasekhar and Rao
(2004a)].

In this work, the non-uniqueness problem is eliminated by implementing the com-
bined layer formulation (CLF) using method of moments solution procedure with
node based basis functions. Traditionally, DLF is difficult to implement due to the
presence of hyper-singular kernel. In this work simple vector calculus techniques
are used to circumvent the problems of hyper-singularity.

The method developed in this work can be used in combination with other meth-
ods like Mesh Less Petrov-Galerkin schemes [Vavourakis, Sellountos and Polyzos
(2006); Sladek, Sladek, Wen and Aliabadi (2006); Gao, Liu and Liu (2006); Zhang
and Chen (2008); Sladek, Sladek, Solek and Wen (2008); Dang and Bhavani Sankar
(2008); and Arefmanesh, Najafi and Abdi, (2008)] and boundary element formu-
lations, but not limited to acoustic scattering [Owatsiriwong, Phansri, and Park
(2008); Criado, Ortiz, Manti c, Gray, and Paris (2007); Chandrasekhar and Rao.
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(2007); Zai You Yan (2006); and Soares Jr, and Vinagre (2008)].

2 Organization of the paper

In this paper, next section briefly describes the method of moment’s solution proce-
dure [Harrington (1968), Sun and Rao(1992)]. Mathematical formulation is laid in
section 4 for SLF, DLF and CLF. In section 5, we describe the numerical solution
procedure and derive matrix equations for SLF, DLF and CLF. Numerical results,
based on the development of new basis functions are given in section 6. Lastly we
present some important conclusions drawn from the present work.

3 Outline of Method of Moments

Consider the deterministic equation

L f = g (1)

where L is a linear operator, g is a known function and f is an unknown function to
be determined. Let f be represented by a set of known functions f j, j = 1,2, ...,N
termed as basis functions in the domain of L as a linear combination, given by

f =
N

∑
n=1

β j f j (2)

where β j are scalar coefficients to be determined. Substituting Eq. 2 into Eq. 1,
and using the linearity of L, we have

N

∑
n=1

β jL f j = g (3)

where the equality is usually approximate. Let (w1,w2,w3, ...) define a set of testing
functions in the range of L. Now, taking the inner product of Eq. 3 with each wi

and using the linearity of inner product defined as 〈 f ,g〉 =
∫

s f •gds, we obtain a
set of linear equations, given by

N

∑
n=1

β j
〈
wi,L f j

〉
= 〈wi,g〉 i = 1,2, ...,N. (4)

The set of equations in Eq. 4 may be written in the matrix form as

ZX = Y (5)
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which can be solved for X using any standard linear equation solution methodolo-
gies. The simplicity, accuracy and efficiency of the method of moments lies in
choosing proper set of basis/testing functions and applying to the problem at hand.
In this work, we propose a special set of basis functions and a novel testing scheme
to obtain accurate results using SLF, DLF and CLF.

4 Mathematical Formulation

Consider an acoustic wave, with a pressure and velocity
(

pi,ui
)
, incident on a three-

dimensional arbitrarily shaped rigid body placed in a source free homogeneous
medium of density ρ and speed of sound c through the medium. When the incident
wave interacts with the body, the acoustic wave gets scattered with a pressure and
velocity (ps,us). Here, we note that, incident fields are defined in the absence of the
scattering body. Φ is the scalar velocity potential satisfying the Helmholtz differ-
ential equation ∇2Φ + k2Φ = 0 for the time harmonic waves present in the region
exterior to the surface S of the body. One more condition on velocity potential is
that it should satisfy the appropriate boundary conditions on the surface S of the
body along with the Sommerfeld radiation condition. The pressure and velocity
fields of acoustic wave is related to the scalar velocity potential Φ as u = −∇Φ
and p = jωρΦ. In this paper, integral equation formulations are based on potential
theory and free space Green’s function. The scattered velocity potential may be
defined using three different formulations based on monopole and/or dipole distri-
bution. Formulations based on monopole distribution and dipole distribution are
called as single layer formulation (SLF), double layer formulations (DLF), respec-
tively. Third formulation, namely Combined layer formulation (CLF) is a linear
combination of SLF and DLF.

