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On Prediction of 3d Stress State in Elastic Shell by
Higher-order Shell Formulations

Boštjan Brank1, Adnan Ibrahimbegovic2 and Uroš Bohinc3

Abstract: In this work we study the accuracy of modern higher-order shell fi-
nite element formulations in computation of 3d stress state in elastic shells. In that
sense we compare three higher-order shell models: (i) with seven displacement-like
kinematic parameters, and (ii, iii) with six displacement-like kinematic parameters
plus one strain-like kinematic parameter introduced by two different versions of
enhanced assumed strain (EAS) concept. The finite element approximations of all
shell models are based on 4-node quadrilateral elements. Geometrically nonlinear
and consistently linearized forms of considered formulations are given. Several
numerical examples are presented, where computed stresses are compared with
analytical solutions. It was found that through-the-thickness variation of some
(non-dominant) stress tensor components, including through-the-thickness normal
stress, may be computed very inaccurately. The reliable representation for those
stresses can be interpreted only if the "layer-wise" averaging or the through-the-
thickness averaging is performed.

Keyword: higher-order shell model, 3d constitutive equations, stress computa-
tion

1 Introduction

During the recent years several higher-order shell models, accounting for through-
the-thickness stretch, have been presented along with their finite element approxi-
mations. The main motivation behind is development of effective shell formulation
that can use fully three-dimensional (3d) constitutive model (with no modifications
with respect to 3d continuum mechanics). The most effective approach to achieve
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that goal is a refinement of the standard shell model of Reissner-Mindlin type,
which is commonly used for plate and shell analysis [Tonković, Sorić and Skozrit
(2008); Wen and Hon (2007)]. Such refinement has been effectively performed on
the level of kinematics.

The kinematic refinement has been achieved either by refining the kinematic as-
sumption of the standard shell model of Reissner-Mindlin type, or by modifying the
8-node solid element in order to include the shell-like features in one direction. The
first approach is sometimes called 3-d shell and the second one solid-shell [Kulikov
and Plotnikova (2008)]. Examples of the first approach, which will be considered in
what follows, are given e.g. in Büchter, Ramm and Roehl (1994); Sansour (1995);
Bischoff and Ramm (1997); Eberlein and Wriggers (1999); Betsch, Gruttmann and
Stein (1996); Başar, Itskov and Eckstein (2000); Brank, Korelc and Ibrahimbegovic
(2002); Krätzig and Jun (2003); Brank (2005).

All the above works have been concerned that newly developed higher-order shell
formulations behave correctly for thin shells. The correctness has been estimated
numerically, through engineering judgement and by mathematical proof, although
the latter has been given only for (1,1,2)-plate model [Rossle, Bischoff, Wendland
and Ramm (1999)]. Numerical estimations have been related to comparison of
computed displacements with analytical and other available solutions. Special at-
tention has been given to evaluation of results of higher-order shell formulations
for thin shells. However, no comparison of stresses or stress resultants has been
made to reference values.

In this work we study the following question: How good are the 3-d shell for-
mulations in representing the 3d stress state in an elastic shell-like body? In that
sense the following higher-order shell models are considered: (i) a 7-parameter
shell model with 3 displacements of the mid-surface, 2 rotations of shell director
(see e.g. Atluri and Cazzani (1995), Brank and Ibrahimbegovic (2001) Lin (2006)
for discussions on finite rotations), and 2 thickness-stretching parameters; (ii) a 7-
parameter shell model with the first 6 parameters equal to those of (i), while the 7th

parameter is a through-the-thickness strain, introduced with the enhanced assumed
strain concept (EAS) and an assumption of additive decomposition of strains [Simo
and Rifai (1990)]; (iii) a 7-parameter shell model where the introduction of the 7th

parameter is based on additive decomposition of displacement gradient [Simo and
Armero (1992)], leading to the multiplicative decomposition of strains.

