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Multi-material Eulerian Formulations and Hydrocode for
the Simulation of Explosions

Ma Tianbao1, Wang Cheng and Ning Jianguo

Abstract: A multi-material Eulerian hydrodynamic numerical method and hy-
drocode that can effectively simulate explosion problems in engineering practice
were developed in this study. A modified Youngs’ interface reconstruction algo-
rithm was proposed for mixed cells, in which the material’s volume fractions of
the surrounding cells are not only used to reconstruct the material interface but
also adopted to determine the transport order of the material. The algorithm de-
veloped herein was validated by the modeling of several tests, such as objects with
different shapes moving in translational, rotating and shear flow field in two dimen-
sional Descartes coordinates and axis-symmetric cylindrical coordinates. Results
show that convergence is indeed obtained. Moreover, the explosion problem in
the tunnel with an expansion-chamber and the jet formation of shaped charge were
numerically simulated, and the numerical results show good agreement with the
observed experimental data.
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1 Introduction

There are many explosion phenomena in engineering practice, such as explosion
machining, shaped charge jets in oil well perforators in the oil industry, evaluation
of explosion accidents in buildings or underground tunnels. Besides theoretical and
experimental approaches, numerical simulations begin to play an important role in
studying these phenomena with the rapid progress in computer software and nu-
merical methods. The commonly used methods for these large distortion problems
are Eulerian method and meshless method [Arefmanesh, Najafi and Abdi(2008);
Moulinec, Issa, Marongiu and Violeau (2008); Mohammadi (2008); Han, Liu, Ra-
jendran and Atluri (2006)].
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In this paper, a two dimensional Eulerian finite difference method and hydrocode
were developed for solving multi-material elastic-plastic hydrodynamic and in par-
ticular explosion problems. A modified Young’s interface reconstruction algorithm
was proposed for mixed cells. In this algorithm, the volume fractions of material
of surrounding cells are used not only to reconstruct the material interface but also
to determine the transport order of materials. To test the numerical precision of the
modified Young’s interface reconstruction algorithm, movements of objects with a
variety of shapes in translational, rotating, and shear flow fields were numerically
simulated in two dimensional Descartes as well as axis-symmetric cylindrical coor-
dinate. In addition, as a test, the explosion field of tunnel with expansion-chamber
and the jet formation of shaped charge were also numerically simulated.

2 Governing Equations

2.1 Conservation Equations

To simplify the computational model, materials studied here are assumed to be an
isotropic and uniform continuum with ideal plasticity and in local thermodynamic
equilibrium. Only small deformations are considered here.

Under such assumptions, the mass, momentum and energy conservation equations
are as follows [Ning, Wang and Ma(2006); Ma and Ning(2005)],

∂ρ
∂ t

+∇ · (ρu) = 0 (1)

∂ρu
∂ t

+∇ · (ρu⊗u) = ∇ ·σσσ (2)

∂E
∂ t

+∇ · (ρEu) = σσσ : ε̇εε (3)

These conservation equations can be rewritten as

∂ρ
∂ t

+u ·∇ρ +ρ∇ ·u = 0 (4)

ρ
(

∂u
∂ t

+u · (∇u)
)

= ∇ ·σσσ (5)

ρ
(

∂e
∂ t

+u ·∇e

)
= σσσ : ε̇εε (6)

where t is time, u is the velocity, σσσ is the Cauchy stress tensor, ε̇εε is the strain rate
tensor, ρ is the density, E is the total specific energy, and e is the specific internal
energy.
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In two-dimensional axis-symmetric coordinates,
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∂uz

∂ z
+
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= 0 (7)
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)
= −∂P

∂ z
+
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∂ z
+
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+Szz
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∂ z
+Srr
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∂ r
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(
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∂ z

)
− ur (Szz +Srr)

r
(10)

where r and z are the radial and axial coordinate of the cylindrical coordinate sys-
tem, respectively; ur and uz are the radial and axial component of velocity; Srr, Szz,
Srz are components of stress deviator tensor.