Using the potential theory and the free space Green’ s function, the scattered ve-
locity potential Φs may be defined as

Φs =
∫

s
σ
(
r′
)
G
(
r, r′
)

ds′ (6)

for SLF,

Φs =
∫

s
σ
(
r′
)∂G(r, r′)

∂n′
ds′ (7)

for DLF, and

Φs =
∫

s
σ
(
r′
)
G
(
r, r′
)

ds′+α
∫

s
σ
(
r′
)∂G(r, r′)

∂n′
ds′ (8)

for CLF.
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In the above three equations, σ is the source density function independent of r over
the surface of the body, r and r′ are the position vectors of observation and source
points, respectively, with respect to a global co-ordinate system O, and ∂G/∂n′

is the normal derivative of Green’s function at source point. Coefficient α is a
complex coupling parameter, to be chosen based on the guidelines given by Burton
and Miller [Burton and Miller (1971)].

k real or imaginary ⇒ Im(α) �= 0 (9)

k complex ⇒ Im(α) = 0 (10)

where k is the wave number in the medium.

G(r, r′) is the free space Green’s function, given by,

G
(
r, r′
)

=
e− jk|r−r′|

4π |r− r′| (11)

G(r, r′) is the solution of the Helmholtz equation with a point source inhomogeneity(
∇2 +k2)G(r, r′) = −δ

(
r− r′

)
(12)

and can be interpreted as the solution at the observation point r due to the presence
of acoustic source of unit strength located at the source point r′.
For a rigid body, the normal derivative of total velocity potential, which is the sum
of incident and scattered velocity potential, with respect to the observation point on
the surface of the body vanishes. That is

∂
(
Φi +Φs

)
∂n

= 0 (13)

∂Φs

∂n
= −∂Φi

∂n
. (14)

Substituting Eqs. 6, 7 and 8. into Eq. 14,

∂
∂n

∫
s
σ
(
r′
)
G
(
r, r′
)

ds′ = −∂Φi

∂n
(15)

for SLF,

∂
∂n

∫
s
σ
(
r′
)∂G(r, r′)

∂n′
ds′ = −∂Φi

∂n
(16)

for DLF, and

∂
∂n

∫
s
σ
(
r′
)
G
(
r, r′
)

ds′ +α
∂
∂n

∫
s
σ
(
r′
)∂G(r, r′)

∂n′
ds′ = −∂Φi

∂n
(17)
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for CLF.

In the above equations, Φi is the scalar velocity potential of the incident wave.

Eq. 15, the SLF can also be re-written as

σ (r′)
2

−
∫

s
σ
(
r′
)∂G(r, r′)

∂n
ds′ =

∂Φi

∂n
. (18)

The second term in the above equation is the integration over the surface excluding
the principal value term i.e. r = r′. We note that, this integral is a well behaved in-
tegral, although rapidly varying, which can be evaluated using standard integration
algorithms.

Following the procedures developed in [Maue (1949) and Mitzner (1966)], Eq. 16,
the DLF, may be written as

∫
s
n•n′k2σ(r′)G(r, r′)ds′+

∫
s

(
n′X∇′σ

)•(nX∇G)ds′ =
∂Φi

∂n
(19)

where n and n′ are the unit normal vectors at r and r′, respectively.

From Eq. 18 and Eq. 19, the CLF can be written as

σ (r′)
2

−
∫

s
σ
(
r′
)∂G(r, r′)

∂n
ds′+α

∫
s
n•n′k2σ(r′)G(r, r′)ds′

+ α
∫

s

(
n′X∇′σ

)•(nX∇G)ds′ =
∂Φi

∂n
. (20)

In the following sections, a novel numerical technique is developed using node
based basis functions for SLF, DLF and CLF. SLF and DLF fail when the frequency
of the incident field matches with the characteristic frequency of surface S. Burton
and Miller [Burton and Miller (1971)] suggested combining the Helmholtz integral
equation and its normal derivative linearly with a complex coupling parameter to
eliminate the internal resonance problem. However, the same concept is extended
in this paper to combine the single and double layer formulations with a complex
coupling parameter and hence the name Combined layer formulation (CLF). CLF
do not fail at the characteristic frequencies and ensures a unique solution at all
incident frequencies.

