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Computational Modeling of a Lightweight Composite
Space Reflector using Geometrically Nonlinear Solid Shell

Elements
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Abstract: A geometrically nonlinear finite element analysis of a low areal den-
sity composite space reflector is conducted under static conditions and the results
are compared with independently carried out experimental data. The finite element
analysis is based on an assumed strain formulation of a geometrically nonlinear
nine-node solid shell element. Numerical results are in good agreement with ex-
perimental data. This demonstrates the effectiveness of the present solid shell el-
ement approach when applied to the analysis of highly flexible space structures.
The results of numerical analysis and the experimental data reported in the present
paper provide a benchmark for future investigations on the modeling and analysis
of geometrically nonlinear composite shell structures via computational tools.

Keyword: Composite space reflector, assumed strain solid shell element, geo-
metrically nonlinear analysis

1 Introduction

The areal density (mass/unit area) of the Hubble Space Telescope mirror, fabri-
cated based on a glass facesheet and egg-crate construction is about 180 kg/m2.
Chen (1998) reported that the new generation of extremely lightweight composite
reflectors can be produced at the areal density of 2 to 10 kg/m2. In the development
of a space telescope system the weight of the primary reflector is critical because
it determines the type and weight of supporting structures, the overall payload and
ultimately the cost. The lightweight, low cost structural composite mirrors have
tremendous potential for enabling the Large Deployable Reflector (LDR), which
was the key research initiative of the NASA Precision Segmented Reflector (PSR)
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program [Freeland, McElroy and Johnston (1989)]. One of the technological de-
velopment challenges they identified includes the capability for generating realistic
estimates of panel thermo-mechanical performance considering the composite ma-
terial properties such as the number of laminate layers and fiber directions in the
facesheet and the nonlinear behavior of the flexible composite reflector structure.
Tompkins, Funk, Bowles, Towell and Connell (1992) have evaluated the thermal,
mechanical and durability properties of twelve candidate materials for precision
space reflector panel applications by exposing them to the simulated space envi-
ronments. Connell and Abusafieh (2002) used graphite fiber reinforced composites
to build reflector demonstrators due to low density and low coefficient of thermal
expansion.

Lightweight space structures such as low areal density composite reflectors are
highly flexible and may undergo large deflection under applied loadings, especially
during the launch phase. A geometrically nonlinear analysis may be needed to de-
termine the deformed shape for a clearance check and the stress and strain states to
ensure structural integrity. The primary goal of the present study has been to inves-
tigate the feasibility of using finite element software based on a solid shell element
formulation for analysis of highly flexible composite structures of radio-frequency
space reflectors. A reliable analytical tool can help an analyst or a designer to ex-
amine various design options and reduce the number of hardware tests to validate
a design.

The assumed-strain solid shell approach has been used successfully in modeling
thin flat and curved structures undergoing large deflection. Lee and Pian (1978)
introduced an independently assumed strain field to alleviate element locking prob-
lems. Since then, the assumed-strain approach was combined with the three-dimen-
sional solid shell approach by [Ausserer and Lee (1988), Kim and Lee (1988)].
Kim and Lee (1988) introduced a modified constitutive law to incorporate physical
behavior of thin shell structures. The solid shell element does not use rotational
degrees of freedom to describe its geometry and kinematics of deformation. Ac-
cordingly, all kinematic variables are expressed in vector forms based on a global
coordinate system. For a structure of complicated shape, this allows easy connec-
tions between substructures. Park, Cho and Lee (1995) used a set of benchmark
problems to show that for geometrically nonlinear analysis, large load increments
are possible with the solid shell approach, thereby increasing computational effi-
ciency. Kemp, Cho and Lee (1998) and Lee, Cho and Lee (2002) improved the per-
formance of the existing solid shell elements via combining the bubble function dis-
placement with a carefully selected assumed strain field. In these studies, the results
of numerical tests showed that the improved elements were significantly less sen-
sitive to mesh distortion than the existing elements. Recently, Lee and Lee (2006)
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investigated the applicability of the assumed-strain solid-shell approach to analy-
sis of extremely thin structures. They showed that by using quadruple precision,
one can significantly extend the effectiveness of the approach in terms of length-
to-thickness ratio or radius-to-thickness ratio. Alternatively, researchers have used
the Meshless methods for geometrically non-linear shell analyses in order to avoid
the mesh distortion [Han, Rajendran and Atluri (2005), Sladek, Sladek, Wen and
Aliabadi (2006) and Wen and Hon (2007)].