Geometrically nonlinear formulations are first derived. Their consistent linearized
forms are then obtained in order to study geometrically linear problems. The ques-
tion on stress accuracy has been answered by computation of several illustrative
examples and by comparison of obtained results with analytical solutions from lin-
ear elasticity.
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2 Higher-order shell (3-d shell) formulations

In this section we will briefly present three versions of 3-d shell model. Those
versions differ from each other by the approach used to refine standard Reissner-
Mindlin shell kinematics in order to get a formulation which can use fully 3-d
constitutive equations in the appropriate way.

2.1 Version 1 of 3-d shell formulation

Let us define position of a shell point in the initial configuration with respect to
fixed Cartesian frame as

X
(
ξ 1,ξ 2,ξ

)
= ϕϕϕ0

(
ξ 1,ξ 2)+ ξg

(
ξ 1,ξ 2) (1)

‖g‖= 1,
(
ξ 1,ξ 2

)⊂ A ⊂ R
2,

ξ = h0/2ζ , ζ ∈ [−1, 1]

where ξ 1,ξ 2 are curvilinear coordinates parametrizing the mid-surface, ξ and ζ
are through-the-thickness coordinates, ϕϕϕ0 is position of the corresponding point on
the mid-surface, h0 is constant initial thickness, A is domain of the mid-surface
parametrization, and g is normal to the mid-surface (shell director). We assume
that position of the same point in deformed configuration is given as

x
(
ξ 1,ξ 2,ξ

)
= ϕϕϕ

(
ξ 1,ξ 2)+ξ λ

(
ξ 1,ξ 2) a

(
ϑ
(
ξ 1,ξ 2))︸ ︷︷ ︸

d(ξ1,ξ2)

+ (ξ )2 q
(
ξ 1,ξ 2) a

(
ϑ
(
ξ 1,ξ 2))︸ ︷︷ ︸

f(ξ1,ξ2)

(2)

where ϕϕϕ = ϕϕϕ0 + u is current position of the mid-surface, u is mid-surface dis-
placement, a, ‖a‖ = 1, is rotated g defined by two finite rotation parameters ϑϑϑ =[
ϑ 1,ϑ 2

]T
, λ = h/h0, q are two thickness stretching parameters, and h is current

thickness. In what follows we replace λ with λ̃ = λ −1.

The Green-Lagrange strains with respect to the dual basis gi (defined such that
gi ·g j = δ i

j, where g j = ∂X/∂ξ j, and δ i
j is Kronecker’s delta symbol) are

Ei j
(
ΦΦΦ
(
ξ 1,ξ 2) ,ξ

)
= Ei j

⎛⎜⎝u,ϑϑϑ , λ̃ ,q︸ ︷︷ ︸
ΦΦΦ(ξ1,ξ2)

,ξ

⎞⎟⎠=
1
2

(x,i ·x, j −X,i ·X, j) (3)

where the notation (◦),i ≡ ∂ (◦)/∂ξ i and ξ ≡ ξ 3 has been introduced. It can be
shown that some strains Ei j are quadratic, some cubic and some quartic functions
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of ξ . In order to have the same order of through-the-thickness variation for all
strain tensor components, we make the following truncation

Ei j → Ei j |ξ=0 +ξ
dEi j

dξ
|ξ=0 +

ξ 2

2
d2Ei j

dξ 2
|ξ=0 (4)

One can further introduce at each point X
(
ξ 1,ξ 2,ξ

)
of the shell a local Cartesian

frame with the following basis

ê3 = g, ê1 ⊥ ê3, ê2 = ê3 × ê1 (5)

and define strains at that point with respect to the basis (5) as

Êi j = TikEklTjl (6)

where

[Ti j] =

⎡⎣ X,1 · ê1 X,1 · ê2 0
X,2 · ê1 X,2 · ê2 0

0 0 1

⎤⎦−1

(7)

The potential energy of the hyperelastic shell can be for the St. Venant-Kirchhoff
material model written as

Π(ΦΦΦ) =
∫

V

(
Λ
2

(
Tr
[
Êi j

])2
+ μTr

[
Êi jÊi j

])
︸ ︷︷ ︸

W(Êi j(ΦΦΦ,ξ))

dV −
∫

A
πext (ΦΦΦ)dA︸ ︷︷ ︸

Πext(ΦΦΦ)