This paper focuses on the numerical solution of single layer, double layer and com-
bined layer formulations by using a new set of basis functions, namely, node based
basis functions. The numerical solution of SLF and DLF is already reported in
[Chandrasekhar (2005)] and it is the endeavor of this paper to extend the numer-
ical solution to CLF as well to get the unique solution to the acoustic scattering
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problems based on the integral equation formulation. As the CLF is a linear com-
bination of SLF and DLF, the matrix equations for SLF and DLF are also derived
in this paper.

5 Numerical Solution Procedure

Fig.1 shows the triangular patch modeling of the surface of a arbitrarily shaped
three dimensional body. The triangular patch modeling is an approximation of the
surfaces. The accuracy of approximation can be increased by modeling the surface
with large number of triangular patches of smaller size. The three geometric entities
that are present in the triangular patch modeling are triangular patches, edges and
nodes. Let Nf , Ne and Nn represent the number of triangular patches, number of
edges and number of nodes, respectively, on the surface of triangulated body. For
a closed body, every edge is common to two adjacent triangular patches, and every
node is common to at least three triangular patches as well as at least three edges.

Figure 1: Triangular patch modeling of
an arbitrarily shaped three-dimensional
body.

Figure 2: Node based basis function and
geometric parameters associated with
the node.

Consider a node n about which the basis function is defined. For illustration pur-
poses, consider one such node as shown in Fig. 2, where there are five triangular
patches attached to it. Let T1,T2, ...,T5 are the triangular patches and e1,e2, ...,e5

are the edges surrounding the node. The shaded region, shown in the Fig. 2. as
Sn, is formed by joining the mid points of the edges, that are connected to the node
n, to the centroids of adjacent triangular patches thus forming a closed boundary
around the node.

Since the method of moments solution calls for the definition of expansion/basis
as well as testing/weighting functions, expansion/basis functions are defined on the
source node n and the testing/weighting functions are defined on the field node m.
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Let there are p number of triangular patches attached to field node m and q number
of triangular patches attached the source node n. By joining the node on which
the basis function or weighting function is defined, to the centroid of the attached
triangular patches, the shaded area on each triangular patch is divided into two sub
triangles, resulting u number of sub triangles around field node m and v number of
sub triangles around the source node n. In this paper, index x is used to represent
the sub triangle attached to the field node and index y is used to represent the sub
triangle attached to the source node.

The node based basis function is defined over the shaded area as follows.

fn
(
r′
)

=

{
1 r′ ∈ Sn

0 Otherwise
(21)

The source density function σ over the surface of the scattering object is approxi-
mated by

σ
(
r′
)

=
Nn

∑
n=1

βn fn (22)

where βn represent the unknown coefficients to be determined and the equality
sign is usually approximate. The basis functions defined over the node has all
advantages as edge based basis functions [see B. Chandrasekhar and S.M. Rao
(2004)].

In the numerical solution of all the three formulations, Galarkin’s approach is used
by defining the testing function in the same manner as it is defined for the basis
function.

wm =

{
1 r ∈ Sm

0 Otherwise
(23)

The next three sub-sections describe the numerical solution procedure for the SLF,
DLF and CLF.

5.1 Single Layer Formulation (SLF)

Testing Eq. 18 with a testing function wm , results in〈
wm,

σ (r′)
2

〉
−
〈

wm,
∫

s
σ
(
r′
)∂G(r, r′)

∂n
ds′
〉

=
〈

wm,
∂Φi

∂n

〉
. (24)

Using the inner product definition described in Sec. 3, Eq. 24 can be written as

1
2

∫
s
wmσ

(
r′
)

ds−
∫

s
wm

∫
s
σ
(
r′
)∂G(r, r′)

∂n
ds′ds =

∫
s
wm

∂Φi

∂n
ds. (25)
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Approximating the integration over the field node at the centroids of the attached
sub triangles, and using Eq. 23, the Eq. 25 becomes