2.2 Constitutive Relation

Within the range of small deformations, deviatoric stresses follow the general Hooke’s
law,

∇
S = Ṡ+Ω ·S−S ·Ω

= 2G [ε̇εε − (trε̇εε)I]+Ω ·S−S ·Ω
(11)

where, the strain rate tensor and spin rate tensor are

ε̇εε =
1
2

(u∇+∇u) (12)

Ω =
1
2

(u∇−∇u) (13)

in two-dimensional axis-symmetric coordinates,

Ṡrr = 2G

(
ε̇rr − 1

3
D

)
−2R′Srz (14)

Ṡzz = 2G

(
ε̇zz − 1

3
D

)
−2R′Srz (15)
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Ṡrz = 2Gε̇rz +R′ (Szz −Srr) (16)

where G is the shear modulus of elasticity; ε̇rr, ε̇zz and ε̇rz are components of strain
rates. In the cylindrical coordinate, ε̇rr, ε̇zz, ε̇rz, D, and R′ can be expressed as,

ε̇rr =
∂ur

∂ r
(17)

ε̇zz =
∂uz

∂ z
(18)

ε̇rz =
1
2

(
∂uz

∂ r
+

∂ur

∂ z

)
(19)

D =
∂ (rur)

r∂ r
+

∂uz

∂ z
(20)

R′ =
1
2

(
∂ur

∂ z
− ∂uz

∂ r

)
(21)

2.3 Yield Criterion

The plastic flow regime is determined by the von-Mises criterion in which the flow
is considered as plastic when the second stress invariant J2 exceeds the known flow
stress Y0. The individual deviators are then brought back to the flow surface,

Si j = Si j

√
2Y 2

0

3J2
(22)

2.4 Equation of State

The equation of state can be expressed as follows

P = P(ρ ,e) (23)

Some typical equations of state such as JWL, Mie-Grv̈neisen and so on have been
incorporated into the hydrocode, which can be seen in Section 6 and Section 7.

2.5 Artificial Viscosity

An artificial viscosity is introduced to calculate shock waves and improve the sta-
bility of solutions:

qr = ρ (|Δur|−Δur) (an (|Δur|−Δur)+bnc) (24)

qz = ρ (|Δuz|−Δuz) (an (|Δuz|−Δuz)+bnc) (25)
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where qr and qz are artificial viscosities in the r and z direction, respectively; an

and bn are the second-order and the first order artificial viscosity coefficient, re-
spectively; c is the speed of sound; Δur is the velocity gradient in the r direction;
Δuz is the velocity gradient in the z-direction.

2.6 Determination of Time Step

To ensure the convergence of the scheme, the time step is selected so that it satisfies
the CFL (Courant-Friedrichs-Lewy) condition

Δtn = α0 ·min

[
Δzi

un
zi, j +c

,
Δr j

un
ri, j +c

]
, 0 < α0 < 1 (26)

3 Numerical Method

3.1 Eulerian mesh

In the cylindrical coordinate, the computational domain is discrete into cylindrical
meshes. Except for the artificial viscosity whose value is taken at the midpoint of
cell edge, all other physical quantities, such as pressure, density, specific internal
energy, velocity, and deviatoric stresses, are represented by their values at the cell
center.

Peuu zr ,,,,ρ

zzrzrr SSS ,,

zq
r

z

zq

rqrq •

Figure 1: Definition of physical quantities

3.2 Lagrangian and advection computation

The conservation equations have the general form

∂φφφ
∂ t

+u ·∇φφφ = H (27)
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where φφφ = [ρ ,u,e]T , and H is the source term.