(8)

where Λ and μ are Lame’s parameters. V and A are shell volume and mid-surface
area at the initial configuration. The external part of the potential energy is (by as-
suming only conservative pressure loading ptop and pbot at top and bottom surfaces
of the shell)

πext = −ptopμ topg ·utop + pbotμbotg ·ubot (9)

where

μ top,bot =

√√√√(
Xtop,bot

,1 ×Xtop,bot
,2

)
·
(

Xtop,bot
,1 ×Xtop,bot

,2

)
(ϕϕϕ0,1 ×ϕϕϕ0,2) · (ϕϕϕ0,1 ×ϕϕϕ0,2)

(10)

and utop, ubot are nonlinear functions of kinematic parameters composed in ΦΦΦ

utop,bot = utop,bot (ΦΦΦ) = u± h0

2

(
d
(

λ̃ ,a(ϑϑϑ )
)
−g

)
+

h2
0

4
f(q,a(ϑϑϑ )) (11)
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It is assumed above that g is oriented from the bottom towards the top surface.

The weak form of equilibrium equations can be obtained by introducing the varia-
tions for displacement u → u + εδu, shell director rotation a(ϑϑϑ ) → a(ϑϑϑ +εδϑϑϑ ),
and thickness stretching parameters λ̃ → λ̃ + εδ λ̃ , q → q + εδq into the potential
energy expression (8). We thus attain

dΠ
dε

|ε=0= G

⎛⎜⎜⎝ δΦΦΦ︸︷︷︸{
δu,δϑϑϑ ,δλ̃ ,δq

};ΦΦΦ

⎞⎟⎟⎠= 0 (12)

The problem is further solved by means of the finite element approximation.

2.2 Version 2 of 3-d shell formulation

Let us now assume position of a shell point in deformed configuration relative to
fixed Cartesian frame as

x
(
ξ 1,ξ 2,ξ

)
= ϕϕϕ

(
ξ 1,ξ 2)+ξd

(
ξ 1,ξ 2) (13)

The Green-Lagrange strains with respect to the basis gi, which are compatible with
assumption (13), are

Eu
i j

(
ΦΦΦEAS

(
ξ 1,ξ 2) ,ξ

)
= Eu

i j

⎛⎜⎝ u,ϑϑϑ , λ̃︸ ︷︷ ︸
ΦΦΦEAS(ξ1,ξ2)

,ξ

⎞⎟⎠=
1
2

(x,i ·x, j −X,i ·X, j) (14)

It can be shown that some components of Eu
i j are linear and some quadratic func-

tions of ξ , and that Eu
33 is only constant with respect to ξ . To have all components

of the same order, we make the following truncation

Eu
i j → Eu

i j |ξ=0 +ξ
dEu

i j

dξ
|ξ=0 (15)

and add the missing linear term of Eu
33 within the framework of the enhanced as-

sumed strain (EAS) concept [Simo and Rifai (1992)]. The crucial part of the EAS
concept is assumption that the Green-Lagrange strains are the sum of displacement-
compatible strains Eu

i j and some enhancing strains Ẽi j. That leads to enhanced
strains

Ei j = Eu
i j + Ẽi j (16)
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Here we choose such enhancing strains Ẽi j that all components of the enhanced
(total) strains Ei j are linear with respect to ξ , i.e.

Ẽi j
(
αi j
(
ξ 1,ξ 2) ,ξ

)
=

{
ξα33

(
ξ 1,ξ 2

)
if i = 3 and j = 3

0 otherwise
(17)

where αi j are enhancing strain parameters. We collect non-zero parameters in ααα ,
i.e. ααα = {α33}. By using (6), the strains Ei j can be transformed to strains Êi j =

Êu
i j +

̂̃Ei j that are defined with respect to the local Cartesian frame with the basis
(5).

