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Unsteady 3D Boundary Element Method for Oscillating
Wing

Marco La Mantia1 and Peter Dabnichki1,2

Abstract: A potential flow based boundary element method was devised to ob-
tain the hydrodynamic forces acting on oscillating wings. A new formulation of
the unsteady Kutta condition, postulating a finite pressure difference at the trailing
edge of the flapping wing and proposed earlier by the authors, is implemented in
the numerical procedure. A comparison with published experimental data (Read
et al., 2003) is carried out and the three-dimensional computational results showed
good agreement, especially if compared with a similar two-dimensional numerical
approach (La Mantia and Dabnichki, 2008) and the potential analytical model of
Garrick (1936). The need of considering the differences between the actual flow
conditions and the assumptions of the computational model (e.g. to estimate inertia
related effects) is underlined and the potential three-dimensional code is deemed to
be a further step in the direction of a novel physically based modelling of flapping
flight.

Keyword: Panel method, Unsteady flow, Flapping wing

1 Introduction

Birds have always fascinated humans with their ability to defy gravity and roam the
vast air. Slightly later there a considerable interest was sparked into understanding
the locomotion of different aquatic species. Only in the 20th century humans started
analysing their own ability to swim which lead to a considerable interest into the
different mechanisms of human propulsion. Lauder and Dabnichki and Bartlett
(2001) demonstrated the crucial role of an precise kinematic analysis for accurate
estimate of a propulsion force in human front crawl swimming. Lauder and Dab-
nichki (2005) developed experimental simulation through the use of robotic arm
that allowed direct measurement of the propulsive force and produced somewhat
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unexpected results. Subsequently Gardano and Dabnichki (2006a, 2006b) pro-
duced a BEM based computational model that showed very close agreement with
the above experimental results. The model proposed by Gardano and Dabnichki
(2006a) showed that BEM is very well suited for unsteady analysis as it allows to
separate the kinematic contribution and the dynamic effect y modelling the added
mass effect. They also showed that the added mass effect is by far the most im-
portant contributor in human propulsion generation. However, the limitation of the
proposed model is that it is in essence quasi-static and as such is not fully suited
for analysis of aquatic species who use different propulsion modes. La Mantia and
Dabnichki (2006, 2007) proposed a new approach to model the kinematics by im-
plementing wake modelling. This approach has been further developed in the three
dimensional case in this work.

The interest in the area of aquatic and aerial propulsion of animals is long standing
and there is a wealth of theoretical and experimental results, a short over view of
which is presented below. Rozhdestvensky and Ryzhov (2003) reviewed theoreti-
cal and experimental studies of flapping-wing propulsors and of vehicles equipped
with them. The complex character of the problem was underlined and key areas of
interest identified, e.g. the effects of flow unsteadiness, wing flexibility and three-
dimensionality. Triantafyllou et al. (2004) described the progress in understanding
some basic mechanisms of force production and flow manipulation in oscillating
wings for underwater use. Their review, focused primarily on experimental studies,
showed that there is a considerable gap in understanding of flapping flight mecha-
nism.

A number of works (Anderson et al., 1998, Read et al., 2003, and Schouveiler et
al., 2005) studied experimentally an aquatic propulsion system able to produce such
large forces. Experiments on a harmonically heaving and pitching wing were per-
formed to determine its propulsive efficiency, as a function of the principal param-
eters: (i) phase angle between the heave and pitch motions, (ii) heave amplitude,
(iii) Strouhal number and (iv) maximum angle of attack. Systematic measurements
showed the existence of an efficiency peak for optimal set of parameters. A param-
eters’ range where adequate efficiency and high thrust are achieved together was
also identified.

Basu and Hancock (1978) were among the first to develop a panel method for the
calculation of the forces on a two-dimensional rigid foil undergoing an arbitrary
unsteady motion in an inviscid and incompressible flow. An appropriate boundary
condition, known as Kutta condition, was added to obtain a unique solution. It
defines the flow characteristics at the trailing edge of the moving foil.

The steady two-dimensional trailing-edge condition was independently formulated
by Chaplygin (1910), Kutta (1910) and Zhukovski (1910) to avoid the mathematical
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difficulties of the conformal mapping method at the foil trailing edge. The condition
ensures that the flow passes the trailing edge smoothly with a finite velocity. Hess
(1990), in a broad review of various panel methods, stated that the specification of
a proper Kutta condition is more important than any other detail of the numerical
implementation.