σ (r′)
2

u

∑
x=1

Ax
m −

u

∑
x=1

Ax
m

∫
s
σ
(
r′
)∂G(rcx

m , r′)
∂nx

m
ds′ =

u

∑
x=1

Ax
m

∂Φi

∂nx
m

(26)

where Ax
m is the area of sub-triangle attached to the field node. This approximation

is justified because the sub domains are sufficiently small, which is a necessary
condition to obtain accurate solution using MoM. Substituting the source expansion
defined in Eq. 22 into Eq. 26, results in a system of linear equations, which can be
represented in the matrix form as

Zsl f X = Y (27)

where Zsl f is the impedance matrix of the single layer formulation of size Nn ×Nn,
X and Y are the column vectors of size Nn. The elements of Zsl f , X and Y are given
below.

Zmn
sl f =

⎧⎪⎨
⎪⎩

1
2

u
∑

x=1
Ax

m for m = n and x = y

−
u
∑

x=1

v
∑

y=1
Ax

m

∫
s

∂G(rcx
m ,rcy

n )
∂nx

m
ds′ otherwise

(28)

and

Y m =
u

∑
x=1

Ax
m

∂Φi

∂nx
m

(29)

where rcx
m is the position vector to the centroid of the xth sub-triangle attached to

field node, rcy
n is the position vector to the centroid of the yth sub-triangle attached

to source node and ∂G/∂nx
m is the normal derivative of Green’s function at the

centroid of the xth sub-triangle attached to field node.

Once the elements of the impedance matrix Zsl f and the forcing vector Y are de-
termined, one may solve the linear system of equations, Eq. 27, for the unknown
vector X .

Here we note that, when the frequency of the incident wave is in the close vicinity of
the characteristic frequency related to Dirichlet problem, the impedance matrix Zsl f

becomes highly ill-conditioned and the solution vector X turns out to be spurious
resulting in unphysical values of source distribution σ .
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5.2 Double Layer Formulation (DLF)

Testing Eq. 19 with the functions defined in Eq. 23,〈
wm,

∫
s
n•n′k2σ(r′)G(r, r′)ds′

〉
+
〈

wm,

∫
s

(
n′x∇′σ

)•(nX∇G)ds′
〉

=
〈

wm,
∂Φi

∂n

〉
. (30)

Taking the first term for evaluation,〈
wm,

∫
s
n•n′k2σ(r′)G(r, r′)ds′

〉
=
∫

s
wm

∫
s
n•n′k2σ(r′)G(r, r′)ds′ds

=
u

∑
x=1

Ax
mnx

m •
∫

s
n′k2σ(r′)G(r, r′)ds′

(31)

where nx
m represent the unit normal vectors of the sub triangle connected to the

mth node. We also note that the double surface integration in Eq. 31 is converted
to a single surface integral by approximating the integrand at the centroid of the
sub triangle attached to mth node and multiplying by the area of the sub triangle as
before.

To evaluate the second term in the Eq. 30, we follow the similar procedure men-
tioned in [Chandrasekhar and Rao (2004)], but node based basis function are used
in contrast to the edge based basis functions. The advantages of using the node
based basis function are already mentioned in the earlier section.

Let us define, J′ = n′X∇′σ and the vector J′ is again approximated by a new set of
basis functions. We have,

J′ =
Nf

∑
f=1

g f (r′). (32)

where g f is spread over the triangular patch and assumed to be constant. Since g f

is not an independent quantity, a relationship between βn, fn, and g f may be derived
as follows:

Consider the triangular patch Tf with associated non-boundary edges l1, l2, l3 and
nodes n1,n2,n3 as shown in the Fig. 3. Then, using well-known Stoke’s theorem
and simple vector calculus, J′ = n′X∇′σ may be re-written as
∫

s
J′ds′ =

∫
s
n′X∇′σds′ =

∮
Ce

σ ′dl′ =
β1 f1 (l2 + l3)

2
+

β2 f2 (l3 + l1)
2

+
β3 f3 (l1 + l2)

2

= −β1 f1l1 +β2 f2l2 +β3 f3l3
2

(33)
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Figure 3: Triangular patch Tf and associated edges and nodes.

where Ce is the contour bounding the triangle Tf and li, i = 1,2,3 represent the edge
vectors as shown in the Fig. 3. Noting that,∫

s
J′ds′ =

∫
s
g f ds′

= g f A f n

(34)

where A f n is the area of the triangular patch attached to the source node.

g f =
1

A f n

∫
s
J′ds′ (35)

substituting Eq. 33 into Eq. 35, we get

g f = − 1
2A f n

(β1 f1l1 +β2 f2l2 +β3 f3l3) . (36)

This is the required relationship between βn, fn and g f .