Like some explicit Eulerian hydrocodes, the operator splitting method is employed
here in which the conservation laws are separated into Lagrangian and Eulerian
equations,

∂φφφ
∂ t

= H (28)

∂φφφ
∂ t

+u ·∇φφφ = 0 (29)

Thus the calculation for each time step is divided into two steps. The first step
is a Lagrangian step in which the mesh is allowed to distort with the material.
It is in this step that the changes in velocity and internal energy due to pressure
and deviatoric stresses are calculated. The Lagrangian equations are numerically
integrated with time by using a first order accuracy finite difference scheme, and
changes in both axial and radial direction are calculated simultaneously,

φ̃φφ n+1
=φφφ n +

Δt
Δz

(
Hn

i+1/2, j −Hn
i−1/2, j

)
+

Δt
Δr

(
Hn

i, j+1/2 −Hn
i, j−1/2

) (30)

Substituting ũn+1 to Eq.29, the following equation is obtained:

φφφ n+1 = φ̃φφ n+1 −Δt ũn+1 ·∇φ̃φφ (31)

Generally speaking, the solve of Eq.31 is accomplished by moving material across
cell edges, in which the appropriate amounts of volume, mass, momentum, and
internal energy are transported between the cells. So this step is usually called
transport step. This may be thought of as remapping the distorted mesh at the end
of step 1 back to the original fixed Eulerian frame. Because the remap differential
equations Eq.29 are multidimensional and difficult to solve, they are simplified by
being transformed to a set of one-dimensional equations using operator splitting
method.

At first, the volume flux between cells is calculated. All of the materials to the
right of the dotted line in Fig.2 will cross the right-hand edge during this step. The
volume flux for edge (i, j +1/2) is given by

Fi, j+1/2 = Δtui, j+1/2 ·Ai, j+1/2 (32)

where u is the velocity vector and A is cell edge area vector. Then interface track-
ing algorithm or interface reconstruction algorithm decides which materials in the
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donor cell are moved with the volume and each material’s volume flux. After the
transport of material θ in the r direction is performed, the intermediate value of its
volume fraction is given by

f̃θ =
(

f n
θVi, j +Fθ i, j−1/2 −Fθ i, j+1/2

)
/Vi, j (33)

in which Vi j is the volume of the (i, j)th cell; f is the volume fraction of material θ
at time step n; F is the volume flux of material θ across the cell edges.

Figure 2: Volume flux in advection step

Then the material interface reconstruction algorithm is used again to determine
the new interface location using the value f̃θ . And through the transport in the
z-direction, the volume fraction of material θ at time step n+1 is finally calculated.

f n+1
θ =

(
f̃θVi, j +Fθ i−1/2, j −Fθ i+1/2, j

)
/Vi, j (34)

Finally, the mass, momentum and internal energy of each material are moved be-
tween cells. To improve the accuracy, a second order conservative van Leer remap
scheme[Van, L. B. (1997)] is adopted, in which a uniform distribution in the donor
cell is replaced with a linear distribution. This scheme drastically reduces numeri-
cal dispersions and does not introduce spurious oscillations common to other higher
order schemes.

In the advection or remap step, it is difficult to calculate advection for multi-
material mixed cells. Interface reconstruction techniques have to be used to dy-
namically construct material interfaces within mixed cells. This will be discussed
in the next section.
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4 Calculation of Multi-Material Interface

The Eulerian method, for its advantages in simulating flows with large distortions,
has been widely used in simulating explosion problems. However, when more
than one material is present in the donor cell, the Eulerian method is difficult to
identify material interfaces. Thus, interface reconstruction algorithms are required.
Many algorithms have been successfully developed such as cell-type[Hardlow and
Welch (1965); Gentry, Martin and Daly (1966)], VOF (volume of fluid) [Hirt and
Nichols (1981)], and Level Set method[Sethian and Strain (1992)]. Among them,
the VOF method, which includes SLIC (simple line interface calculation)[Noh and
Woodward (1976)] and Youngs’ interface reconstruction method[Youngs (1982)],
is widely adopted in many Eulerian hydrocodes. W. J. Rider [Rider and Kothe
(1998)] summarized the salient features of notable interface reconstruction and vol-
ume advection algorithms.