Assumption of additive decomposition of total strains (16) is introduced in the Hu-

Washizu functional ΠH−W

(
ΦΦΦEAS, Ẽi j,Si j

)
, where Si j are the 2nd Piola-Kirchhoff

stresses defined with respect to the basis gi. The following functional is obtained

ΠEAS1 (ΦΦΦEAS,ααα) =
∫

V
W

(
Êu

i j

(
ΦΦΦEAS

(
ξ 1,ξ 2) ,ξ

)
+ ̂̃Ei j

(
ααα
(
ξ 1,ξ 2) ,ξ

))
dV

−Πext
(
ΦΦΦEAS

(
ξ 1,ξ 2)) (18)

if the orthogonality between stresses and enhancing strains is assumed to be valid∫
V

Ŝi j ̂̃Ei jdV =
∫

V
Si jẼi jdV = 0

(17)⇒ (19)∫
V

S33Ẽ33 dV =
∫

V
S33ξα33 dV = 0

Note that Πext (ΦΦΦEAS) is equal to Πext (ΦΦΦ) defined in (8) to (11), except that the
last term in (11) drops out. Since dV = (1− 2ξH + (ξ )2 K)dξdA, where H =
H
(
ξ 1,ξ 2

)
and K = (ξ 1,ξ 2) are mean and Gaussian mid-surface curvatures, re-

spectively, one can write (19) as

∫
V

S33ξα33dV =
∫

A
α33

∫ h/2

−h/2
S33(1−2ξH +(ξ )2 K)︸ ︷︷ ︸

μ

ξdξdA = 0 (20)

Equation (20) holds for shells with μ ≈ 1 for constant S33 stress with respect to
ξ coordinate, i.e. for S33 = S33

(
ξ 1,ξ 2

)
. It also holds for shells with H = const.,

K = const. for S33 = S33 (ξ ), if α33 is chosen such that
∫

A α33dA = 0.

One can introduce variations of displacement u → u + εδu, shell director rotation
a(ϑϑϑ )→ a(ϑϑϑ +εδϑϑϑ ), thickness stretching parameter λ̃ → λ̃ +εδ λ̃ , and enhancing
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strain parameters ααα → ααα + εδααα. Those variations are then introduced in ΠEAS1 to
obtain GEAS1 = dΠEAS1

dε |ε=0. At the stationary point

GEAS1

⎛⎜⎜⎜⎝ δΦΦΦEAS︸ ︷︷ ︸{
δu,δϑϑϑ ,δλ̃ ,δq

},δααα;ΦΦΦEAS,ααα

⎞⎟⎟⎟⎠= 0 (21)

the equilibrium and kinematic relations are fulfilled in a weak form. The functional
(21) is further solved for ΦΦΦEAS and ααα (for any kinematically admissible variations
δΦΦΦEAS and δααα) by the finite element approximation. Since ααα parameters not need
to be continuos over the domain, they are condensed on the element level and we
recover the standard finite element computer code structure.

2.3 Version 3 of 3-d shell formulation

Let us now assume position of a shell point in deformed configuration relative to
fixed Cartesian frame, as in (13), and replace assumption (16) with assumption
that total deformation gradient F is a sum of displacement dependent part Fu and
enhancing part F̃

F = Fu (ΦΦΦEAS,ξ )+ F̃ (22)

F̃ can be defined through the geometrically nonlinear version of incompatible modes
method [Ibrahimbegovic and Wilson (1991); Ibrahimbegovic and Frey (1993)],
which is equivalent to geometrically nonlinear version of EAS [Simo and Armero
(1992)]. Since Fu = x,i ⊗gi, one can assume that

F̃ = x̃,i ⊗gi =⇒ F = (x,i + x̃,i)⊗gi (23)

where x̃,i can be seen as an enhancement of x,i. We choose an F̃ which provides
refined through-the-thickness kinematics, i.e.

x̃,i
(
αi
(
ξ 1,ξ 2) ,ξ

)
=

{
ξα3

(
ξ 1,ξ 2

)
d
(
ξ 1,ξ 2

)
if i = 3

0 otherwise
(24)

where αi are enhancing parameters. We collect non-zero parameters in ααα , i.e. ααα =
{α3}. The Green-Lagrange strains with respect to the basis gi follow from E =
1
2

(
FT F− I

)
and I = (X,i ·X, j)gi ⊗g j as

Ei j (ΦΦΦEAS,ααα ,ξ ) =
1
2

((x,i + x̃,i) · (x, j + x̃, j)−X,i ·X, j) (25)
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It can be shown that all components of Ei j are quadratic with respect to ξ coordi-
nate. This is in contrast with geometrically linear version of EAS from previous
section where all strains were linear with respect to ξ coordinate, see (15) and (16).
The strains (25) can be transformed to the local Cartesian frame with the basis (5),
see (6), to obtain Êi j.

