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Dynamic Nonlinear Material Behaviour of Thin Shells in
Finite Displacements and Rotations
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Abstract: A dynamic analysis of a thin shell finite element undergoing large dis-
placements and rotations is here presented. The constitutive model adopted de-
rives from the coupling of an hyperelastic basic model fulfilling a De Saint Venant-
Kirchhoff criterion with a scalar damage function depending on the maximum value
of a suitable strain measure attained through the deformation history; then plastic
effects are included using an isotropic/kinematic hardening law. A conservative
time integration scheme for the non-linear dynamics of the hyperelastic damaged-
plastic thin shell is applied. The main characteristic of the scheme is to be con-
servative, since it allows for the time-discrete system to preserve the basic laws of
continuum, namely the balance of the linear and angular momentum as well as the
fulfilment of the second law of thermodynamics.
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1 Introduction

The topic of nonlinear analysis of shells has been considered by many authors in
recent years. Starting from classical solutions in elastostatic and elastodynamics,
enhancements have been produced to include nonlinear geometry and inelasticity.
Consequently, numerical algorithms have been adopted to resolve efficiently the
complex nonlinear dynamics problems posed. As solution methods, popular FEM
or BEM approaches have been accompanied by MLPG method. Within the lat-
ter solution strategy, [Sladek, Sladek, Wen and Aliabadi (2006)] found a solution
of bending problems of shear deformable shallow shell starting from the Reissner
theory. Static and dynamic loads were considered. Time-dependence was solved
through Laplace transform technique. Weak formulation was adopted transform-
ing the governing equations into local integral equations in the mean surface of the
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shell. In that paper, nodal points are randomly spread on that surface and each inte-
gral is referred to a circular domain surrounding each node. Meshless approxima-
tion based on Moving Least-Squares (MLS) method allowed to solve the boundary
integral equations generated. Comparison with FEM and BEM solutions are pro-
posed, for circular and square shallow spherical shells showing good agreement
specially between MLPG and FEM.

In another paper, [Baiz and Aliabadi, (2006)] considered the linear buckling prob-
lem of elastic shallow shells by a shear deformable shell theory. Boundary domain
integral equation were obtained by coupling 2D plane stress elasticity with Reiss-
ner plate bending BEM formulation. Buckling problem was stated as standard
eigenvalue problem. Boundary was discretized using quadratic isoparametric ele-
ments. Cylindrical shallow curved plates were studied with different dimensions
and boundary conditions showing a good comparison with FEM results.

Again, MLPG method has been chosen by [Jarak, Soric and Hoster (2007)] to
solve shell structure problems. 3D solid concept was employed incorporating 3D
constitutive models, and exactly describing the shell geometry. Thickness locking
has been eliminated through hierarchical quadratic functions along the thickness.
Shear locking in thin structures was also minimized applying high order interpo-
lation functions. Cylindrical shells (Scordelis-Lo shell roof) were considered as
examples showing convergence properties of the method.

A geometrically nonlinear analysis of Reissner-Mindlin plates has been carried out
by [Wen and Hon (2007)] using a meshless collocation method. Smooth radial
basis functions (RBFs) allowed them to evaluate higher order derivatives at com-
putational low costs. Coupled nonlinear terms in the governing equations were
treated as body force for both plane stress and plate bending problems and results
were compared with ABAQUS ones.

Finite rotation shell elements have been considered by [Kulikov and Plotnikova
(2008)]. The authors described exactly the geometry and reference surface by ana-
lytically given functions and displacement vectors resolved in the reference surface
frame. 3D constitutive equations have been used in the formulations. Six displace-
ment of the outer surfaces and a transverse displacement of the midsurface allowed
to derive strain-displacements relationships invariant under arbitrarily large ridig-
body motions. Shear and membrane locking as well as spurious energy modes
have been circumvented through assumed strain and stress resultant fields (ANS
method). Incremental Total Lagrangian formulation allowed to resolve benchmark
problems like cantilever curved beam under shear load, rectangular cross-ply plate
and pinched emispherical and hyperbolic shell, showing that a coarse mesh can be
adopted with extremely large displacements and rotations, insensitive to the num-
ber of load increments.
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More recently, [Chui, Liu, Li, Zhao, Nguyen and Sun (2008)] introduced bilinear
quadratic elements to resolve the geometrically nonlinear plate and shell problem
posed. Elements have been divided into smoothing cells to perform strain smooth-
ing operation. Three smoothing cells for bending strain energy and one smoothing
cell for shear strain energy integration give accurate results. Total Lagrangian ap-
proach was adopted. Arc-length technique and modified Newton-Raphson method
have been used to solve nonlinear equations. Square and circular plates have been
investigated, as well as cylindrical panels as examples to show convergence prop-
erties and different boundary conditions effects. Then the practical application of
the reinforcing plate of an automobile’s front longeron has been also investigated.

Among elastoplastic solutions, [Tonkovic, Soric and Skozrit (2008)] analysed the
case of cyclic elastoplastic deformation of shell structures, using an highly nonlin-
ear multicomponent forms of kinematic and isotropic hardening functions within
Von-Mises criterion, within a Reissner-Mindlin type formulation in tensor form.
Consistent elastoplastic tangent modulus has been derived ensuring fast conver-
gence rate and assumed strain isoparametric finite shell element allowed to capture
finite rotations. Examples concerning spherical cap and cylindrical shallow shell
under cyclic load, showed ratcheting effects and stabilization of load-displacement
response for the proposed method of analysis.

Further developments have been published concerning the presence of internal sup-
port conditions in elastoplastic transient response of Reissner-Mindin plates [Provi-
dakis (2007)]; buckling and free vibration of shells [Sharnappa, Ganesan and Raju
Sethuraman (2007)], while a Fourier series solution method has been proposed by
[Suetake (2006)] always useful for reference purposes.