For the past two decades, the assumed-strain solid shell elements have been rigor-
ously tested on various benchmark problems to validate improved element perfor-
mance. In this study, we investigate the applicability of the improved solid shell
element approach to effective analysis of highly flexible composite structures of
complicated shape. The deformed configurations of a breadboard composite space
reflector are determined under static conditions using a geometrically nonlinear
solid shell finite element model based on the assumed strain formulation. Compu-
tational results are validated through comparisons with the data obtained from an
independently conducted experiment.

2 Finite Element Formulation

In this section, the assumed strain solid shell element formulation for geometrically
nonlinear analysis is briefly discussed. To reduce the sensitivity to the mesh dis-
tortion, the solid shell element is enhanced with the additional high-order, bubble
function displacement.

2.1 The Solid Shell Elements

The solid shell element approach does not use rotational angles to describe kine-
matics of deformation. Accordingly, all kinematic variables are expressed in vector
forms, based only on a global coordinate system. For a structure of complicated
shape, this allows easy connections between substructures. In the solid-shell ap-
proach, the composite panel is treated as a three-dimensional solid, allowing thick-
ness change and transverse shear deformation.

Figure 1 shows two versions of a solid shell element, one with eighteen nodes and
the other with nine nodes. The eighteen-node version has three degrees of freedom
per node while the nine-node version has six degrees of freedom per node. The two
versions are equivalent to each other. The eighteen-node version can be used for
three-dimensional analysis where multiple elements are needed through thickness.
The nine-node version is convenient in modeling of thin shells, using single element
through thickness.

In order to model curved thin shells such as the reflector, it is desirable to use a
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Figure 1: Eighteen-node and nine-node element

curved element such as the nine-node solid shell element in contrast to the simpler
four-node element.

The performance of the nine-node element can be further enhanced by incorpo-
rating the bubble function displacement to make it less sensitive to the mesh dis-
tortion. The bubble function is a higher-order polynomial function that collapses
to zero along the element boundary and at all its nodal points such that higher-
order displacement can be represented inside the element. An assumed strain field
corresponding to the introduced bubble function displacement vector is carefully
chosen to avoid triggering any undesirable spurious kinematic modes [Lee, Cho,
Lee (2002)]. The bubble function parameters are condensed out at the element
level.

2.2 Geometrically Nonlinear Formulation

Geometrically nonlinear formulation is needed to account for large deflection. The
formulation is based on the total Lagrangian description that employs Green strain
and the second Piola-Kirchhoff stress. The finite element modeling results in an in-
cremental equation for the Newton-Raphson iteration solution scheme, combined
with the arc-length method. For geometrically nonlinear problems, the solid shell
element approach allows load increments significantly larger than is possible with
the conventional approach using rotational angles, resulting in an increased com-
putational efficiency.

2.3 Assumed Strain Approach

The nine-node element used in the present study is based on the assumed strain for-
mulation. Shell elements based on the assumed displacement alone suffer from ele-
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ment locking. An assumed strain formulation uses an independently assumed strain
field to alleviate the element locking [Lee and Pian (1978)]. In this approach, an as-
sumed strain field is carefully chosen independently of the displacement-dependent
strain field without triggering undesirable spurious kinematic modes. These two
strain fields are related to each other via a compatibility equation. The assumed
strain field within an element is expressed by assumed strain shape functions and
their parameters that are eliminated at the element level. Accordingly, these addi-
tional assumed strain parameters do not increase the number of unknowns at the
global level. Detailed description of the assumed strain solid shell formulation has
been provided by Park, Cho and Lee (1995) and Kim and Lee (1988).

2.4 Incremental Formulations

For a solid in equilibrium,
∫

V
δε̄εεTσσσdV −δW = 0 (1)

where σσσ is the second Piola-Kirchhoff stress vector, δε̄εε is the virtual displacement-
dependent strain vector, δW is the virtual work due to the applied load and V rep-
resents the volume of the original configuration.