The second order Youngs’ interface reconstruction algorithm is efficient for its sim-
plicity and robustness. The basic idea is to replace the real material interface by a
straight line as shown in Fig.3, then to determine the normal to the straight line
based on the volume fractions of this and neighboring cells, and finally to adjust
the position of straight line to match the volume fraction of the material. In a uni-
form mesh, Youngs uses equation (35) to calculate the slope [Pilliod (2004)].

∂ f
∂ r

=
fE − fW

2Δr
,

∂ f
∂ z

=
fN − fS

2Δz
(35a)

k = −∂ f
∂ r

/∂ f
∂ z

(35b)

The variables fE , fW , fN , and fS shown in Fig. 4 are given by

fE =
fi−1, j+1 +α fi, j+1 + fi+1, j+1

2+α
,

fW =
fi−1, j−1 +α fi, j−1 + fi+1, j−1

2+α

fN =
fi+1, j−1 +α fi+1, j + fi+1, j+1

2+α
,

fS =
fi−1, j−1 +α fi−1, j + fi−1, j+1

2+α

(35c)

where α is a free parameter. Parker and Youngs reported that α=2 seemed to give
the best results.

Youngs’ algorithm only determines the location of material interfaces in mixed
cells. It doesn’t take into account the sequence of transported materials, which has
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                 (a)                                                       (b) 

Figure 3: Material interface reconstructed by Youngs’ algorithm
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Figure 4: Configuration of cells

to be addressed in the Eulerian method. Here we propose a criterion to determine
the transportation sequence.

In this criterion, the material occupation number for material k in the cells to the left
and right of the current cell, ILk and IRk, is assigned to 0 if material k is absent and
1 if it is present, respectively. Then the volume fraction of material k in the cells to
the left and right of the current cell VLk and VRk is calculated, where 0≤VLk ≤1,
0≤VRk ≤1. Based on the values of ILk, IRk, VLk and VRk, the variables Lk and Rk

are calculated by

Lk = ILk •Sgn(VRk −VLk) (36)

Rk = IRk •Sgn(VRk −VLk) (37)
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Depending on all possible combinations of Lk and Rk, the distribution of material k
can be categorized into five configurations as shown in Tab.1 and Fig.5.

Table 1: Configuration of materials

Lk Rk configuration
1 0 1 a
2 1 1 b
3 -1 -1 c
4 -1 0 d
5 0 0 e

Once knowing the configuration of a specific material, its transportation priority
can be determined based on the continuous principle. The transportation priority
is a>b>c>d>e. For example, if species A belongs to the configuration b whereas
species B belongs to the configuration c, the transport of species A is more prefer-
entially considered than species B.

5 Numerical Tests

To test the resolution of the interface reconstruction algorithm proposed here, the
movements of objects with various shapes in translational, rotating and shear flow
field were investigated. The numerical verification was also performed to test the
material interface tracking algorithm. In numerical calculations, the focus was
placed onto verifying if the shape of objects keeps intact.

5.1 Movement of a ring in a two dimensional translational flow in Descartes
coordinates

The size of computational region is 2×2, which is further divided into 200×200
rectangular Eulerian mesh. The length of time step is 0.001. The translational
velocity field is given by uz (z, r) = ur (z, r) = 1.0.

The snapshots of the ring at different time steps are shown in Fig.6 where n repre-
sents the number of time step. As shown, the shape as well as volume of the ring
does not change during the motion.