The contribution of the authors of this paper belong to the FEM family solution
of thin shells. The mechanical description of the shell steams from an approach
related to the standard formulation of the shell parametrization discussed in [Brank,
Briseghella, Tonello, Damjanic (1998); Brank, Mamouri, Ibrahimbegovic (2005)].
The present approach is closed to these works especially as regards:

• the kinematics of the shell and, in particular, the description of the finite
rotations and their updating in the discrete time system;

• the definition of the elastic constitutive model adopted as basis for the defi-
nition of the elasto-damage constitutive model;

• the general approach in the definition of the weak form, its discretization and
linearization method.

On the other side, the method is modified regarding the choice of the constitutive
model. This fact has some consequences in terms of:
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• definition of internal forces and dissipation;

• method for the evaluation of the conservative algorithmic forms of dissipa-
tion;

• specific aspects in the application of the Newton method adopted for the
linearization of the weak form.

The constitutive model adopted to include damage effects is chosen to have an in-
ternal dissipation in view of describing a real fragile/ductile material behaviour,
as e.g. concrete under high stress states. These appears e.g. when concrete under
high temperature is considered, approaching spalling behaviour, not yet satisfactory
predictable with actual standard theories. Hence this approach can be considered
a first step towards the above objective and has potentialities for practical indus-
trial applications. The elastic-damage model here adopted is obtained starting from
the definition of the De Saint Venant-Kirchhoff elastic model coupling the related
stored energy function with a scalar damage function. The resulting constitutive
model is similar to those proposed for the description of elastomeric materials,
where the fraction of damage depends on the maximum value attained by an equiv-
alent strain measure in the strain history of the material [Simo (1987)], but with
changes in the parameters under tension and compression it can be well adapted
for concrete, as e.g. in [Gawin, Majorana, Schrefler (1999); Salomoni, Mazzucco,
Majorana (2007); Salomoni, Majorana, Giannuzzi, Miliozzi (2008)].

Plastic effects are included using strictly quadratic hyperelastic and hardening po-
tentials, within an additive decomposition of the elastic and plastic deformations
[Simo, Kennedy, Govinjee (1988)]. In some situations, unilateral contact of the de-
forming shell with rigid surfaces can appear, hence this feature has been also con-
sidered and included [Majorana, Bressanin, Rigo Serra, Zavarise (2002); Janna,
Majorana, Zavarise (2004)]. Anyway, such aspects will be described in another
paper.

The space discretization is made by using isoparametric four-node elements, in
order to preserve the conservative character of the algorithm. Possible shear locking
problems, arising in case of thin shells, are avoided through the adoption of the
‘assumed natural strain’ (ANS) approach [Dvorkin, Bathe (1984); Başar, Kintzel
(2003)]. The weak form of the balance of momentum is linearized by using the
Newton-Raphson method leading to a second order scheme. Some details on the
calculation of the internal forces term of the weak form are given, together with the
procedure adopted in order to get the algorithmic forms of stress and dissipation
that lead to the conservative character of the time integration scheme.

An energy-momentum method is applied to the non-linear dynamics of thin shells,
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made of materials with internal dissipation. The approach follows the method al-
ready applied to the elasto-damaged continuum dynamics in finite strains [Briseghella,
Corazzin, Majorana, Pavan (1997); Briseghella, Majorana, Pavan (1998); Briseghella,
Majorana, Pellegrino (1999); Briseghella, Majorana, Pavan (2000)] and to thin
shells [Briseghella, Majorana, Pavan (2006)]. Further applications of the integra-
tor concerns dynamic stability of beams and rods [Briseghella, Majorana, Pelle-
grino (1998); Majorana, Pellegrino (1999)]. The energy-momentum method is a
time integration algorithm that has been formulated with respect to the rigid body
[Simo, Wong (1991)], the continuum [Simo, Tarnow (1992)], the shells [Simo, Ri-
fai (1992)] and rods dynamics [Simo, Tarnow, Doblare (1995)].

The subject of energy–momentum integration scheme in non-linear dynamics of
shells has been also investigated in [Sansour, Wagner, Wriggers, Sansour (2002)].
In that paper the non-linear dynamics of shells using a model reformulated within
the context of enhanced strain elements has been considered. In addition to the
momentum and the angular momentum, the integration scheme also preserves the
energy of a Hamiltonian system independent of the non-linearity involved in the
strain–displacement relations. The enhanced strains have been treated as system pa-
rameters which are determined at any time step by a corresponding time-independent
equation. Accordingly, the enhanced strains are not interpolated within a time step.
The method has been also applied to shell instability under combined axial and
transversal loadings.

Plastic behaviour in nonlinear shell analysis has been the objective of [Argyris,
Papadrakakis, Karapitta (2002)]. The authors considered a layered elasto-plastic
constitutive model based on the von Mises yield criterion with isotropic harden-
ing within a geometrically nonlinear shell element, called TRIC. The characteris-
tic feature of this element was that the nonlinear material behaviour is taken into
account entirely on the natural coordinate system and can be expressed analyti-
cally for each layer. Then, the total natural tangent stiffness matrix is computed by
adding together the tangent stiffness matrix of each layer. Both formulations based
on the continuum and consistent elasto-plastic constitutive matrix are implemented.
It was shown that the consistent elasto-plastic formulation performs the continuum
one in both convergence behaviour and computational time, whereas the obtained
results demonstrate, as in case of geometrically nonlinear analyses, that the TRIC
shell element can treat geometric and material nonlinearities of arbitrary shells in
an accurately and cost-effective way.