For shells, the displacement-dependent strain vector can be expressed as

ε̄εε = ε̄εε0 +ςε̄εε1 (2)

where ς is a non-dimensional parent coordinate in the thickness direction. Note
that the over-bar is used for displacement-dependent quantities in this paper. In
incremental form the displacement-dependent strain vector ε̄εε can be written sym-
bolically as follows:

ε̄εε = (n)ε̄εε0 +Δē0 +Δh̄0 +ς((n)ε̄εε1 +Δē1 +Δh̄1) (3)

where the left superscript (n) indicates the current state, and Δē0,1 and Δh̄0,1 are the
incremental strain vectors that are linear and quadratic in incremental displacement
respectively. Introducing the assumed displacement, incremental strain vectors in
equation (3) that are linear in incremental displacement can be expressed in matrix
form as follows:

Δē0 = B0(ξ ,η)Δqe

Δē1 = B1(ξ ,η)Δqe
(4)

where ξ ,η are the non-dimensional parent coordinates in the shell midsurface, and
the incremental element DOF vector Δqe includes the bubble function parameters.
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2.4.1 Option #1

The displacement-independent strain εεε is assumed to be linear in the thickness
direction such that

εεε = εεε0 +ςεεε1 (5)

The stress vector is then related to the independently assumed strain vector such
that

σσσ = Cεεε (6)

where C is the matrix of linear elastic stiffness constants. The independently as-
sumed strain vector εεε can be related to the displacement-dependent strain vector ε̄εε
via using the compatibility equation as
∫

Ve

δεεεT C(εεε − ε̄εε)dV = 0 (7)

where Ve is the element volume. The assumed strain vector can be expressed sym-
bolically in matrix form as

εεε = P0(ξ ,η)ααα0 +ςP1(ξ ,η)ααα1 (8)

where P0, P1 are the assumed strain shape function matrices for the ς–independent
and ς–dependent strain vectors, respectively and ααα0, ααα1 are vectors of the corre-
sponding assumed strain parameters. For the nine-node element with the bubble
function displacement, a detailed description of this option has been provided by
Lee, Cho and Lee (2002).

2.4.2 Option #2

Element locking is associated with the ς–independent part of the strain. Accord-
ingly, one may introduce an assumed strain field only for the ς–independent strain
vector to obtain essentially the same performance as the first option such that

εεε = εεε0 +ςε̄εε1 (9)

with

εεε0 = P0(ξ ,η)ααα0 (10)

Then, equation (9) can be rewritten symbolically as follows:

εεε = P0(ξ ,η)ααα0 +ςε̄εε1 (11)
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In incremental form,

Δεεε = P0(ξ ,η)Δααα0 +ςΔε̄εε1 (12)

Similar to the option #1, one may relate the independently assumed strain vector εεε0

to the displacement-dependent strain vector ε̄εε0 via using the compatibility equation
as∫

Ve

δεεεT
0 C(εεε0 − ε̄εε0)dV = 0 (13)

In incremental form, the ς–independent strain vector is

Δεεε0 = P0(ξ ,η)Δααα0 (14)

and the virtual independent strain vector is set as

δεεε0 = P0(ξ ,η)δααα0 (15)

Substituting the appropriate strain terms in the equations (3), (4), (14) and (15)
into the equation (13) and neglecting the higher order terms in the incremental
displacement vector leads to

H0Δααα0 −F0 −G0Δqe = 0 (16)

where

F0 =
∫

Ae

PT
0 C0((n)ε̄εε0 − (n)εεε0)dA

G0 =
∫

Ae

PT
0 C0B0dA

H0 =
∫

Ae

PT
0 C0P0dA

(17)

Note that the volume integral in equation (13) has been transformed to the area
integral in equation (17). This can be done via assuming that the determinant J of
the Jacobian matrix is linear in ς as follows:

J(ξ ,η,ς) = J0(ξ ,η)+ςJ1(ξ ,η) (18)

With the above assumption, one can introduce the following relation

dV = (1+ rς)dςdA (19)
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where r(ξ ,η) = J1/J0. Equation (18) allows analytical integration through the
shell thickness. The C0 matrix in equation (17) is obtained by analytically inte-
grating the C matrix through the thickness as

C0 =
∫

C(1 + rς)dς (20)

This feature is convenient in modeling of laminated composite structures [Kim and
Lee (1988)].

From equation (16), one can determine the incremental vector of the assumed strain
parameters as

Δααα0 = H−1
0 (G0Δqe +F0) (21)

Substituting equation (21) into equation (14), one can express the incremental as-
sumed strain vector in equation (12) as follows:

Δεεε = B̂0Δqe +P0H−1
0 F0 +ςΔε̄εε1 (22)

where

B̂0 = P0H−1
0 G0 (23)

One can then introduce equation (22) in the incremental form of the equilibrium
in equation (1). The bubble function parameters as well as the assumed strain
parameters are eliminated at the element level to derive the incremental equation
for unknown incremental nodal degrees of freedom.