5.2 Movement of a semicircle in a two dimensional rotating flow in Descartes
coordinates

The size of computational region is π ×π , which is further divided into 200×200
rectangular Eulerian mesh. The length of time step is 0.001. The rotating velocity
field is given by uz (z, r) = −π · (r−π/2), ur (z, r) = π · (z−π/2).
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(i,j+1)(i,j-1) (i,j) 

(a) Configuration a      
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(b) Configuration b 
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Figure 5: Five material configurations of modified Youngs’ algorithm
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(a) n=0                            (b) n=100

        
    (c) n=200                           (d) n=400 

Figure 6: The snapshots of a ring in two dimensional translational velocity field at
different time steps

         
(a) n=0                            (b) n=500

         
  (c) n=1000                      (d) n=2000 

Figure 7: The snapshots of a semicircle in two dimensional rotating velocity field
at different time steps
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The snapshots of the semicircle are shown in Fig.7 at time step 0, 500, 1000, and
2000, respectively. It can be seen from the figure that, even through the shape of
the semicircle keeps well during simulation; the shape changes more than the circle
in Fig.6. Particularly, at the large time step, the edge of the semicircle becomes less
smooth and its corner is less sharp too.

5.3 Movement of a Disk in a two dimensional shear flow in Descartes coordi-
nates

The size of computational region is π×π , which is further divided into 200×200
rectangular Eulerian mesh. The length of time step is 0.001. The shear flow is
given by uz (z, r) = −π · sinz · cos r; ur (z, r) = π · cosz · sinr.

Taking them as initial values, calculation is performed until time step is n=1500,
and then the state at time step n=1500 is treated as initial condition, calculation is
reversely performed to time step n=3000 in order to test if the disk can be brought
back to its initiation configuration, as indicated in Fig.8. It is noted that the disk
can be back to its starting shape without any evident difference.

(a) n=0                   (b) n=1250                (c) n=1500 

(d) n=1750            (e) n=3000  

Figure 8: The snapshots of a disk moving in a two dimensional the shear flow

5.4 Movement of objects with conical nose and ogive nose in an axis-symmetric
translational flow

The size of computational region is 10×2, which is further divided into 500×100
rectangular Eulerian mesh. The length of time step is 0.001. The initial velocity at
z and r direction is uz0 = 1.0 and ur0 = 0.0, respectively.
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(a) n=0                                  (b) n=300 

  (c) n=600                              (d) n=1000

Figure 9: The snapshots of an object with conical nose in an axis-symmetric trans-
lational velocity field

(a) n=0                                       (b) n=300

  (c) n=600                              (d) n=1000

Figure 10: The snapshots of an object with ogive nose in an axis-symmetric trans-
lational velocity field

The snapshots of the objects with conical nose and ogive-nose are shown in Fig. 9
and Fig. 10, respectively. In both cases, the shape of the nose changes while the
size and whole shape remain the same.

As shown in above examples, using the modified Youngs’ interface reconstruction
algorithm to describe the material interface in Eulerian hydrocode is feasible. The
algorithm keeps the shape and volume of objects with either a curve or straight
boundary in both Descartes and cylindrical coordinates pretty well.

6 Explosion Problem in Tunnel with Explosion-Chamber

In engineering practice, it is often required to evaluate the risk of explosion acci-
dents and take the corresponding protection measures to alleviate the damage of
buildings, engineering facilities and human beings from explosions. The shock
wave interactions with barriers are crucial in the protection design of mines, tun-
nels, factories and so on. However, it is difficult to study these interactions in ex-
plosion experimentally, because explosion is usually occurred within a very short
period and is very dangerous due to the high pressure and temperature. As a result,
explosion is often studied by numerical simulation. To evaluate the efficiency of
the proposed Eulerian method and hydrocode in the simulation of these problems,
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the simulation of explosions in a tunnel was discussed.

L

z

L2L1 L1

Concrete

r

Air Dd
Explosive 

Figure 11: The schematic representation of a tunnel with an expansion-chamber

The schematic representation of explosion field in a tunnel with an expansion-
chamber is shown in Fig.11. The size of computational region is 25m×5.2m. The
diameter of the tunnel is 2.5m. The mass of the explosive that placed on the en-
trance of the tunnel is 450kg. The computational region is divided into 500×104
rectangular Eulerian mesh. The length of the mesh is 0.05m.