Poling and Telionis (1986) examined a number of unsteady flowfields and their
experimental results indicate that the classical Kutta condition, which states that the
velocity at the trailing edge is finite and the pressure difference there is zero, is not
valid in certain conditions. Other experimental studies (Satyanarayana and Davis,
1978, and Ho and Chen, 1981) reached similar conclusions analysing the flow in the
proximity of the trailing edge of oscillating wings. McCroskey (1982), in a wide
ranging review of unsteady aerodynamics, stated that finite pressure loading and
abrupt streamlines curvature could exist in the trailing-edge region of oscillating
wing. The numerical results of Young and Lai (2004) show that flow separation
occurs at the trailing edge of heaving foils creating an effective blunt-edge body.
More precisely, the flow streamlines form time-dependant trailing-edge vortices
rather than smoothly departing from the trailing edge on both sides. The edge flow
mechanism was independently analysed by Liebe (2007) who proposed to replace
the classical Kutta condition with a more general condition based on the formation
and periodic shedding of trailing-edge vortices. This led to the development of a
novel approach (Finite Vortex Model) for computing the forces acting on fixed and
moving wings.

There is not any experimental evidence supporting the notion that the pressure dif-
ference at the trailing edge for unsteady motion of high frequency and large am-
plitude ought to be equal to zero. Contrary to this, the works of Satyanarayana
and Davis (1978), Ho and Chen (1981) and Poling and Telionis (1986) suggest that
the pressure difference should be finite rather than zero. In essence the relaxation
of the postulated zero pressure difference at trailing edge is a logical first step in
the formulation of a comprehensive unsteady Kutta condition, as discussed by La
Mantia and Dabnichki (2008). This would allow considering the variation in direc-
tion and magnitude of the velocities across the trailing edge (in essence to consider
the formation and shedding of trailing-edge vortices). Such more general pressure
condition also aims to account for the viscosity effects in the otherwise inviscid
numerical model. A similar modified trailing-edge condition for unsteady flows
was already employed in a two-dimensional potential boundary element method
(La Mantia and Dabnichki, 2008) and its implementation in a three-dimensional
panel method is presented here.

The boundary element method and the related panel method have been success-
fully applied to various fluid mechanics problems (Soares and Mansur, 2005, Gar-
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dano and Dabnichki, 2006a, Sellountos and Sequeira, 2008, and Sellier, 2008) and
showed both computational speed and reliability, especially if compared to other
numerical methods such as large eddy simulation (LES) and direct numerical sim-
ulation (DNS).

The aim of the present work is to investigate the effect of finite pressure difference
at the trailing edge on the lift and thrust generated in water by flapping wing and to
compare the numerical results with experimental data (Read et al., 2003) and two-
dimensional computational models (Garrick, 1936, and La Mantia and Dabnichki,
2008).

2 Computational Model

An unsteady boundary element method computer program was developed to es-
timate the hydrodynamic forces on oscillating wing. A NACA 0012 symmetric
wing was used similarly to the experiments by Anderson et al. (1998), Read et
at. (2003), and Schouveiler et al. (2005). For such a wing of chord c and span s,
moving forward at an average, steady velocity Q∞, oscillating harmonically with
a heave motion z(t) transversely to the velocity Q∞ and with a pitch motion γ(t),
which is also the instantaneous angle between Q∞ and the chord, the following
kinematic equations hold

z(t) = z0 sin(ωt) (1)

γ(t) = γ0 sin(ωt +ψ), (2)

where ψ is the phase angle between the heave and pitch motions, z0 the heave
amplitude, γ0 the pitch amplitude and ω the frequency of oscillation (in radians per
second). The pitch axis xpitch, which is parallel to the leading and trailing edges of
the wing, was set at one third of the chord. The instantaneous angle of attack α(t)
is defined as

α(t) = γ(t)− tan−1
[

ż(t)
Q∞

]
, (3)

where ż(t) is the heave velocity.