More recently, the performance of shell finite elements in finite strains has been
discussed, as e.g. in [Areias, Song, Belytschko (2005)], where an improved 16
degrees-of-freedom quadrilateral shell element based on pointwise Kirchhoff–Love
constraints was presented, introducing a consistent large strain formulation. The
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model is based on classical shell kinematics combined with continuum constitu-
tive laws of isotropic elastic type. The resulting element is valid for large rotations
and displacements. The formulation is free of enhancements, it is almost fully
integrated and is found to be immune to locking or unstable modes. No internal
degrees-of-freedom are employed because of the simplicity of the constitutive law.
From the practical viewpoint this constitutes a considerable advantage, as available
continuum constitutive models can be employed without modification and the spe-
cific shell kinematics remove the need of accounting for the transverse shear energy
(which, for large strain elasto-plasticity, is frequently assumed to be of elastic origin
only). The performed finite element implementation is based on a four-node quadri-
lateral with 4 mid-side rotations and 3 displacement degrees-of-freedom per node.
The generated element can be classified as a discrete Kirchhoff type one. Symmet-
ric shape functions for the director field were developed and based on the model on
classical Naghdi shell theory (neglecting the transverse shear energy terms). Five
quadrature points were employed for each element, along two lines bisecting the
parent domain, circumventing the difficulties previously associated with warped el-
ements. The performance of the element in the tests in both linear and non-linear
regimes was very good, when compared with other high performance elements
available in literature, some of them making use of internal degrees-of-freedom. In
particular, mesh distortion sensitivity was extremely low, since an elastic constitu-
tive law was adopted.

Again, in the purely elastic field, a paper has been presented [Kulikov, Plotnikova
(2006)] where the representation of arbitrarily large rigid-body motions in the dis-
placement patterns of curved Timoshenko–Mindlin-type (TM) shell elements has
been considered. This required the development of strain–displacement equations
of the finite deformation TM shell theory, written in local curvilinear coordinates,
with regards to their consistency with the large rigid-body motions. For this pur-
pose the displacement vectors of the face surfaces are introduced and solved in
the reference surface frame. In that paper economical schemes of evaluating the
stiffness matrix by means of the analytical integration inside the element and an
advanced approach for solving incremental equilibrium equations are discussed.
The developed approach may allow for the use of very large load increments. The
presented numerical results demonstrate the high accuracy and effectiveness of the
developed four-node curved shell elements compared with performance of non-
linear solid-shell elements extracted from literature. However, the limitation due to
considered elastic behaviour should be remarked.

Going back to the energy-momentum method here considered, this algorithm is
an implicit scheme, defined as conservative because it ensures the fulfillment of the
basic laws of continuum, i.e. the balance laws of linear and angular momentum and
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the balance of energy of the system. The conservation of the energy of the system
leads to define the method as unconditionally stable. This means, for example, that
for an elastic body subjected only to initial conditions (assigned configuration and
velocity fields) and in absence of external loading, the total energy of the system,
discretized in time, represents a constant of the motion, i.e. what happens in the
continuum system. This property is not preserved by other types of integration
schemes such those belonging to the Newmark’s family if applied to non linear
dynamics of elastic systems because the latter can ensure the balance of the linear
and angular momentum only. Hence, this time integration scheme has been applied
in particular to long term dynamics of elastic systems ensuring a similar description
of the motion in contrast with solutions arising from other types of schemes.

The conservative character of the scheme, if applied to a system with internal dis-
sipation, must be intended as the fulfilment of the Clausius-Duhem inequality in
time in its discrete form. On the other side, for elastic systems the latter inequality
leads simply to the equivalence between the rate of the stored energy function of the
material and the internal power, i.e. the rate of work made by the internal forces.

In the final part of this paper, numerical examples are discussed showing the perfor-
mance of the element when geometrical and material nonlinearities act simultane-
ously. The properties of the adopted time integration scheme in terms of fulfilment
of the balance laws of the linear and angular momentum, as well as of the discrete
form of the Clausius-Duhem inequality, are also shown, emphasizing the conver-
gence characteristics.

2 Kinematics of shells

The reference configuration of the shell is defined by Ω ⊆ R3, the motion is the
set of configurations given by ϕ (Ω, t) : R3 × [0,T ] → R3, where [0,T ] is the time
interval of interest.

A point in the reference configuration of the shell is given by:

X̄
(
ξ 1,ξ 2,ξ

)
= X
(
ξ 1,ξ 2)+ξT (1)

where X is a point belonging to the mid-surface of the shell. The unit vector T is
normal to the mid-surface at point X.

The adopted system of coordinates ξ 1, ξ 2, ξ is defined with ξ 1, ξ 2 lying on the mid
surface and ξ along T. The variable ξ assumes the values ξ ∈ [−h/2,+h/2], where
h is the thickness of the shell. The points of the current, or deformed, configuration
of the shell are defined by

x̄
(
ξ 1,ξ 2,ξ

)
= x
(
ξ 1,ξ 2)+ξ t (2)



56 Copyright © 2008 Tech Science Press CMES, vol.33, no.1, pp.49-84, 2008

with t the unit vector. The unit vectors T and t are called the inextensible directors
of the shell. A simple representation of the coordinate system in the reference
configuration is shown in Figure 1.

The displacements of a generic point of the shell U and of a point belonging to its
mid surface u are defined as

U = x̄− X̄, u = x−X (3)

Figure 1: Reference system of coordinates of the shell mid plane.

Adopting a Lagrangian description [Suetake, Iura, Atluri (2003)] of the shell kine-
matics, the strains are described in terms of the Green-Lagrange tensor, defined
by

E =
1
2

(gi ·g j −Gi ·G j)Gi ⊗G j (i = 1,2,3) (4)

The terms Gi and gi are the covariant components, while Gi are the contravariant
components (dual basis of Gi) of the metric in the material and, respectively, the
spatial reference systems. The covariant basis in the undeformed configuration is
defined as

Gα = ∂ X̄/∂ξ α , G3 = ∂ X̄/∂ξ (α = 1, 2) (5)

while in the current reference systems one has

gα = ∂ x̄/∂ξ α , g3 = ∂ x̄/∂ξ (α = 1, 2) (6)

According to the assumption made with the choice of the parametrization repre-
sented by Eq. (1) if the thickness h of the shell is small, the components of the
Green-Lagrange strain tensor are such that

Ei j = E(0)
i j +ξE(1)

i j +ξ 2E(2)
i j (i = 1,2,3) (7)
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With the assumption of a thin shell, the terms of the second order in ξ can be
neglected, while with relations (4), (5) and (6) at hands we obtain

E(0)
α3 = E(0)

3α =
1
2

[∂X/∂ξ α · (t−T)+∂u/∂ξ α · t] (8)