In a tunnel with uniform section (D = d), the empirical attenuation law of shock
wave over-pressure is,

ΔP = 0.1692
( m

SR

) 1
3
+0.0269

( m
SR

) 2
3
+2.031

( m
SR

)
(38)

where ΔP is the peak value of the over-pressure, m is the mass of the TNT explosive,
S is the section area of the tunnel, and R is the distance to the explosion point.

The simulation results of shock waves propagation in uniform section tunnel are vi-
sualized[Zhang, Ning and Zheng (1999)] in Fig.12. Table 2 gives the over-pressure
results from computation and empirical formula. It shows that the differences be-
tween the values from the two different methods are small and in the acceptable
range.

To study the effects of expansion-chamber size on the attenuation of shock waves,
explosions in tunnels with different expansion-chamber sizes were numerically
simulated. The simulation results are visualized in Fig.13. In Fig.13, the reflection
and disturbance of the shock wave in the expansion-chamber can be seen clearly.
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Table 2: Attenuation of shock waves in a uniform section tunnel
R (m) 6 8 10 12 14 16
Empirical
formula (MPa)

33.9 25 20.3 16.9 14.5 12.7

numerical
results (MPa)

35.1 26.7 22.7 17.1 15.4 13.2

(a) n =100 t=0.16ms  

(b) n =2000  t=2.16ms 

(c) n =3000  t=3.8ms 

(d) n =4000  t=5.85ms 

Figure 12: Propagation of shock waves in uniform section tunnel

Furthermore, let P2 and P1 denote the pressure at the entrance of expansion-chamber
and exit of expansion-chamber, respectively, the variation of ratio of P2 to P1 can
be obtained. These results are summarized in Table 3. The following conclusions
are drawn:

(1) When the length of the expansion-chamber is a constant, the pressure ratio of
P2 to P1 decreases as the diameter of the tunnel increases. The reason is that,
as its diameter increases, the tunnel produces more expansion disturbance to
the shock waves and makes the energy of shock waves dissipate more quickly.
Meanwhile, the propagation time of shock waves in the tunnel also increases
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(a) n=1100  t=1.19ms    

(b) n=2600  t=3.0ms 

(c) n=3600  t=4.14ms   

(d) n=5500  t=6.29ms 
Figure 13: Propagation of shock waves in the tunnel with expansion-chamber

with the diameter of expansion-chamber. For example, when L2 = 2d, the
propagation time of shock waves through the duct for D = 2d, D = 3d and
D = 4d are 7.5ms, 7.7ms, 7.9ms, respectively.

(2) When the diameter of the expansion-chamber is a constant, the tunnel can
weaken the shock waves more effectively as its length increases. The prop-
agation time of shock waves in the tunnel also increases with the length of
expansion-chamber. These conclusions provide valuable guidance for the de-
sign of expansion tube.

7 Calculations of Steel Shaped Charge Jet

As a test, the formation of shaped charge jet with conical angle of 70˚/61.2˚ on
the inside and outside surface of steel liner wall was numerically simulated. The
schematic representation of experimental apparatus is shown in Fig.14. Three ex-
perimental results are averaged as the final experimental value [Wen (1998)].
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Table 3: The variation of ratio of P2 to P1

L2
D

2d 3d 4d
1d 0.43 0.36 0.29
2d 0.35 0.34 0.27
3d 0.32 0.30 0.25
4d 0.29 0.28 0.23

x-ray film 

Detonator 

explosive 

liner

Protective wall 
X ray 2 

X ray 1 

#    #

Figure 14: Schematic representation of the experimental apparatus

High explosive detonation is simulated by a programmed burn model. The Jones-
Wilkins-Lee (JWL) equation of state is adopted here, which is