The essential parameters for the solution of the problem are the phase angle ψ ,
heave amplitude z0, Strouhal number St and maximum angle of attack αmax. The
phase difference between the heave and pitch motions was set to 90 degrees, which
corresponds to the optimum propulsion (Read et at, 2003, and Schouveiler et al.,
2005). The heave amplitude was posed equal to three quarter of the foil chord.
The Strouhal number, which is proportional to the maximum slope of the path, can
be considered a measure of the degree of non-linearity of the motion. It indicates
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how often vortices are created in the wing wake and how close they are. It is
mathematically expressed by using the product of the frequency of vortex formation
behind the wing (in Hz) and the width of the wake (assumed equal to two times the
heave amplitude), divided by the flow main speed, i.e.

St =
ω
2π

2z0

Q∞
=

ωz0

πQ∞
. (4)

If Q∞, z0 and St are fixed, it is then possible to compute the frequency of oscillation
ω . The definition of the instantaneous angle of attack, i.e. Equation (3), can now
be rewritten as

α(t) = γo cos(ωt)− tan−1[πSt cos(ωt)]. (5)

The instantaneous angle of attack is not explicitly related to the initial conditions.
In general, for each Strouhal number St, when the maximum of the angle of attack
αmax is fixed, there are a number of possible pitch amplitudes, that is, possible angle
of attack time paths. More precisely, by using an iterative procedure that involves
the time-derivative of Equation (5), the angle of attack time paths in which the fixed
αmax is a global maximum can be evaluated. Besides, it is important to note that
there are not closed-form solutions for particular combinations of St and αmax.

A number of kinematic parameters of the investigated motion are illustrated in
Figures 1 and 2.

Figure 3 displays the instantaneous angle of attack as a function of St and time for
αmax=15 deg. It is interesting to note that, if the Strouhal number is larger than 0.3,
the initial angle of attack is generally lower than the maximum one.

Following Katz and Plotkin (2001), the flow is assumed incompressible and irrota-
tional. Each wing section is represented by a finite number N of linear panels. The
wing is divided into NS strips, i.e., the wing is geometrically approximate by using
NS+1 sections perpendicular to the span. The wing is then modelled by using N ∗NS

quadrilateral panels. Constant strength distributions of source σ and doublet μ are
situated on each panel, the midpoint of which is called collocation point. The flow
potential function φ∗ at each collocation point is defined as the sum of a local (per-
turbation) potential φ , related to the unknown doublet strength, and a free-stream
potential φ∞, linked to the fluid kinematic velocity. An internal Dirichlet boundary
condition is imposed, that is, an inner potential function is specified on the internal
wing surface in order to meet the non-penetration condition. At each wing colloca-
tion point the source strength is known, σ = n̄qk, where n̄ is a unit vector normal
to the wing surface pointing into the body and qk the fluid kinematic velocity due
to the motion of the wing. The governing integral equation is derived by using the
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Figure 1: Kinematic parameters of the wing motion: c=0.1 m, s=0.6 m, xpitch=0.033
m, Q∞=0.4 m/s, z0=0.075 m, St=0.3, ψ=90 deg, αmax=15 deg and γ0=28.304 deg.
Besides, the wing path is shown in the (x, z) plane of the inertia frame of reference,
that is, the plane perpendicular to the span.
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Figure 2: The initial kinematic angles of the oscillating wing. The motion parame-
ters are the same used in Figure 1. In this case, according to Equation (3), the pitch
amplitude γ0 is assumed positive and the initial angle of attack α0 is then negative,
and equal to -15 deg. Besides, the frequency of oscillation ω is equal to 5.027 rad/s,
i.e. ω/2π=0.8 Hz.
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Figure 3: The instantaneous angle of attack is displayed as a function of St and
time, where tcycle is the duration in seconds of a complete oscillation of the wing.