3 Composite Space Reflector

As shown in Fig. 2, the space reflector consists of a dish and a stiffener. The
stiffener is composed of a frame and a cap. The thickness of the dish is very small
relative to other dimensions. For example, the ratio of the greatest distance between
two points on the dish edges to its thickness is about three thousand. However, this
ratio is still well below the working limit of the assumed strain solid shell element
which is about one million according to the recent study by Lee and Lee (2006).

The reflector is fixed at three points on the top of the three short columns as shown
in Fig. 3. A loading arm installed for the experiment is shown at the lower right
corner.

Figure 4 shows a bottom view of the finite element model for the reflector. The
reflector dish was manufactured in four separate parts and bonded together over the
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Figure 2: Composite space reflector

Figure 3: Side view of the reflector
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Figure 4: Finite element model for the
reflector

Figure 5: Stiffener (Frame)

two narrow bands that form a cross. Accordingly, the overlapped region is twice as
thick, while the doubly overlapped region at the center of the reflector dish is four
times as thick as the remaining area.

The stiffener of the reflector is composed of a frame and a cap as shown in the
following figures. The frame consists of thin panels that are connected to form
two hexagons, inner and outer, as shown in Figure 5. A pair of two straight strips
is attached to the inner hexagon to help maintain the hexagonal shape and also
support the reflector dish. The thickness of the frame is one and half times the dish
thickness.

Figure 6: Stiffener (Cap)

The cap shown in Fig. 6 is attached to the bottom of the frame so that the cross
sections of the stiffener form closed cells to enhance the structural rigidity.
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3.1 The Reflector Geometry

The reflector dish is described by a parabolic equation based on the coordinate
system as shown in Figure 7. Note that the coordinate system shown in the figure
is different from the system used for finite element modeling. A cutting plane with
an angle of 22˚ and a cut-offset of 8.615" is introduced to define the dish surface,
which is shown as the curved line A-B on the parabola. These geometric data were
obtained from the manufacturer.

Figure 7: Parabolic cross-sectional shape, cut-offset and angle

Figure 8: Side view of the reflector

Other geometric parameters needed for the finite element modeling were measured
from the actual reflector due to a lack of drawing data. They are shown in Figs.
8, 9, and 10. The maximum height of the dish from the base is measured 4.5" as
shown in Fig 8.

Figure 9 shows a top view of the dish. For simplicity, only a half of the dish is
shown. The overlapped zone is 0.032" thick and 0.625" wide while the doubly
overlapped zone at the center is 0.064" thick and 0.625" wide.

Figure 10 shows a top-view of the finite element model of the cap with the mea-
sured geometric data. For simplicity, only one quarter of the cap is shown. One
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Figure 9: Top view of a half dish

Figure 10: Measurements of the cap

may notice that three elements are used in the width direction to accommodate the
connection with the frame. The sketch on the right-hand side shows a stiffener
cross-section.

The reflector dish is symmetric with respect to the x-axis as shown in Fig. 11, but
non-symmetric with respect to y-axis. The lowest point in the dish is biased slightly
toward the positive x-direction as shown in the A-A section view of Fig. 11. The
global x, y, z-coordinate system shown in the figure is used for the finite element
modeling. The origin of x-axis is located at the mid-point of line A-A. The reflector
is fixed to the base at the three attaching points on the bottom surface of the cap as



Computational Modeling of a Lightweight Composite Space Reflector 121

Figure 11: Top and A-A section view

shown in the figure.

3.2 Composite Material Properties

The reflector dish and stiffeners are all constructed of composite materials. The
material properties provided by the manufacturer are shown in Tab. 1. For conve-
nience, a ply axis system of 1-2-3 is used to describe the material properties where
the axis 1 represents the fiber direction, axis 2 represents the transverse direction
and axis 3 represents the thickness direction. The moduli of the materials are de-
pendent on the loading direction. For example, extensional modulus E1 in the fiber
direction is 53.0 Msi in tension and 50.0 Msi in compression.