P = A(1− ω
R1V

)e−R1V +B(1− ω
R2V

)e−R2V +
ωE
V

(39)

where A,B are linear coefficients used in JWL equation of state; R1, R2, ω are
nonlinear coefficients used in JWL equation of state; E is specific internal energy
per unit volume; V is the relative volume of explosive products. For the current
study, B explosive is used as the main charge with parameters A=3.712×1011Pa,
B=3.231×109Pa, R1=4.15, R2=0.95, ω=0.30, E=7.0×109J·m−3, ρ=1600kg·m−3,
PCJ=1.85×1010Pa, DCJ=6900m·s−1. The diameter of the charge is 40mm, and the
height is 41mm.
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70º61.2º

1.5

22

φ30 φ31.6

Figure 15: Geometric model of the liner

The ideal gas equation of state is used to describe air

P = (k−1)ρ · e (40)

where k is the ratio of specific heats.

The geometry of the steel liner is shown in Fig. 15. The Mie-Grneisen equation of
state for metal can be expressed by

P = PH

(
1− Γμ

2

)
+Γρ (e−e0) (41)

and

PH =

{
k1μ +k2μ2 +k3μ3 μ ≥ 0

k1μ μ < 0
(42)

where Γ is Gruneisen constant, k1, k2 and k3 are the known material constants.

The detonation of high explosive, the expansion of detonation products, the col-
lapse of liner, and the jet formation are shown in Fig.16. These images show that
the numerical method proposed in this paper can give better resolution of material
interfaces.

As shown in Fig. 17, the maximum tip velocity reaches the value of 0.48cm/μs
around t=12 μs and then slows down. At the time of 30.005μs, as shown in Ta-
ble 4, the computed tip velocity is 0.4484cm/μs while the experimental value is
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(a ) t=2.945 s

(b) t=7.859 s

(c) t=11.836 s

(d) t=19.810 s

Figure 16: Jet formation of shaped charge

0.4625cm/μs. Similarly, the computed tail velocity is 0.1108cm/μs and is a little
greater than the experimental value of 0.1010cm/μs.

The total length of the shaped charge jet as a function of time is shown in Fig.18.
At time of 25.703μs, the length of the jet (the slug is not included) is 56.4mm,
which is somehow shorter than the experimental value of 59.67mm.

The computational results as well as experimental values for the tip velocity, tail
velocity and length, and diameter of the jet are summarized in Table 4. The com-
putational results are in a good agreement with the experimental values, which
indicates that the numerical method proposed in this paper is reasonable and useful
for the optimization design of shaped charge jet.

The variation of collapse angles along the inside and the outside surfaces of the
liner wall, β in and β out, are plotted in Fig. 20 as a function of time. It is helpful in
the study of the formation process of the shaped charge jet
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Figure 17: Variations of tip velocity of the jet versus time
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Figure 18: Variations of length of the jet versus time
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Table 4: Comparison of experimental values to computed results

Computed result Experimental value relative error
Tip velocity
(cm/μs)

0.4484 0.4625 3.05%

Tail velocity
(cm/μs)

0.1108 0.1010 9.70%

Length
(mm)

56.4 59.67 5.48%

Diameter
(mm)

2.6 2.23 16.59%

liner 

jet slug in out 

Figure 19: Schematic representation of collapse angles along the inside and outside
surfaces of the liner wall

8 Conclusions

A multi-material Eulerian hydrodynamic numerical methods and modified Youngs’
interface reconstruction algorithm were proposed in this study. Based on the above
algorithm, the corresponding hydrocode was developed. Objects with a variety
of shapes moving in different flow fields were numerically simulated to test the
numerical precision of the proposed interface reconstruction algorithm. The ex-
plosion problem in the tunnel with an explosion-chamber and the jet formation of
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Figure 20: The variation of collapse angles along the inside and outside surfaces of
the liner wall as a function of time

shaped charge were numerically simulated. The numerical results indicate that the
numerical method and hydrocode proposed in this study is feasible and efficient for
the simulation of engineering problems.
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