E(0)
αβ =

1
2

[
∂X/∂ξ α ·∂u/∂ξ β +∂X/∂ξ α ·∂u/∂ξ α +∂u/∂ξ α ·∂u/∂ξ β

]
(9)

E(1)
αβ =

1
2

[
∂X/∂ξ α ·∂ (t−T)/∂ξ β +∂X/∂ξ β ·∂ (t−T)/∂ξ α

+ ∂u/∂ξ α · ∂ t/∂ξ β + ∂u/∂ξ β · ∂ t/∂ξ α
]

(10)

Moreover, the component E33 vanishes. Further assumptions are introduced in or-
der to simplify the formulation of the shell structure. The covariant and contravari-
ant components in the reference configuration are approximated by their values in
the mid plane of the shell M0

Ai = Gi|ξ=0 Ai = Gi
∣∣
ξ=0 (i = 1,2,3) (11)

This makes possible to integrate the stress components through the thickness of the
shell obtaining the stress resultants. All the details about the indicated procedure
can be found in [Brank, Briseghella, Tonello, Damjanic (1998)]. The strain com-
ponents can be identified as membrane, transverse shear and bending components

ε =
[
E(0)

11 , E(0)
22 , 2E(0)

12

]T
(12)

γ =
[
2E(0)

13 , E(0)
23

]T
(13)

κ =
[
E(1)

11 , E(1)
22 , 2E(1)

12

]T
(14)

The inextensible directors of the shell mid-surface in the reference and current con-
figurations are related through an orthogonal tensor, element of the not-commutative
space of rotations SO(3):

t = RT, R ∈ SO(3) =
{

R : RT = R−1, detR = 1
}

(15)

Every orthogonal tensor represents a finite rotation around a vector s (the axis of
rotation). A skew-symmetric tensor S

S ∈ so(3) =
{

S : ST = −S
}

(16)
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can be associated to the vector s (which is called axial of S). The set so(3) is the
space of infinitesimal rotations. The skew-symmetric tensor S is defined by the
properties Ss = 0 and Sb = s×b, fulfilled by any vector b. The tensors S give the
rotation tensor R through the exponential map

R = exp [S] = I+(sin ‖s‖/‖s‖)S+
[
(1−cos ‖s‖)/‖s‖2

]
S2 (17)

The main characteristic of the representation of R tensor through the exponential
map (called also Rodrigues’ formula) is to result free from any singularity. This is
particularly important if the system to be described undergoes large rotations (as
the case here considered). The velocity of a point of the shell mid-plane (derivative
with respect to time of x) will be indicated by ẋ and the angular velocity of the
director t will result ω = t× ṫ.

3 Constitutive model

The choice of the constitutive model is here motivated to obtain a material with in-
ternal dissipation. The definition of an elastic-damage model such as the one here
presented has the advantage to lead to simple expressions of the internal forces as
well as of the terms arising from the linearization of the weak form. The elastic-
damage constitutive model is defined starting from the elastic De Saint Venant-
Kirchhoff constitutive model. The stored energy function is coupled in multiplica-
tive way with a scalar damage function defining the Helmholtz free-energy func-
tion.

3.1 Hyperelastic constitutive model

For the hyperelastic De Saint Venant-Kirchhoff constitutive model, the relation be-
tween the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain ten-
sor is given by

S = H : E = λ tr [E] I+2μE (18)

where λ and μ are the Lamè’s elastic constants. In terms of components one has

Hi jkl = λ Gi jGkl + μ
(

GikG jl +GilG jk
)

(19)

Following the standard procedure for the case of thin shell, the stress component
along the normal direction to the mid plane of the shell itself is assumed to be zero
and a reduced material tensor can be deduced from Eq. (19)

Ci jkl = Hi jkl − H33kl

H3333 (i j �= 33, kl �= 33) (20)
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According to the approximation assumed for the components of the metric, the
terms of the reduced four rank tensor (20) are constant through the thickness of
the shell, thus the membrane, transverse shear and bending resultant stresses are
defined as

n = nαβ Aα ⊗Aβ (21)

q = nα3Aα ⊗T+n3α T⊗A3 (22)

m = mαβ Aα ⊗Aβ (23)

where the scalar components are given by

ni j =

+H/2∫
−H/2

Ci jklE(0)
kl dξ , i j �= 33 , kl �= 33 (24)

mαβ =

+H/2∫
−H/2

Cαβγδ E(1)
γδ (ξ )2 dξ (25)

On the basis of the assumed simplifications, the stored energy function associated
to the constitutive relation (18) results in the sum of three terms related to the mem-
brane, transverse shear and bending components of the strain respectively, which
are not coupled. Adopting a matrix notation, the vector of the stress resultants
rT =
[
nT , qT , mT

]
can be deduced from

r =
∂W (Γ)

∂Γ
(26)

where the stored energy function is a quadratic form of the strain vector ΓT =[
εT , γT , κT

]

W (Γ) =
1
2

ΓT

⎡
⎣Cn 0 0

0 Cq 0
0 0 Cm

⎤
⎦Γ (27)

Additional details about the terms of the above matrix are given in the Appendix.
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3.2 Elastic-damaged constitutive model

Starting from the elastic model defined in the previous section, in particular with
the stored energy function (27) at hand, the Helmholtz free energy function can be
defined as

Ψ = g(Ξ)W(Γ) (28)

where g is a not-growing damage function and W is the stored energy function of
an undamaged material. The g function can be defined, for example, by

g(Ξ) = b+a(1−b)
(

1−e−Ξ/a
)
/Ξ (29)

where the constants a, b can assume the values a ∈ ] 0, +∞) and b ∈ [0,1], respec-
tively. For a zero value of Ξ the g function is equal to one (undamaged material).
For increasing values of Ξ the g function is decreasing to the limit value of b if
Ξ → ∞. Hence the parameter b is related to the maximum damage, while a affects
the rate of the damage growing with Ξ. In the formulation here assumed the vari-
able Ξ represents an equivalent strain measure, based on the value of the stored
energy function W of the material supposed undamaged. The equivalent strain is
defined as the maximum value attained in the strain history of the material:

Ξ = max
τ∈(−∞,t]

√
2W (Γ(τ)) (30)

The Clausius-Duhem inequality

−Ψ̇ +rT Γ = Dint > 0 (31)

on the basis of the free energy function assumed, leads to the expressions of the
generalised stress resultants (components of the vector r)

n = g(Ξ)Cnε
q = g(Ξ)Cqγ

m = g(Ξ)Cmκ
(32)

and of the internal dissipation

Dint =
W (Γ)

Ξ
dg(Ξ)

dΞ

[
∂W
∂Γ

]T

Γ̇ ≥ 0. (33)
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The internal dissipation results not negative because of the assumption of a not
growing damage function g. It is possible to define a damage surface by means of
the equation

φ (Γ,Ξ) =
√

2W (Γ)−Ξ = 0 (34)

The surface φ gives the admissible values of the variables Γ and Ξ which must
satisfy the following inequality

φ (Γ,Ξ) ≤ 0 (35)

The previous inequality represents the damage criterion that can be re-assumed by
the set of relations{

ġ(Ξ) < 0 for φ = 0 and [∂φ/∂Γ]T Γ̇ > 0

ġ(Ξ) = 0 otherwise
(36)

The set of relations (36) means that the growing of damage occurs for a loading
path starting from the damage surface.

3.3 Elastic-plastic constitutive model

For the elastic-plastic constitutive model, strictly quadratic hyperelastic and hard-
ening potentials are chosen, using an additive decomposition of the elastic and
plastic deformations:

W(ε −ε p) :=
1
2

(ε −ε p)t C (ε −ε p)⇒ σ = ∇W(ε −ε p) = C (ε −ε p) , σ ,ε ∈ R8

(37)

H (α) =
1
2

α tDα ⇒ p = −∇H (α) = −Dα = −
{

Dα
D̄ᾱ

}
, α ,p ∈ R9 (38)

Isotropic and kinematic hardening are included in the model, with 8 variables for
the kinematic hardening and 1 for the isotropic one. It has been used the princi-
ple of maximum plastic dissipation, in the hypothesis of associative plasticity and
hardening, which implied the use of symmetric iteration matrices, with consider-
able computational savings:

ε̇ p =
n

∑
μ=1

γ̇μ∂σσσ φμ(σσσ ,p) and α̇αα =
n

∑
μ=1

γ̇μ∂pφμ(σσσ ,p) (39)
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The chosen plastic surface is the Ilyushin-Shapiro one; it is a plastic surface di-
rectly formulated in terms of stress resultants, giving also a good approximation of
the Von-Mises criterion. A term including the effect of the shear stress resultant
has been added to the traditional relationship representing this surface. In matrix
notation

φμ (σ ,p) ≡ (σ + p̄)t Aμ (σ + p̄)− (k0 +k′p)2

k2
0

≤ 0, μ ∈ (1,2) (40)

Aμ =

⎡
⎢⎢⎣

1
n2

0
P 0 sign(μ)

2
√

3n0m0
P

0 1
q2

0
I2 0

sign(μ)
2
√

3n0m0
P 0 1

m2
0
P

⎤
⎥⎥⎦ , sign(μ) :=

{
+1 if μ = 1

−1 if μ = 2
(41)

In the above relationship {n0,q0,m0} represents the plastic threshold of the element
in different loading conditions, i.e. uniaxial traction, pure shear and cylindrical
bending. The coupling term between membrane and bending resultants generates a
double plastic surface, since an absolute value function must be taken into account.

Consequently, a return mapping procedure able to manage double surfaces has been
implemented, with two unknown shear deformations γ1 and γ2, corresponding to
the cases with coupling term (between membrane and bending stress resultants)
positive or negative, respectively.

Obviously, the stress state is limited by the Kuhn-Tucker conditions

γμ ≥ 0, φμ ≤ 0, γμφμ = 0 μ ∈ (1,2) (42)

Using the relationships employed for hardening plasticity and passing to the dis-
crete form (γ1,γ2 ⇒ γκ

1 + Δγκ
1 ,γκ

2 + Δγκ
2 ), the plastic surface is reduced to depend

on the unknown shear deformations only

φμ (σ ,p) ≡ φμ (γκ
1 ,γκ

2 ) = fμ (γκ
1 ,γκ

2 )− [k (γκ
1 ,γκ

2 )]2

k2
0

≤ 0, μ ∈ (1,2) (43)

The found relationship generates a nonlinear system of order 2, which must be
appropriately solved. The chosen procedure is a Newton-Raphson cycle, with a
relatively expensive linearization of expression (43), since square roots appears
too, but exact and hence characterized by a quadratic convergence.

At each Newton iteration (we are talking about the local Newton cycle and not to
the global one used for the whole system), a check on the Kuhn-Tucker conditions
is performed and, if they are not fulfilled by at least one of the two shear strains
(γk

μ > 0), the corresponding surface is immediately deactivated. This procedure
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implies that, even if the plastic surface is doubled, the most part of the operations
are currently carried out on the active surface only, with noteworthy computational
savings.