For the dish, a quasi-isotropic, 8-ply, symmetric layup of [0/90/45/-45]s is used,
while for the stiffener, a quasi-isotropic, 12-ply, doubly symmetric layup of [0/60/-
60]s2 is used. The angles are measured with respect to the laminate axis. The dish
is 0.016" thick and the stiffener is 0.024" thick.
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Table 1: Material Constants
E1 53.0 Msi (tension) 50.0 Msi (compression)

E2,E3 0.95 Msi (tension) 0.91 Msi (compression)
ν12,ν13 0.319 ν23 0.46
G12,G13 0.681 Msi G23 0.31849 Msi

4 Geometrically Nonlinear Static Analyses

A mesh generator tailored for analysis of the reflector has been implemented. One
may note that because of the complicated shapes, the mesh distortion is severe
in the triangular zones of Fig. 12 enclosed by the inner frame. The improved
nine-node elements based on the bubble function displacement, insensitive to the
mesh distortion, are used for this reason. The geometrically nonlinear analysis is
carried out for the three load cases shown in Fig. 12, using the option 1 version
of the assumed strain solid shell formulation. In each case, a point load is applied
perpendicular to the original, undeformed surface of the dish and the direction of
the load remains fixed during deformation. The E1 and E2 values measured under
tensile condition are chosen for analysis. The results of the analysis are compared
with the experimental data.

Figure 12: Three cases of point load
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4.1 Loading Case 1

A point load perpendicular to the surface of the dish is applied at a nodal point
shown in Fig. 13. For convenience, the figure shows only one quarter of the mesh
for the reflector. The load point is located within the overlapped region, modeled
by a fine mesh.

Figure 13: Load direction and mesh for case 1

Figure 14: Load vs. displacement for case 1
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Figure 15: Deformed shape for case 1

The plot of the load vs. displacement at the load point is shown in Fig. 14. Accord-
ing to the test data, the displacement at the load point shows nonlinear behavior
as the load increases. Initially, it shows a softening behavior and subsequently it
begins to stiffen. The result of geometrically linear analysis is far off the test data,
while the results of geometrically nonlinear analysis follow the test data reasonably
well. The maximum displacement measured is approximately 1", which is about
30 times the dish thickness (0.032") at the load point.

In the experiment, the load was applied to the dish backside using a spherical end
attachment on the load-cell, effectively applying a point load to the dish. To exam-
ine any effect of the differences in loading method on the structural response, an
additional analysis was carried out using the total load distributed over the nodes
around the original single load point. The results of this analysis were nearly iden-
tical to the single point load case.

Figure 15 shows the deformed shape of the reflector dish at a load slightly below
8 lbs. The computed displacements are exaggerated to clearly show the deformed
shape around the load point.

4.2 Loading Case 2

As shown in Fig. 16, a special fine mesh is introduced around the load point to
capture the local nonlinear behavior of the reflector.

According to the plot shown in Fig. 17, the experimental test data exhibits a non-
linear behavior. The displacement at the load point shows a softening behavior
followed by a stiffening behavior as the applied load increases. The maximum dis-
placement measured is approximately 0.85", which is very large compared with the
thickness at the load point (0.016"). As in case 1, the geometrically linear analysis
is inadequate, while the result of the geometrically nonlinear analysis follows the
test data very well.

Figure 18 shows the deformed shape of the reflector dish at a load close to 8 lbs.
The computed displacements are exaggerated to clearly show the deformed shape
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Figure 16: Load and mesh for case 2

Figure 17: Load vs. displacement for case 2
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Figure 18: Deformed shape for case 2

around the load point.

4.3 Loading Case 3

A point load as shown in Fig. 19 is applied at a nodal point located in the doubly
overlapped region, which is four times as thick as the non-overlapped area of the
reflector dish. However, it is still very flexible as the zone is located far from the
stiffeners.

Figure 19: Load and mesh for case 3

According to the test data shown in Fig. 20, the displacement at the load point
shows a highly nonlinear behavior, including the limit point as the applied load
increases. The maximum displacement measured is approximately 0.45", which is
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Figure 20: Load vs. displacement at the load point

Figure 21: Deformed shape for case 3

large relative to the thickness at the load point (0.064"). The results of geometri-
cally nonlinear analysis are in good agreement with the test data.

Figure 21 shows the deformed shape of the reflector dish at a load slightly below
6 lbs. The computed displacements are exaggerated to clearly show the deformed
shape near the load point.
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5 Conclusion

For the three load cases considered here, the results of geometrically nonlinear
finite element analysis are in good agreement with the test data obtained from in-
dependently carried out experiments. This demonstrates that the present finite el-
ement approach, based on the assumed strain solid shell formulation, can be used
for analysis of highly flexible structures such as a composite space reflector. Also,
the results of numerical analysis and the experimental data reported in the present
paper provide a benchmark for future investigations on the modeling and analysis
of geometrically nonlinear composite shell structures via computational tools.
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