Assumption (22) is introduced into Hu-Washizu functional ΠH−W

(
ΦΦΦEAS, F̃,P

)
,

where P = FS is the first Piola-Kirchhoff stress tensor. The following functional is
obtained

ΠEAS2 (ΦΦΦEAS,ααα) =
∫

V
W
(

Êi j (ΦΦΦEAS,ααα ,ξ )
)

dV −Πext (ΦΦΦEAS) (26)

if the orthogonality between P and F̃ is assumed to be valid∫
V

P : F̃dV = 0 (27)

By noting that g3 = g3 = g, and by using (23) and (24), it follows from (27)∫
V

P :
(
x̃,3 ⊗g3)dV =

∫
V

P : (d⊗g)ξα3dV

=
∫

A
α3

∫ h/2

−h/2
d ·Pg(1−2ξH +(ξ )2 K)︸ ︷︷ ︸

μ

ξdξdA

= 0

(28)

Equation (28) holds for shells with μ ≈ 1 for constant product d ·Pg with respect
to the through-the-thickness coordinate ξ . It also holds for shells with H = const.,
K = const. when product d · Pg is only function of ξ , if α3 is chosen such that∫

A α3dA = 0.

One can introduce variations of displacement u → u + εδu, shell director rotation
a(ϑϑϑ )→ a(ϑϑϑ +εδϑϑϑ ), thickness stretching parameter λ̃ → λ̃ +εδ λ̃ , and enhancing
parameters ααα →ααα +εδααα . Those variations are then introduced in ΠEAS2 to obtain
GEAS2 = dΠEAS2

dε |ε=0. At the stationary point

GEAS2 (δΦΦΦEAS,δααα;ΦΦΦEAS,ααα) = 0 (29)

the equilibrium and kinematic relations are fulfilled in a weak form. This functional
is further solved by the finite element approximation. Since ααα parameters need not
to be continuos over the domain, they are condensed on the element level, and the
method can fit nicely within the standard finite element assembly.
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2.4 Linearized formulations

To get consistently linearized forms of the above described versions of 3-d shell
formulation, we linearize functionals (12), (21) and (29) about the initial configu-
ration.

The initial configuration of version 1 is defined by ΦΦΦ =
{

u,ϑϑϑ , λ̃ ,q
}

= 0. The per-

turbation of initial configuration can be defined with displacement u → εΔu, shell
director rotation a(ϑϑϑ ) → a(εΔϑϑϑ ), and thickness stretching parameters λ̃ → εΔλ̃ ,
q → εΔq. When introducing those expressions into the weak form of equilibrium
equations (12), one can get its consistently linearized form around the initial con-
figuration as

GLin (δΦΦΦ;ΔΦΦΦ) =
dG(δΦΦΦ;ΦΦΦ)

dε
|ε=0= 0 (30)

The initial configuration of versions 2 and 3 is defined by ΦΦΦEAS=
{

u,ϑϑϑ , λ̃ ,q
}

= 0
and ααα = 0. The perturbation of initial configuration can be defined with dis-
placement u → εΔu, shell director rotation a(ϑϑϑ ) → a(εΔϑϑϑ), thickness stretch-
ing parameter λ̃ → εΔλ̃ , and enhancing parameters ααα → εΔααα. When those ex-
pressions are introduced into the functionals GEAS1 (δΦΦΦEAS,δααα;ΦΦΦEAS,ααα) = 0 and
GEAS2 (δΦΦΦEAS,δααα;ΦΦΦEAS,ααα) = 0, one gets their consistently linearized forms as