We have,

J′ • (nX∇G) = n•∇GXJ′ = n• (∇X
[
GJ′
]−G∇XJ′

)
. (37)

The term G∇XJ′ vanishes because the curl operation is on the unprimed variable
only. Thus,∫

s
J′ • (nX∇G)ds′ =n•∇X

∫
s
J′Gds′. (38)

Let A =
∫

s J′Gds′, then the above equation can be written as∫
s
J′ • (nX∇G)ds′ =n•∇XA. (39)
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Taking the testing operation,〈
wm,

∫
s
J′•(nX∇G)ds′

〉
=
∫

s
wm (n•∇XA)ds =

∮
Cm

A•dl

= − lm
2
•
(

p

∑
x=1

A
(
rc f p

m

)) (40)

where p is the number of triangular patches attached to the field node and rc f p
m is

the position vector to the centroid of triangular patch attached to the field node. The
expression for the testing operation on right hand side of the Eq. 30 is same as that
of single layer formulation, i.e. Eq. 25.

Substituting Eq. 31, Eq. 40 and RHS of Eq. 26 into Eq. 30, we get

u

∑
x=1

Ax
mnx

m •
∫

s
n′k2σ(r′)G(rcx

m , r′)ds′+
lm
2
•
(

p

∑
x=1

A
(
rc f p

m , r′
))

=
u

∑
x=1

Ax
m

∂Φi

∂nx
m
. (41)

Substituting the source expansion defined in Eq. 21 and Eq. 22, results into a
system of linear equations which can be expressed in matrix form as

Zdl f X = Y (42)

where Zdl f is the impedance matrix for double layer formulation of size Nn×Nn, X
and Y are column vector of size Nn.

Zmn
dl f

=
u

∑
x=1

v

∑
y=1

k2Ax
mnx

m•ny
n

∫
s
G(rcx

m , rcy
n )ds′+

lm
2
• ln

2A f n

(
p

∑
x=1

q

∑
y=1

∫
s f

G
(
rc f p

m , rc f q
n

)
ds′
)

.

(43)

Note that the integration on the first term of right hand side of the above equation
is on the sub triangle attached to the source node and the integration on the second
term is on the triangular patch attached to the source node.

Y m =
u

∑
x=1

Ax
m

∂Φi (rcx
m )

∂nx
m

(44)

where Ax
m is the area of the sub triangle attached to the field node, A f n is the area

of the triangular patch attached to the source node, rcx
m is the position vector to the

centroid of the xth sub triangle attached to field node, rcy
n is the position vector to the

centroid of the yth sub triangle attached to source node, rc f p
m is the position vector
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to the centroid of the pth triangular patch attached to field node, and rc f q
n is the

position vector to the centroid of the qth triangular patch attached to source node.

Here we again note that, as in the case of SLF, DLF also suffers from the resonance
problem and the impedance matrix Zdl f becomes highly ill-conditioned when the
frequency of the incident wave is in the close vicinity of the characteristic frequency
related to Neumann problem. The solution vector X turns out to be spurious result-
ing in unphysical values of source distribution σ .

5.3 Combined Layer Formulation (CLF)

Testing Eq. 20 with the functions defined in Eq. 23

〈
wm,

σ (r′)
2

〉
−
〈

wm,

∫
s
σ
(
r′
)∂G(r, r′)

∂n
ds′
〉

+α
〈

wm,

∫
s
n•n′k2σ(r′)G(r, r′)ds′

〉

+ α
〈

wm,

∫
s

(
n′x∇′σ

)•(nX∇G)ds′
〉

=
〈

wm,
∂Φi

∂n

〉
. (45)

This can be expressed in matrix form as

Zmn
cl f X = Ym (46)

where

Zmn
cl f = Zmn

sl f +αZmn
dl f (47)

as the LHS of the above equation is a linear combination of SLF and DLF.