Laplace’s equation and Green’s third identity. In the body-fixed coordinate system,
at time t and for each wing collocation point it can be written as

1
4π

∫
S

[
σ

(
1
r

)
−μ

∂
∂n

(
1
r

)]
dS− 1

4π

∫
Sw

μw
∂
∂n

(
1
r

)
dS = 0, (6)

where S and Sw indicate the wing and wake surface, respectively, and μw is the
strength of the wake doublet distribution. To define uniquely the problem μw has
to be known or related to the unknown doublets on S by the means of a suitable
condition, that is, the Kutta condition. It is important to note that Sw changes with
time, that is, new portions of the wake surface are added as the time advances.
Besides, the wake shape has to be properly modelled.
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The discretized form of Equation (6) can be written as

N∗NS

∑
j=1

Cjμ j +
N∗NS

∑
j=1

B jσ j +
Nt

∑
l=1

NS

∑
k=1

Ck
wlμk

wl = 0, (7)

where Nt is the number of time steps. At each time step, NS wake panels are shed,
one for each wing strip. The number of wake panels is then equal to Nt ∗ NS.
Each quadrilateral wake panel has an assigned chordwise length lw and a constant
strength doublet distribution μw on it. Moreover,

Cj = − 1
4π

∫
S j

∂
∂n

(
1
r

)
dS j (8)

and

B j =
1

4π

∫
S j

1
r

dS j (9)

are the appropriate three-dimensional doublet and source influence coefficients of
panel j at the considered wing collocation point, respectively. They are only de-
pendent on the wing and wake geometry, where r is the distance between the panel
j and the respective collocation point and S j the surface of panel j. More precisely,
Ck

wl is defined as Cj , that is, r is the distance between the wake panel l and the
respective wing collocation point and S j the surface of the wake panel l, where the
superscript k indicates the wake panel position along the span.

As previously stated, the wake has to be modelled. It was assumed that the wake
panels remain where shed in the inertia coordinate system, that is, the wake follows
the wing path. It has to be noted that, since the wing is moving, the position of the
wake collocation points in the body-fixed coordinate system has to be calculated
at each time step starting from their position in the inertia frame of reference. The
body-fixed position of the wake panels closest to the trailing edge, i.e., those ones
that are added at each time step, was set parallel to the chord. Besides, as discussed
by Katz and Plotkin (2001), their length lw was set proportional to the time step
length Δt.

Equation (7) represents an algebraic system of N ∗NS equations but the unknowns
are N ∗NS + NS since at time t the doublet strengths of the previously shed wake
panels are already derived. This means that, at each time step, NS unsteady Kutta
conditions at the wing trailing edge are needed to solve the system of equations.
These conditions are derived from the unsteady Bernoulli equation that, following
Cebeci et al. (2005), can be written at the trailing edge of the moving wing as

pl +
1
2

ρ(q2
l −q2

kl)+ρ
∂φ ∗

l

∂ t
= pu +

1
2

ρ(q2
u−q2

ku)+ρ
∂φ ∗

u

∂ t
, (10)



Unsteady 3D Boundary Element Method for Oscillating Wing 139

where the subscripts l and u indicate the lower and upper surface of the trailing
edge, respectively. At these points, a number of fluid properties are defined: p is
the pressure, q the velocity, qk the fluid kinematic velocity due to the motion of the
wing and φ∗ the global potential function. The fluid velocity is the sum of qk and
the perturbation velocity, which is estimated by the means of the derivative of the
perturbation potential over the wing, and ρ is the fluid density, which is assumed
constant and uniform. Equation (10) can be rearranged as

2(pu− pl)
ρ

= (q2
l −q2

kl)− (q2
u −q2

ku)−2
∂ (φ ∗

u −φ ∗
l )

∂ t
. (11)

The flow velocity and pressure difference are assumed finite at the trailing edge by
imposing that the third term on the right hand side of Equation (11) there is also
finite. This condition can be written as

φ ∗
u −φ ∗

l = (φ∞u +φu)− (φ∞l +φl) = (φ∞u−μu)− (φ∞l −μl) = −μw (12)

or more concisely as

μl −μu + μw = φ∞l −φ∞u. (13)

It can be noted that -μw represents the instantaneous bound circulation Γ, i.e. the
line integral of the fluid velocity around the considered strip. In other words, Γ is
equivalent to the jump in the potential at the trailing edge.