GEAS1,Lin (δΦΦΦEAS,δααα;ΔΦΦΦEAS,Δααα) =
dGEAS1 (δΦΦΦEAS,δααα;ΦΦΦEAS,ααα)

dε
|ε=0= 0 (31)

GEAS2,Lin (δΦΦΦEAS,δααα;ΔΦΦΦEAS,Δααα) =
dGEAS2 (δΦΦΦEAS,δααα;ΦΦΦEAS,ααα)

dε
|ε=0= 0 (32)

In practice, one needs to consistently linearize the strains Êi j = Êi j (ΦΦΦ) (for ver-
sion 1) and the strains Êi j = Êi j (ΦΦΦEAS,ααα) (for versions 2 and 3) as well as the
corresponding functional related to the external loading, i.e. δΠext (δΦΦΦ,ΦΦΦ) or
δΠext (δΦΦΦEAS,ΦΦΦEAS).

3 Numerical examples

For the finite element approximation of the above presented 3d-shell formulations
we used 4-node isoparametric elements with assumed natural strain (ANS) inter-
polation [Bathe and Dvorkin (1985)] for the transverse shear strains. Details on nu-
merical implementation of geometrically nonlinear versions are presented in Brank,
Korelc and Ibrahimbegovic (2002) and Brank (2005); see also Brank (2008) for the
assessment of EAS-ANS 4-node elements based on classical shell kinematics.
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Figure 1: Mesh of 10×1 elements.

In this section we present results of several numerical simulations, which can illus-
trate the ability of the derived 3d-shell formulations to accurately predict 3d stress
state in elastic plates and shells. The stresses for versions 2 and 3 have been com-
puted by using constitutive equations.

All the finite element codes have been produced by using symbolic program Ace-
Gen [Korelc (2008)], which has been developed for automatic generation of finite
element codes [Korelc (1997)]. The computations have been carried out by the
accompanying computer code AceFem [Korelc (2008)].

3.1 Cantilever plate

With this example we illustrate the ability of the above presented linearized formu-
lations to (A) produce zero transverse normal stresses in the case of pure bending,
and (B) to present more general stress state in the case of general bending problem.

We consider a cantilever plate with the following geometric and material data:
length L = 1, width W = L/4, thickness h = L/10, E = 2× 108, ν = 0.3. The
chosen mesh contains 10×1 elements, see Figure 1. The axis 1 is parallel to the
longitudinal axis of the cantilever, the axis 2 is perpendicular to 1 and parallel to the
cantilever mid-plane, and axis 3 is perpendicular to the cantilever mid-plane. The
number of mid-surface Gauss integration points is 4. The number of through-the-
thickness Gauss integration points, located at different ξ positions at ξ 1 and ξ 2 lo-
cations of the mid-surface Gauss points, is 10. This is an overkill for accuracy, but
employed nonetheless in order to get clear presentation of through-the-thickness
variation of stresses. The supported edge is soft clamped with free higher-order
degrees of freedom. The loading cases are two: (A) moment M = 100 at the free
end of the cantilever, and (B) uniform pressure p = 1000 at the plate top surface (at
ξ = h/2).

Load case A. For the pure bending load case A the only non-zero computed stress
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element 2

Figure 2: Mesh of 20×4 elements presented with plate thickness.

for all three versions of 3d-shell formulation is S11. All other computed stresses,
including S33, are indeed equal to zero. The corresponding solutions for strain field
components are in complete accordance with the linear elasticity and they suggest
that the considered formulations are not affected by the so called Poisson’s ra-
tio locking effect that occurs without through-the-thickness enhancement [Büchter,
Ramm and Roehl (1994); Bischoff and Ramm (1997)].

We note that in case of mid-surface application of loading on plate (as in the load
case A) the higher-order kinematic parameter λ̃ is not activated and it remains equal
to zero.