The impedance matrix of CLF is free from ill-conditioning at all frequencies and
ensures a unique solution.

Integrals appearing in Eq. 28 and Eq. 43 may be evaluated using the techniques
mentioned in [Wilton, Rao, Glisson, Schaubert, Al-Bundak, and Bulter (1984) and
Hammer, Marlowe, and Stroud (1956)] for an accurate solution, as the former con-
tains singular kernels. Here one may note that the number of integrations to carried
for the case of CLF is six (three each for SLF and DLF) for each triangle in case
of edge based solution [Chandrasekhar and Rao (2004b)], where as one may need
twelve integrations for each triangular patch in case of Node based solution of CLF
(six integrations for each SLF and DLF). However, extra time that the node based
solution takes in generating the moment matrix is negligible compared to the time
it saves in the solution of the linear system of equations.

For a plane wave incidence, we set

Φi = e jkk̂•r (48)
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where the propagation vector k̂ is given by,

k̂ = sinθ0 cosφ0ax + sinθ0 sinφ0ay +cos θ0az (49)

(θ0,φ0) define the angles of arrival of the plane wave in the conventional spherical
co-ordinate system and ax, ay and az are the unit vectors along the x, y and z axes,
respectively.

The normal derivative of the incident field may be written as

∂Φi

∂n
= n•∇Φi = jkn• k̂e jkk̂•r. (50)

Once the elements of the impedance matrix Z and the forcing vector Y are deter-
mined, one may solve the linear system of equations, Eqs. 27, 42 and 46, for the
unknown vector X using any standard matrix inversion techniques.

6 Numerical Results

In this section, the numerical solution developed in the above sections is validated
against exact solution wherever available and against the edge based solution wher-
ever exact solutions are not available for the cases of SLF, DLF and CLF. Also the
inverse condition numbers are plotted in order to demonstrate the existence of the
internal resonance problem for the SLF and DLF cases and the elimination of the
resonance problem for the case of CLF. The geometries considered here are simple
canonical shapes like Sphere, Cube, Cylinder and a Cone. For all these cases, the
body is placed at the center of the co-ordinate system and a plane wave, traveling
along –Z axis is incident on the body. Here, we note that, no convergence study
is carried out to ascertain the optimum number of nodes required to obtain certain
degree of accuracy. The scattering cross section is defined by

S = 4π
∣∣∣∣Φs

Φi

∣∣∣∣
2

≈ 1
4π

∣∣∣∣∣
Nn

∑
n=1

βn

[
v

∑
y=1

Ay
nny

n • ry
ne jkny

n•ry
n

]∣∣∣∣∣
2

. (51)

In all the formulations, as a first case, a sphere of radius 1m and 2m are considered
with triangular patch modeling. The modeling is done by dividing the θ and φ
direction equal segments each and the complete modeling procedure is described in
[Chandrasekhar and Rao (2004)]. Also the geometries with sharp corners and sharp
edges such as cube, cylinder and cone are considered in order to demonstrate the
capability of the node based basis functions based on method of moments solution.
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6.1 Single layer formulation (SLF)

In this section, numerical results based on the SLF numerical solution procedure is
presented to validate the results with the exact solution for the cases of spheres of
radii 1m and 2m. Fig. 4 shows the far field scattering cross section of the sphere
versus the polar angle based on the SLF for the case when the sphere of radius 1m
is excited by an acoustic plane wave with k = 1 rad/m, traveling along –Z axis.

It is evident from the figure that, the method of moments solution based on the node
based basis functions matches well with the exact solution [Bowman, Senior and
Uslenghi (1969)]. In order to demonstrate the convergence of the solution, sphere
is modeled with 58 nodes, 112 faces and 168 edges on the surface of the sphere;
156 nodes, 308 faces and 462 edges; as well as with 212 nodes, 420 faces and 630
edges. The results for these three cases are plotted against the exact solution for the
sake of comparison.
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Figure 4: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 1m, subjected to an
axially incident plane wave of k = 1
rad/m, based on Single layer formula-
tion (SLF).
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Figure 5: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 2m, subjected to an
axially incident plane wave of k = 1
rad/m, based on Single layer formula-
tion (SLF).