Also in this case the relation of the tangent algorithmic modulus has been found
(including the isotropic/kinematic hardening), that in matrix notation appears as
follows[

dσ
dε

]
n+1

=
[
Eσ ,n+1

]−
[

∑
α∈Jact

∑
β∈Jact

gαβ Nα Nt
β

]
(44)

where

[
En+1
]
= [En+1]

−1 =
[

Eσ ,n+1 Eσ p̄,n+1

Eσ p̄,n+1 Ep̄,n+1

]−1

=
[

Eσ ,n+1 Eσ p̄,n+1

Ep̄σ ,n+1 Ep̄,n+1

]

=
[

Eσ ,n+1 Eσ p̄,n+1

E
t
σ p̄,n+1 Ep̄,n+1

]
16×16

(45)

with

[En+1] =
[

Eσ ,n+1 Eσ p̄,n+1

Eσ p̄,n+1 Ep̄,n+1

]

=

⎡
⎢⎢⎣
[
C−1 + ∑

α∈Jact

γn+1
α ∂ 2

σσ φα

] [
∑

α∈Jact

γn+1
α ∂ 2

σσ φα

]
[

∑
α∈Jact

γn+1
α ∂ 2

σσ φα

] [
D
−1 + ∑

α∈Jact

γn+1
α ∂ 2

σσ φα

]
⎤
⎥⎥⎦

16×16

(46)

Nβ =
[
E

t
σ ,n+1 +E

t
σ p̄,n+1

t
]{

∂σ φβ
}

=
[
Eσ ,n+1 +Eσ p̄,n+1

]{
∂σ φβ
}

(47)

gαβ =
[
hβα
]−1

(48)

where

hβα =
{

∂σ φ t
β , ∂σ φ t

β

}[
En+1
]{∂σ φα

∂σ φα

}
+∂pφβ Ep,n+1∂pφα (49)

and

Ep,n+1 =

[
D−1 + ∑

α∈Jact

γn+1
α ∂ 2

ppφα

]−1

(50)

Even if the relationships of the tangent modulus are relatively complex and heavy
to be calculated, its use leads to a quadratic convergence speed of the full Newton-
Raphson iteration cycle in the global system. Moreover, the above expression in-
corporates the Kuhn-Tucker conditions and this leads again to beneficial effects in
terms of number of needed iterations to obtain convergence.
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4 Balance equations

The following relation gives the total linear momentum of the system

L
(
Φ̇
)

=
∫
Ω

ρ0
(
ẋ+ξ ṫ

)
dΩ (51)

where ρ0 is the density in the reference configuration and the symbol Φ is used to
indicate an element of the phase space represented by the pairs (x, t). Integration
through the thickness of the shell enables one to rewrite the equation (51) as

L
(
Φ̇
)

=
∫

M0

pdM0 (52)

where the vector p is the linear momentum of the mid surface of the shell resulting
from

p = ρ0Hẋ (53)

Using a similar procedure, the total angular momentum of the shell

J
(
Φ̇,Φ
)

=
∫
Ω

ρ0 (x+ξ t)×(ẋ+ξ ṫ
)

dΩ (54)

is obtained in the alternative form

J
(
Φ̇,Φ
)

=
∫

M0

(x×p+ t×π )dM0 (55)

The vector π is called director momentum. A comparison of the previous equations
gives

π = ρ0
H3

12
ṫ (56)

Finally the kinetic and internal energy of the system are given by

K
(
Φ̇
)

=
1
2

∫
M0

(
ρ0Hẋ · ẋ+ρ0

H3

12
ṫ · ṫ
)

dM0 (57)

Vint =
∫

M0

g(Ξ)W (Γ)dM0 (58)
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The basic laws of the continuum for a pure initial value problem, i.e. if the absence
of external loading is supposed, are the conservation of the total linear momentum
L and the total angular momentum J of the system

dL
(
Φ̇
)
/dt = 0 dJ

(
Φ̇,Φ
)
/dt = 0 (59)

In addition, the balance of energy must fulfil the following inequality

d
[
K
(
Φ̇
)
+Vint (Φ)

]
/dt = Dint ≥ 0 (60)

If the presence of a conservative loading is admitted, the related term of potential
must be included in the previous inequality

d
dt

[
K
(
Φ̇
)
+Vint (Φ)+Vest (Φ)

]
= Dint ≥ 0 (61)

The weak form of the balance of momentum of the shell can be written as

Gdyn
(
Φ̇,Φ,δΦ

)
= Gine

(
Φ̇,δΦ

)
+Gstat (Φ,δΦ)−Gext (δΦ) (62)

in which the terms relating to the inertial forces, to the internal forces and to the
external loading are given respectively by

Gine
(
Φ̇,δΦ

)
=
∫

M0

(ṗ ·δu+ π̇ ·δ t)dM0 (63)

Gstat (Φ,δΦ) =
∫

M0

(n : δε +q : δγ +m : δκ)dM0 (64)

Gext (δΦ) = −Vext (δΦ) (65)

Equation (62) is completed by the initial conditions imposed on Φ

(x, t)|t=0 = (X,T) (p,π)|t=0 = (p0,π0) (66)

The admissible variation of the elements of the phase space is obtained as di-
rectional derivative of Φ. The variations δ t are tangent to the mid plane of the
shell. Because of the inextensible character of t, its variation satisfies the proper-
ties δ t · t = 0, resulting tangent to the unit sphere defined by t itself.

The substitution in the weak form of particular test functions makes possible to
obtain the basic laws of balance represented by Eqs. (59), (60) and (61). It is
expected that a finite element formulation arising from the discretization in time
and space of the weak form let the balance laws to be fulfilled. This is what results
from the procedure partially explained in the next sections.
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5 Time integration scheme

In the present section some details about the application of the time integration
scheme are presented. The total time interval of interest is divided in sub-intervals

[0,T ] =
⋃N

n=0
[tn, tn+1] (67)

Let the configuration (displacement and velocity fields) of the system at time tn be
known. The problem of the integration in time is the evaluation of the unknown sys-
tem configuration at time tn+1. The displacement and velocity values in a generic
intermediate time step of the interval [tn, tn+1] is given as a linear combination of
the values at the time instants tn and tn+1. The mid time configuration can be written
as

(x, t)n+1/2 =
1
2

[
(x, t)n +(x, t)n+1

]
(68)

(p,π)n+1/2 =
1
2

[
(p,π)n +(p,π)n+1

]
(69)

By defining the amplitude of the generic time step Δt = tn+1− tn, the components
of (69) are given as follows

pn+1/2 = Aρ0

xn+1−xn

Δt
(70)

πn+1/2 = Iρ0

tn+1− tn

Δt
(71)

With the equations (70) and (71) at hand, the weak form of the balance can be
discretized in time and evaluated in the mid-configuration of the time step