Load case B; mesh is 10×1 elements. For the load case B we get richer stress
state. In Figures 3 to 7 we show the distribution of stresses through the thickness.
The stresses S11,S12, S13 and S33 are presented either (a) for the mid-surface Gauss-
point closest to the supported edge or (b) as averaged values at each "through-the-
thickness Gauss point layer" of the element closest to the supported edge. It can
be seen from Figures 3 to 7 that the solutions of different formulations differ from
one another. For example, S13 and S33 are constant for versions 2 and 3; S33 equals
to −p/2. On the other hand, S33 of version 1 shows clear tendency of going to-
wards −p at the top surface and towards 0 at the bottom surface, with its average
through-the-thickness value of −p/2. The stress S13 of version 1 varies quadrati-
cally through the thickness, but it is not equal to zero at top and bottom surfaces.
This suggests that shear correction factors should be used for all formulations.

The stresses S22 (for all three versions) and S33 (for version 1) are presented as
averaged values at each "layer" at a particular value of through-the-thickness coor-



96 Copyright © 2008 Tech Science Press CMES, vol.33, no.1, pp.85-108, 2008

dinate ξ . The reason for element-wise averaging of S22 and S33 stresses in Figures
6 to 7 are their oscillations throughout an element at each "layer". Those oscilla-
tions include the sign change as shown in Figures 8 and 9. It is thus reasonable to
interpret those stresses throughout an element with their averaged values.

We note that the tip displacement/rotation is practically identical for all the ver-
sions; the computed values are 0.00757/0.01007 for version 1 and 0.00756/0.01005
for versions 2 and 3. Hence, just reporting on the displacement values does not re-
veal much on the predictive capabilities of these shell formulations.

Load case B; mesh is 20×4 elements. In order to check the influence of the mesh
on the results, we refine the mesh to 20× 4 elements. This refinement does not
change the displacements; compare the results in Figures 10 and 11. The dispersion
of values at different Gauss points of the same element did not improve. On the
contrary, the dispersion gets even worse; see Figure 12 for the results obtained for
S33 for the element 2 (Fig. 2). It can be clearly seen that even "layer-wise" element
averaging does not lead to reasonable results. The only reasonable averaging in
this case is through-the-thickness averaging of S33at each mid-surface integration
point, which leads to S33 ≈−p/2.

3.2 Thick cylinder

With this example we test ability of the above presented linearized 3d-shell formu-
lations to predict through-the-thickness distribution of radial and circumferential
stresses in a thick cylindrical shell. We consider thick cylinder in the plain strain
state with the following geometrical and material data: radius of middle surface
R = 1, width L = 2Rπ/4, thickness values h = 0.1 (cylinder 1; R/h = 10) and
h = 0.2 (cylinder 2; R/h = 5), E = 3×107, ν = 0.2. The applied load is internal
pressure p = 1000. The finite element mesh consists of 32× 1 elements for dis-
cretization of the whole cylinder, see Figure 13. To simulate the plain strain state
we set axial displacement of all nodes of the mesh to zero.

Radial displacements of points at R are presented in Table 1 for cylinder 1 with
R/h = 10 and cylinder 2 with R/h = 5. The computed results match very well. We
can see that the formulation 1 (with 7 displacement-like kinematic parameters) and
formulation 3 (with the corresponding additive split of displacement gradient) are
able to match analytic solution somewhat better than formulation 2 (additive split
of strains).

We then turn to the accuracy of stress computation. We first consider results for
cylinder 1. Through-the-thicknessdistribution of radial and circumferential stresses
are compared with analytical solutions as shown in Figures 14 and 15. It can be
seen from Figures 14 and 15 that circumferential stresses of all formulations match
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Figure 3: Through-the-thickness variation of S11 at the mid-surface Gauss-point
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closest to the supported edge.
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Figure 5: Through-the-thickness variation of S13 at the mid-surface Gauss-point
closest to the supported edge.
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Figure 6: Through-the-thickness variation of S22. "Layer-wise" averaged for the
element closest to the supported edge.
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Figure 7: Through-the-thickness variation of S33. "Layer-wise" averaged for the
element closest to the supported edge (version 1). Values at the mid-surface Gauss-
point closest to the supported edge (versions 2 and 3).
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Figure 9: Through-the-thickness variation of S33 at the element closest to the sup-
ported edge.

analytical solution very well (maximum difference is only 1.5%). On the other
hand, the through-the-thickness nonlinearity of radial stresses is well represented
only by version 1, which has the ability of global representation of the through-the-
thickness strain field. The computed results for version 2 and version 3 predict the
radial stress, which is almost constant through the thickness with a value roughly
equal to the average. Hence we can not have true stress distribution with enhanced
strain (or incompatible modes) based 3-d shell elements everywhere, but we can
have the (average) values which match the true distribution at the point with optimal
accuracy.