Another possible unsteady Kutta condition (based on that developed by Bose, 1994)
can involve more specifically the fluid velocities. If the pressure difference at the
trailing edge is assumed null, Equation (11) becomes

(q2
l −q2

kl)+2
∂φ ∗

l

∂ t
= (q2

u −q2
ku)+2

∂φ ∗
u

∂ t
. (14)

By using Equation (13) a linearized form of Equation (14) can be written to obtain
such a condition, that is

−C1μl+1 −C3μu−1 +(C1 +C3)μu −
(

C1 − 2
Δt

)
μw

=
2
Δt

(C4 −C2)−
(

C1 − 2
Δt

)
(φ∞l −φ∞u) (15)

where C1 = ( φl+1−φl

d2
l

+2 qtl
dl

)t−Δt , C2 = φ∞lt −(φ∞l +φl)t−Δt , C3 = ( φu−φu−1

d2
u

+2 qtu
du

)t−Δt

and C4 = φ∞ut − (φ∞u +φu)t−Δt . φi is the value of the local potential function at the
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collocation point i. The panels of each strip are numbered clockwise, from the
bottom of the trailing edge to the top. di indicates the distance between the two
respective consecutive collocation points and qti is the component of the kinematic
velocity tangential to panel i. t indicates the current time and Δt is the duration of
each time step.

At the first time step it is not possible to use Equation (15). It can be replaced by an-
other condition based on the trailing-edge fluid velocities. By using Equation (13)
and assuming equal velocities the first time step trailing-edge condition is written
as

−μl+1

dl
− μu−1

du
+(

1
dl

− 1
du

)μu − μw

dl
= −qtl −qtu − φ∞l −φ∞u

dl
. (16)

For the two-dimensional analysis Equation (13) was used as the unsteady Kutta
condition at each time step and, as expected, a finite pressure difference was found
at the trailing edge of the moving foil (La Mantia and Dabnichki, 2008).

In the three-dimensional computer program Equation (13) was replaced by Equa-
tions (15) and (16). The choice led to a steadier trailing-edge pressure difference
as a function of time. To ensure a null pressure difference Equations (15) and
(16) should be implemented in an iterative procedure (Bose, 1994) but there is not
any strong experimental evidence that for unsteady motions of high frequency and
large amplitude the pressure difference at the trailing edge has to be always null
(La Mantia and Dabnichki, 2008).

The devised code, which assumes an incompressible and irrotational flow, can eval-
uate the global potential function, at each time step. It is then possible to calcu-
late the velocities’ distribution over the wing in the body-fixed coordinate system,
which is moving together with the wing, by estimating the spatial derivative of the
potential function over the wing. The subsequent calculation of the pressure co-
efficient is followed by the evaluation of the centre of pressure acceleration in the
inertia frame of reference. This last one is later used for the forces coefficients
calculations. A time-averaged force is obtained before computing the coefficients
and the mass of the wing needed to be assumed. Following Read et at. (2003), a
0.6 m wing span s and a 300 kg/m3 wing average density (which is the wood mean
density) are chosen. The wing mass results then equal to roughly 0.15 kg, i.e. 1.47
N. The water density ρ , set at 1000 kg/m3, is also used for the evaluation of the
forces coefficients.

Following Cebeci et al. (2005), the pressure coefficient Cp at each wing collocation
point and time step is defined as

Cp =
p− p∞
1
2ρQ2

∞
=

q2
k

Q2
∞
− q2

Q2
∞
− 2

Q2
∞

∂φ ∗

∂ t
. (17)
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The system of pressure forces acting on the wing can be represented by an equiva-
lent single point force. This force should be applied at the centre of pressure, which
is also defined as the point where the total moment is zero. The following equation
is then used to evaluate the position of the centre of pressure (xcp, zcp) for each
wing strip

Cm +Cpxzcp +Cpzxcp = 0, (18)

where Cm is the non-dimensional moment due to the pressure forces evaluated at
the leading edge: it is positive if clockwise. Cpx and Cpz are the non-dimensional
pressure forces in the x and z directions of the body-fixed frame of reference, re-
spectively. It is possible to assume that zcp is null since the section thickness is
much smaller than its chord and the position of the centre of pressure is evaluated
as

xcp = −Cm

Cpz
. (19)

Moreover, the centre of pressure is assumed to be in the middle of the considered
wing strip, in the spanwise direction.