1
Δt

∫
M0

[δu · (pn+1−pn)+δ t · (πn+1 −πn)]dM0 +Gstat
(
Φn+1/2,δΦ

)−Gest (δΦ)

= 0 (72)

The previous relation is obtained by using the following expressions of the rate of
p and π in the mid-configuration

ṗn+1/2 =
pn+1 −pn

Δt
(73)

π̇n+1/2 =
πn+1−πn

Δt
(74)
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The evaluation of the static term related to the internal force is of crucial importance
to obtain the conservative character of the time integration scheme. The variation
of the Green-Lagrange strain tensor is evaluated in the mid configuration, giving

Gstat (Φn,Φn+1,δΦ) =
∫

M0

(
n : δεn+1/2 +q : δγn+1/2 +m : δκn+1/2

)
dM0 (75)

The components of generalised stresses n, q, m are evaluated by means of a spe-
cific algorithmic form which is explained in the following. To ensure the properties
of conservation of the time integration scheme, the generalised form of stress is
computed by means of a particular algorithmic form. This makes possible to fulfil
the Clausius-Duhem inequality. It can be shown that assuming a linear elastic con-
stitutive model, the conservative algorithmic generalised components of stress are
given by

nαβ =
1
2

Cαβγδ
[(

E(0)
γδ

)
n+1

+
(

E(0)
γδ

)
n

]
(76)

qα3 =
1
2

Cα3γ3
[(

2E(0)
γ3

)
n+1

+
(

2E(0)
γ3

)
n

]
(77)

mαβ =
1
2

Cαβγδ
[(

E(1)
γδ

)
n+1

+
(

E(1)
γδ

)
n

]
(78)

In case of non-linear elastic or dissipative constitutive models, the algorithmic
forms of the stress components are obtained as follows. The mean value theo-
rem is applied to the variation of the Helmholtz free-energy function (28) in the
generic time step

Ψn+1 −Ψn =
[

∂Ψ
∂Γ

]T

n+β
· [Γn+1 −Γn] (79)

The comparison of the previous equation with the discrete (in time) form of the
Clausius-Duhem inequality allows for defining the algorithmic forms of the gener-
alised components of stress and dissipation

[n,q,m]T =
[

g
∂W
∂Γ

]
n+β

(80)

ΔDint
n,n+1 = −1

2

[
W

∂g
∂Γ

]T

n+β
· [Γn+1 −Γn] (81)
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The method can be modified in order to ensure a quadratic convergence of the
scheme with Δt. This procedure is based on the property of the function

1
2

(
Ψn+β −Ψn+1−β

)
(82)

which enables to apply the mean value theorem as

Ψn+1 −Ψn =
1
2

[(
∂Ψ
∂Γ

)
n+β

+
(

∂Ψ
∂Γ

)
n+1−β

]T

· [Γn+1 −Γn] (83)

This procedure leads to the alternative algorithmic forms

[n,q,m]T =
1
2

[(
g

∂W
∂Γ

)
n+β

+
(

g
∂W
∂Γ

)
n+1−β

]
(84)

ΔDint
n,n+1 = −1

2

[(
W

∂g
∂Γ

)
n+β

+
(

W
∂g
∂Γ

)
n+1−β

]T

· [Γn+1 −Γn] (85)

Note that Eqs. (84), (85) and (86), (87) are equivalent as regards the properties
of conservation in terms of energy. The scalar parameter β defines in practice the
conservative configuration and it is deduced as the solution of the following non
linear equation (with reference to Eq. (85))

h(β ) = Ψn+1 −Ψn − 1
2

[(
∂Ψ
∂Γ

)
n+β

+
(

∂Ψ
∂Γ

)
n+1−β

]T

· [Γn+1 −Γn] = 0 (86)

The evaluation of the solution of Eq. (86) is performed at each time step at the
Gauss point level. If the Helmholtz free-energy function is regular and if convexity
is ensured, the solution can be obtained by means of the application of the Newton
scheme. The procedure requires the derivation of the function h, hence the def-
inition of the second order derivative of the Helmholtz free-energy function with
respect to the strain. If elastic-damage behaviour is considered, we obtain

∂ 2Ψ(Ξ,Γ)
∂Γ∂Γ

= g(Ξ)
[

∂ 2W (Γ)
∂Γ∂Γ

]
+W (Γ)

[
∂ 2g(Ξ)
∂Γ∂Γ

]

+ 2
g′ (Ξ)

Ξ

[
∂W (Γ)

∂Γ

]T [∂W (Γ)
∂Γ

]
(87)

and the second order derivative of the damage function g is

∂ 2g(Ξ)
∂Γ∂Γ

=
(

g′′

Ξ
− g′

Ξ3

)[
∂W (Γ)

∂Γ

]T [∂W (Γ)
∂Γ

]
+

g′

Ξ

[
∂W (Γ)

∂Γ

]T [∂W (Γ)
∂Γ

]
(88)
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where the terms g′ and g′′ represent the derivative of the function g with respect
to the equivalent strain Ξ. The lack of convexity sometimes requires the adoption
of an alternative method for the solution of the equation instead of the Newton
method. All the previous relations allow for writing the semi-discrete form of the
balance

1
Δt

∫
M0

δΦT
[

pn+1 −pn 0
0 πn+1−πn

]
dM0 +

∫
M0

rT (Bn+1/2δΦ
)
dM0 (89)

The symbol rT in the second term of the previous equation represents the conser-
vative algorithmic form of generalised stress, given by relation (80) or (84). The
evaluation of its components is made taking into account the values of the gener-
alised stresses at time tn and tn+1. The latter are very simple to be found by means
of the particular definition of the Helmholtz free-energy function, resulting in

nt = g(Ξt) Cnεt (t = tn, tn+1) (90)

qt = g(Ξt) Cqγt (t = tn, tn+1) (91)

mt = g(Ξt) Cmκt (t = tn, tn+1) (92)

Finally matrix Bn+1/2 is the strain operator which allows for obtaining the varia-
tion of the strain components on the basis of the variation of configuration δΦT =
[δu,δ t]. The matrix B can be split pointing out membrane, transverse and bending
components

δε = Bε
n+1/2δΦ (93)

δγ = Bγ
n+1/2δΦ (94)

δκ = Bκ
n+1/2δΦ (95)

The configuration of the strain operator is simply given by a linear interpolation of
the same operators evaluated at the time tn and tn+1

B(·)
n+1/2 =

1
2

[
B(·)

n +B(·)
n+1

]
(96)

More details about the terms of the strain operator B are given in the Appendix.
Note how the semi-discrete weak form (89) is dependent on the unknown configu-
ration Φn+1 at the current time only.