The results for cylinder 2 are presented in Figures 16 and 17. It can be seen that
for increased thickness the trend of the solution is similar as before, however, the
difference between analytical and computed solutions will increase even further.

4 Conclusions

The modern developments on higher-order shell formulations, which employ ex-
tra parameters in order to properly account for the linear variation of through-the-
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Figure 10: 3d representation of plate displacements for version 1 (magnified 120
times) for mesh of 10×1 elements.

Figure 11: 3d representation of plate displacements for version 1 (magnified 120
times) for mesh of 20×4 elements.
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Figure 13: FE mesh for analysis of thick cylinder.
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Figure 14: Thick cylinder 1: Variation of circumferential stress in the thickness
direction.
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Figure 15: Thick cylinder 1: Variation of radial stress in the thickness direction.
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Figure 16: Thick cylinder 2: Variation of circumferential stress in the thickness
direction.
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Figure 17: Thick cylinder 2: Variation of radial stress in the thickness direction.
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Table 1: Radial displacement of the middle surface ×104

Version 1 Version 2 Version 3 Analytical
Cylinder 1 3.0682 3.0376 3.0691 3.0730
Cylinder 2 1.4637 1.4784 1.4656 1.4661

thickness stretch, indeed provide the benefit of being able to use fully 3d con-
stitutive equations, the same as those for 3d continuum mechanics solid model.
However, as shown in this work, this does not imply the same accuracy for the
computed stress components as for the 3d continuum case, even though in both
cases the stress tensor would have all the stress components defined.

We have shown by computed results that the dominant stress tensor components are
predicted with high accuracy, especially those that are predicted by typical shell-
like behavior (e.g. bending modes). The remaining stress components does not
follow the same trend of high accuracy computations. For example the stress com-
ponent in the transverse direction to bending axis, or yet the through-the-thickness
stress (the main "acquisition" of this kind of higher-order shells), will both have
somewhat erratic dispersion of results within a single element, which might be
the consequence of the directional character of the shell element interpolations (in
sharp difference with "isotropic" character of the standard isoparametric interpola-
tions for 3d solids).

In this work, we have shown that the simple averaging procedure of the non-
dominant stress components for all the Gauss points within the corresponding
"layer" produces much improved results. It is important to note that this cure is
more efficient than the mesh refinement. We have also shown that it might happen
that the "layer-wise" averaging of S33 over an element is not effective. In that case
S33 should be averaged through the shell thickness.

Among three different shell models we discussed, the best results are always ob-
tained by the model with seven displacement-like kinematic parameters (version
1), which, on the other hand, has a serious disadvantage of having two additional
global degrees of freedom with respect to standard shell formulation with Reissner-
Mindlin kinematics. Also, through-the-thickness variation of some non-dominant
stresses may be computed very inaccurately, so that they can be correctly inter-
preted either by "layer-wise" element averaging or by through-the-thickness aver-
aging.

Two EAS versions of the higher-order shell formulation (version 2 and version 3)
have only one additional global degree of freedom with respect to standard shell
formulation, and can easily fit within the standard finite element computer program



106 Copyright © 2008 Tech Science Press CMES, vol.33, no.1, pp.85-108, 2008

structure, but reduce further the stress results accuracy. Namely, although version
3 is systematically better than version 2, neither can provide the exact distribution
of through-the-thickness stress. However, we can obtain the good prediction for the
average value at the point of optimal accuracy at shell mid-surface. This indicates
a potential benefits we could have for assumed stress interpolation which can be
proposed with desired stress variation and enforced to match the computed average
values.
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