The time-averaged forces in the x and z directions of the inertia coordinate system
are respectively defined as

F̄x = mware f ax (20)

and

F̄z = mware f az, (21)

where mw is the wing mass, ax and az are the time-averaged non-dimensional cen-
tre of pressure accelerations in the inertia frame of reference and are f is then a
reference acceleration defined as

are f =
lre f

t2
re f

=
lre f

( lre f

Qre f
)2

=
c

( c
Q∞

)2 =
Q2

∞
c

, (22)

where lre f , tre f and Qre f are the reference length, time and velocity, respectively.
Besides, c=0.1 m and Q∞=0.4 m/s. The Reynolds number Re is then equal to
40,000, if the dynamic viscosity is set to 0.001 Pa•s, which is the water viscosity at
20 ˚C. The forces coefficients in the x and z directions of the inertia coordinate sys-
tem, which are also called the thrust and lift coefficients, respectively, are defined
as

CFx =
F̄x

1
2 ρcsQ2

∞
(23)
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and

CFz =
F̄z

1
2 ρcsQ2

∞
. (24)

The thrust coefficient CFx is negative, if there is thrust, and the lift coefficient CFz is
positive, if there is lift. It is important to underline that there are not forces acting in
the span direction because the wing and imposed harmonic motion are symmetric.

3 Results and Discussion

A comparison with the computational results of a previously developed two-dimensional
panel method (La Mantia and Dabnichki, 2008) was carried out. Two-dimensional
(2D) and three-dimensional (3D) unsteady thrust are shown in Figure 4 as a func-
tion of time for a sample case (see Table 1 for the relevant motion parameters).

Ten complete loops and forty time steps for each cycle were used in both calcula-
tions. Two hundred linear panels model the NACA 0012 foil in the 2D computer
program. The wing was then approximated by one section and two hundred quadri-
lateral panels in the corresponding three-dimensional procedure.

It can be seen that the forces patterns are very close, if the motion parameters are
the same. The 2D thrust coefficient is equal to -0.536 and the three-dimensional
CFx=-0.529. This means that the 3D thrust coefficient is just 1.1 % smaller than the
two-dimensional one.

It has to be noted that four entire loops are displayed in the figure and the 2D
Kutta condition, that is, Equation (13), was implemented in the three-dimensional
computer program for this calculation. Moreover, the wake shape was imposed in
both cases, that is, the wake follows the kinematic time path of the wing in the
inertia frame of reference.

The 3D forces are slightly lower in magnitude than the two-dimensional ones. The
3D numerical procedure takes into account a wing of finite span weather the two-
dimensional computer program assumes a wing of infinite span that is later imposed
equal to a finite value to estimate the forces.

This result underlines the most relevant difference between the two codes, that is,
the pressure behaviour over the wing span is not constant as assumed in the 2D
model.

Figure 5 displays the thrust coefficient CFx as a function of the number of panels
N of each wing section. It can be seen that the numerical convergence is reached
quite rapidly as N increases, that is, the thrust coefficient for N=500 is just 1.6 %
larger than CFx for N=50.
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Figure 4: The instantaneous thrust is plotted as a function of time as estimated by
the 2D (La Mantia and Dabnichki, 2008) and 3D codes. See also Table 1 for the
relevant motion parameters.
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section panels N for St=0.3 and NS=3. The number of cycles is two and forty time
steps for each loop were used in the calculations. See also Table 1 for the relevant
motion parameters.



144 Copyright © 2008 Tech Science Press CMES, vol.33, no.2, pp.131-153, 2008

In Figure 6 the pressure coefficient trend over the mid span section of the wing is
displayed as a function of the collocation point position along the chord c, at the
last time step and for two N. It can be noted that, as the number of panels for each
section increases, the negative maximum of the pressure coefficient at the wing
leading edge also increases. It is due to the more refined wing section model of the
leading edge and can also explain the thrust coefficient behaviour as a function of
N. See Figure 5 where the thrust coefficient sharply increases for N lower than 300.

In Figure 7 the thrust coefficient is plotted as a function of the number of wing
section NS. It can be seen that the wing span geometric model has a most relevant
influence on the computational results than the wing section approximation. In
other words, CFx for NS=50 is 7.2 % smaller than the thrust coefficient for NS=3.
Besides, as NS increases, the thrust coefficient decreases because the wing span
model allows a more refined estimate of the pressure coefficient behaviour at the
wing tips.

Figure 8 shows the maximum negative pressure coefficients as a function of the
span position of the respective sections, at the last time step of the unsteady motion.
They are placed at the leading edge of each section and their trend is related to the
thrust coefficient behaviour as a function of NS (see Figure 7). In other words,
the pressure coefficient rise at the wing tips, which is a typical feature of three-
dimensional analyses, can be easily spotted. It is related to the pressure difference
between the two sides of the wing and leads to the formation of the well known
wing-tip vortices.