As a second case, the sphere of radius 2m modeled with 212 nodes and 382 nodes
are also excited by a plane wave with k = 1 rad/m and the scattering cross section
is plotted in Fig. 5. The discrepancy between the two solutions can be attributed to
insufficient number of unknowns and the fact that the surface area of the triangu-
lated sphere is less than that of the actual sphere. The solution for SLF case can be
further improved by increasing the number of unknowns.
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6.2 Double layer formulation (DLF)

In this section, numerical results based on the DLF numerical solution procedure is
presented to validate the results with the exact solution for the cases of spheres of
radii 1m and 2m. Fig. 6 shows the results based on the DLF for the same geometries
considered in the case of SLF viz 58 nodes, 156 nodes and 212 nodes. Next, the
DLF numerical solution procedure is again tested and the results are shown for a
plane wave incidence on a sphere of radius 2m. These results also very well match
with the exact solution and the convergence of the solution is clearly evident in the
Fig. 7 as the number of nodes is increased on the surface of the sphere.
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Figure 6: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 1m, subjected to an
axially incident plane wave of k = 1
rad/m, based on Double layer formula-
tion (DLF).
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Figure 7: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 2m, subjected to an
axially incident plane wave of k = 1
rad/m, based on Double layer formula-
tion (DLF).

The results of the DLF numerical solution procedure shown in Fig. 7 well matches
with the exact solution as compared to the SLF numerical solution procedure for
the case of ka = 2.

6.3 Combined Layer Formulation (CLF)

In this section, numerical results based on the CLF numerical solution procedure is
presented to validate the results with the exact solution for the cases of spheres of
radii 1m and 2m. The complex coupling parameter considered in the CLF solution
is α = 0.1 j, though this value is not critical.

In order to demonstrate the capability of the node based SLF, DLF and CLF solu-
tion, geometries with sharp edges and sharp corners are considered in the following
paragraphs.
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Figure 8: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 1m, subjected to an axi-
ally incident plane wave of k = 1 rad/m,
based on Combined layer formulation
(CLF).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 45 90 135 180
θ

S
212 Nodes

382 Nodes

Exact
X

Y

Z

q

Figure 9: Scattering cross section ver-
sus polar angle for an acoustically rigid
sphere of radius 2m, subjected to an axi-
ally incident plane wave of k = 1 rad/m,
based on Combined layer formulation
(CLF).

First, we consider the case of a cube with side length l = 1m. The case of a cube
presents a challenging task of handling sharp edges and corners. To obtain a trian-
gular patch model, each side of the cube is divided into 4 equal segments resulting
in 96 square patches and 98 nodes on the cube. By joining the diagonals, we get 192
triangular patches and 288 edges. Fig. 10 shows the scattering cross section S as a
function of Θ. It is evident from the figure that the constant basis functions defined
over a node for SLF, DLF and CLF (α = 0.1 j) compare very well with that of edge
based SLF (288 edges) solution. The edge based SLF solution is already validated
in [Chandrasekhar and Rao (2004)]. Also, note that even though the basis functions
are defined on sharp corners, the numerical results are fairly accurate. Finally, we
note that the node-based conventional boundary integral methods [Schuster and
Smith (1985),.Schuster (1985), Seybert, Soenarko, Rizzo, and Shippy (1985), Mal-
bequi, Candel, Rignot (1987)] need complex calculations to obtain accurate results
for this geometry.

As a next example, we consider the case of a finite cylinder of height 2.0m and 1.0m
radius. The triangular patch modeling of the cylinder is obtained by dividing the
length and circumference into 8 and 10 uniform segments, respectively, resulting in
80 rectangular patches. By joining the diagonals, we obtain 160 triangular patches.
The cylinder is closed on both ends by circular disks which are modeled by and
additional 70 triangular patches each. Thus, in total we have 152 nodes, 300 patches
and 450 edges for this geometry. Fig. 11 shows the scattering cross section S as a
function of Θ. For this case also, we note good comparison for SLF, DLF and CLF
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Figure 10: Scattering cross section ver-
sus polar angle for an acoustically rigid
cube of length 1m, subjected to an axi-
ally incident plane wave of k = 1 rad/m,
based on SLF, DLF and CLF.
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Figure 11: Scattering cross section ver-
sus polar angle for an acoustically rigid
cylinder of radius 1m and height 2m,
subjected to an axially incident plane
wave k = 1 rad/m, based on SLF, DLF
and CLF.