The number of cycles does not have a significant impact on the results. For exam-
ple, if ten loops (and fifty time steps for each cycle) are used in the calculation, the
thrust coefficient for NS=3 is just 0.8 % smaller than that of the two-cycles case
displayed in Figure 7.

Fifty time steps for each cycle and two complete wing loops were then employed
in the calculations presented in the next paragraphs, if it is not stated differently.

It has also to be noted that the wake shape was imposed in all three-dimensional
calculations. The wake panels remain where shed and the wake then follows the
imposed kinematic wing path.

Moreover, the wake length is fixed and equal to three quarter of the time step length
Δt multiplied by the flow mean velocity Q∞.

The relevant motion parameters used in the computations are summarized in Table
1. The Strouhal number, pitch amplitude and oscillation frequency are indicated by
their respective range of values.

Figure 9 shows a typical two-cycles oscillating wing path in the (x, z) plane of the
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Figure 6: The pressure coefficients at the last time step are shown as a function
of the collocation point position in the body-fixed coordinate system over the mid
span section of the wing. The legend indicated the number N of panels for each
section. See also Table 1 for the relevant motion parameters.
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legend indicated the number NS of wing sections. See also Table 1 for the relevant
motion parameters.

Table 1: List of the relevant parameters of the harmonic motions.

Chord c 0.1 m
Span s 0.6 m
Heave amplitude z0 0.075 m
Pitch axis xpitch 0.033 m
Maximum angle of
attack αmax

15 deg

Phase angle ψ 90 deg
Q∞ 0.4 m/s
St 0.05 – 0.5
Pitch amplitude γ0 -6.073 – 47.156 deg
Oscillation frequency
ω

0.13 – 1.33 Hz

Re 40,000
Wing mass mw 0.147 kg
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inertia coordinate system that is the one perpendicular to the span.

The red line indicates the unsteady force time behaviour. It can be noted that, there
is always thrust, i.e., the horizontal component of the displayed force is directed in
the same direction of the wing forward motion. Besides, the time average of the
force vertical component, i.e., the lift, is null, as expected for this kind of harmonic
motion.

In Table 2 another comparison between two-dimensional and three-dimensional
numerical results is carried out. As already noted, the 3D thrust coefficients are
generally lower in magnitude than the two-dimensional ones. This is mainly due
to the pressure behaviour over the wing span. The pressure coefficient negative
maximum is placed at the wing mid span and, as already mentioned, Cp is not
constant over the wing but becomes closer to zero at the wing tips.

Moreover, if the Strouhal number increases, the thrust coefficient becomes larger.
In other words, the thrust produced by the flapping wing increases with the oscilla-
tion frequency in the rage of analyzed motions.

It is important to discuss the last two columns of Table 2. It can be seen that the
trailing-edge pressure differences (at the last time step of the unsteady motion and
at the wing mid span for the 3D analysis) are considerably steadier in the three-
dimensional case, especially for St lower than 0.45. This result is mainly related
to the three-dimensional formulation of the unsteady Kutta condition, that is Equa-
tions (15) and (16).

Table 2: The thrust coefficients and trailing-edge pressure differences are listed as a
function of the Strouhal number St for two-dimensional (2D) and three-dimensional
(3D) similar motions. See also Table 1 for the relevant motion parameters.

St
CFx

Cpl−Cpu

Cpmax
100

2D 3D 2D 3D
0.05 -0.098 -0.054 2.72 2.52
0.10 -0.177 -0.122 3.71 2.22
0.15 -0.219 -0.187 4.77 2.18
0.20 -0.302 -0.258 5.41 2.46
0.25 -0.384 -0.343 5.95 2.89
0.30 -0.491 -0.447 6.28 3.29
0.35 -0.619 -0.566 6.70 3.82
0.40 -0.758 -0.696 7.85 5.08
0.45 -0.908 -0.835 10.17 7.75
0.50 -1.068 -0.981 14.43 13.25
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Figure 10 shows the thrust behaviour as a function of time in the inertia coordinate
system for three different values of the Strouhal number. It can be noted that, as
already mentioned, the force maximum increases with the oscillation frequency.

In Figure 11 the instantaneous inertia lift is shown as a function of time for the same
situations displayed in Figure 10. It is important to remark that the time average
value of the lift is null. Besides, the force trend is related to the corresponding
angle of attack time path that depends on the imposed angle of attack maximum and
Strouhal number. See Figure 3 where the instantaneous angle of attack is displayed
as a function of St and time.

In Figure 12 comparisons with published experimental data (Read et al., 2003) and
two-dimensional computational results (Garrick, 1936, and La Mantia and Dab-
nichki, 2008) are carried out. The thrust coefficient is plotted as a function of the
Strouhal number.

The present three-dimensional computational results are much closer to the experi-
mental data than the 2D ones. The wing finite span and consequently its tip vortices
can be addressed as the main reason for the result.

Moreover, the agreement between experimental data and three-dimensional results
is better at low Strouhal numbers, that is, low oscillation frequencies. This can
be also attributed to the introduction in the numerical procedure of a more refined
Kutta condition that lowers the trailing-edge pressure difference as a function of St
(see Table 2).

The analytical results of the two-dimensional unsteady model of Garrick (1936)
agree well with the two-dimensional computations (La Mantia and Dabnichki,
2008) for low Strouhal numbers, that is, for small oscillation amplitudes and fre-
quencies. This is mainly due to the different Kutta condition that in the mathemat-
ical model of Garrick (1936) assumes a smooth flow at the foil trailing edge.

However, the discrepancy between experimental data and computational results can
be more generally attributed to a number of different physical causes, such as wall
interactions, flow separation for large instantaneous angle of attack and viscous
drag, which are neglected in the potential model, as discussed by La Mantia and
Dabnichki (2008).

Moreover, the added mass plays a significant role in defining the hydrodynamic
forces acting on moving bodies, as shown by and Dabnichki (2006a). It is related
to the body acceleration and can be intuitively defined as the mass of fluid moving
with the body while the body is in motion. The movement of the surrounding water
requires in fact an additional force over and above that necessary to accelerate the
wing itself. The introduction of such inertia related effect in the procedure seems
then to be a suitable option to better represent the experimental conditions. In the
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Figure 11: The instantaneous inertia lift is displayed as a function of time for the
same cases illustrated in Figure 10. See also Table 1 for the relevant motion param-
eters.
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same context, the buoyancy force that acts on the wing (and especially the moment
that it generates) could also be taken into account. For example, if the wing is less
dense than the fluid in which it is moving, another force will influence the unsteady
motion. In other words, the numerical procedure assumed a neutrally buoyant body.

However, the disagreement between the computational results and experimental
data is not a surprise and largely due to the differences between experimental mod-
els and conditions and the computer program potential flow assumptions.

4 Conclusions

A three-dimensional potential flow based boundary element method for evaluating
the lift and thrust acting on wing oscillating in water was developed. Based on
experimental evidence (Satyanarayana and Davis, 1978, Ho and Chen, 1981, and
Poling and Telionis, 1986) and theoretical results (Young and Lai, 2004, Liebe,
2007) a novel formulation of the unsteady Kutta condition postulating finite pres-
sure difference at the trailing edge of the moving wing was implemented. This
formulation addresses an important need for a meaningful trailing-edge condition
that reflects the physics of the unsteady problem.

Moreover, the Kutta condition was not sufficient to ensure unique solution for the
unsteady problem. Additional assumptions such as the wake model and centre of
pressure position needed to be added to in effect represent initial conditions for this
dynamic problem.

The effects of tip vortices on the pressure distribution over the wing and the new
trailing-edge condition can explain the closer agreement between the three-dimensional
numerical results and experimental data (Read et al., 2003), if compared to the two-
dimensional ones (Garrick, 1936, and La Mantia and Dabnichki, 2008).

An improved version of the three-dimensional code is being developed to asses the
influence of added mass and viscous drag on the forces’ estimate. As shown by
Gardano and Dabnichki (2006a) this effect is essential in understanding the propul-
sion effect. However its importance for man-made structures lies in the accurate
estimate of the strength requirements as discussed by Dabnichki and La Mantia
(2007) and the developed method facilitates such comprehensive analysis.
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