(α = 0.1 j) results with the edge based SLF (450 edges) result.

Lastly, we consider a cone of 1m height and 1m radius. The cone has a sharp
corner at the tip which is difficult to handle using node-based BIE methods. Using
a similar discretization scheme as in the case of finite cylinder, the cone is divided
into 112 nodes, 220 patches and 330 edges. Fig. 12 shows the scattering cross
section S for SLF, DLF and CLF (α = 0.1 j) as a function of Θ which compares
very well with the edge based SLF (330 edges) result.

6.4 Elimination of ill-conditioning problem in CLF

In this section the presence of ill-conditioning of the impedance matrices in the
cases of SLF and DLF are presented along with the non-existence of the ill-conditioning
for the case of CLF.

Fig. 13 shows the absolute value of logarithm of the inverse condition number
of the impedance matrix of the SLF, DLF and CLF for the case of a sphere with
a radius of 1m versus the wave number k. It is evident from the Fig that matrix
becomes highly ill-conditioned when the frequency of the incident acoustic wave
is close to or matches with the resonance frequency of cavity formed by the surface
of the sphere. The matrix becomes ill-conditioned when k = 3.19 and k = 2.1 for
the cases of SLF and DLF respectively. However no such phenomenon exists for
the case of CLF. The corresponding theoretical values are around k = 3.14 and
k = 2.08 which are the roots of the Spherical Bessel function for the Dirichlet
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Figure 12: Scattering cross section ver-
sus polar angle for an acoustically rigid
cone of radius 1m and height 1m, sub-
jected to an axially incident plane wave
k = 1 rad/m, based on SLF, DLF and
CLF.
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Figure 13: Condition number versus
the frequency for an acoustically rigid
sphere of radius 1m, subjected to an ax-
ially incident plane wave k = 1 rad/m,
based on SLF, DLF and CLF.
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Figure 14: Condition number versus the frequency for an acoustically rigid cube of
side length 1m, subjected to an axially incident plane wave k = 1 rad/m, based on
SLF, DLF and CLF.

and Neumann problems. The difference between the numerical results and the
theoretical values may be attributed to the approximation of the sphere with the
triangular patch modeling.

Fig. 14 shows the absolute value of logarithm of the inverse condition number of
the impedance matrix of the SLF, DLF and CLF for the case of a cube with a side
length of 1m versus the wave number k. Fig shows the SLF and DLF fail around
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k = 5.4 and k = 3.0 and CLF produces a conditioned matrix at all frequencies.

7 Conclusions

In this work, a novel numerical technique is presented, which implements the so-
lution proposed by Burton and Miller in order to eliminate the resonance problem
associated with the boundary integral equation formulation of the exterior acoustic
scattering problem. The SLF and DLF do suffer the ill-conditioning of the result-
ing impedance matrix which does not exist in the case of CLF. The CLF along with
SLF and DLF are solved using the method of moments solution and by defining
the basis functions on the nodes. Though traditionally, DLF is difficult to solve
due to the presence of hyper-singular kernel, the DLF is solved, in this work, using
simple vector calculus techniques to circumvent the problems of hyper-singularity
and by defining the basis functions on the nodes. Node based basis functions are
defined to reduce the size of impedance matrix and hence the time required for
solving the linear system of equations. Triangular patch modeling is used to ap-
proximate the surface of the scattering body. The solutions of SLF, DLF and CLF
are validated with respect to the exact solutions wherever available and edge based
solution wherever exact solutions are not available. However, no comparison is
made in this paper on the accuracy of node based versus edge based schemes. It
is clearly evident from the numerical results that, schemes based on node based
basis functions converge towards the exact solutions with higher number of nodes
and have advantage over the edge based basis functions from the computational
complexity perspective.
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