Independent or simultaneous elastoplastic stress redistributions can be taken into
account following an approach similar to the one followed in previous relations
(87)-(89). In this case the dissipation should be divided into two parts, one con-
trolled by the plastic function φ and one to the damage function g. The details will
be reported in a later paper.
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6 Space discretization

The basic aspect of the discretization in space is here explained. In what follows
the indexes relating to time are omitted for sake of simplicity. Isoparametric four-
node elements are adopted. The positions in the reference configuration and in the
current configuration of a point belonging to the mid-plane of a generic element are
given by

X
(
ξ 1,ξ 2)∣∣

Ω =
4

∑
I=1

NI (ξ 1,ξ 2)XI (97)

x
(
ξ 1,ξ 2)∣∣

Ω =
4

∑
I=1

NI (ξ 1,ξ 2)xI (98)

where NI
(
ξ 1,ξ 2

)
are the usual bilinear shape functions with

(
ξ 1,ξ 2

) ∈ [−1,+1]×
[−1,+1]. In a similar way, the fields of the director of the shell and of the displace-
ments, as well as of the linear and angular momentum, is given by the formulas

T
(
ξ 1,ξ 2)∣∣

Ω =
4

∑
I=1

NI (ξ 1,ξ 2)TI (99)

t
(
ξ 1,ξ 2)∣∣

Ω =
4

∑
I=1

NI (ξ 1,ξ 2) tI (100)

In order to avoid a possible ‘locking’ given by the thin thickness of the shell el-
ements, the ANS method is here adopted. The field of transverse shear strains is
assumed as linearly varying from the opposite edges of a generic element. In the
mid-point of every edge the shear strain components are given by

2Ē(0)
13 =

1
2

(
1−ξ 2)2E(0)A

13 +
1
2

(
1+ξ 2)2E(0)C

13 (101)

2Ē(0)
23 =

1
2

(
1−ξ 1)2E(0)D

23 +
1
2

(
1+ξ 2)2E(0)B

23 (102)

The points of the mid surface xL with L = A,B,C,D are given by the following
expressions

xL =
1
2

x
(
ξ 1

M ,ξ 2
M

)
+

1
2

x
(
ξ 1

N ,ξ 2
N

)
(103)

being (L,M,N) ∈ {(A, 1, 2) , (B, 2, 3) , (C, 3, 4) , (D, 1, 4)}. Finally, the interpola-
tions of the necessary terms of the discretization in space of the semi-discrete weak
form are given by

δu|Ω =
4

∑
I=1

NIδuI , δ t|Ω =
4

∑
I=1

NIδ tI (104)
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∂u
∂ξ α

∣∣∣∣
Ω

=
4

∑
I=1

∂NI

∂ξ α uI ,
∂ t

∂ξ α

∣∣∣∣
Ω

=
4

∑
I=1

∂NI

∂ξ α tI (105)

∂δu
∂ξ α

∣∣∣∣
Ω

=
4

∑
I=1

∂NI

∂ξ α δuI ,
∂δ t
∂ξ α

∣∣∣∣
Ω

=
4

∑
I=1

∂NI

∂ξ α δ tI (106)

With the previous relations at hand, the full discrete weak form of the balance of
momentum can be obtained by Eq. (89).

7 Linearisation aspects

The full discrete form of the weak form of the balance of momentum consists of a
system of equations which has nodal displacements and rotations (evaluated at the
current time tn+1) as unknown terms. The solution of the system is found by means
of the application of the Newton-Raphson method. Hence the directional derivative

DGdin

(
Φ̇n,Φn,Φ(i)

n+1,δΦ
)
·ΔΦ(i)

n+1 = −G(i)
din (107)

must be evaluated in order to improve the trial solution until a specified norm results
below the specified tolerance. The derivative leads to three terms, usually known
as inertial, material and geometric, indicated by DD, DM and DG respectively.

DDGdin ·ΔΦn+1

=
Nelem⋃
e=1

∫
Ωe

[
2Aρ0

(Δt)2 Δun+1 ·δu
2Iρ0

(Δt)2 Δtn+1 ·δ t+
1
Δt

(πn+1−πn) ·Δ(δ t)

]
dΩe,

(108)

DGGdin ·ΔΦn+1 =
Nelem⋃
e=1

∫
Ωe

r · [D(δE) ·ΔΦn+1]dΩe

=
Nelem⋃
e=1

∫
Ωe

r ·
{

1
2

[D(Bn+1) ·ΔΦn+1]δΦ+Bn+1/2D(δΦ) ·ΔΦn+1

}
dΩe (109)

DMGdin ·ΔΦn+1 =
Nelem⋃
e=1

∫
Ωe

(
Bn+1/2δΦ

) · (Dr ·ΔΦn+1)dΩe (110)
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On the basis of the Helmholtz free-energy function defined in section 3 the deriva-
tive of the internal forces in the previous term gives the following expression

Dr =
1
2

[
β0g
(
Ξn+β0

)
+(1−β0)g

(
Ξn+1−β0

)]
CBn+1ΔΦn+1

+
1
2

β0
ġ
(
Ξn+β0

)
Ξn+β0

[
∂W (Γ)

∂Γ

]T

n+β0

[
∂W (Γ)

∂Γ

]
n+β0

·Bn+1ΔΦn+1

+
1
2

(1−β0)
ġ
(
Ξn+1−β0

)
Ξn+1−β0

·
[

∂W (Γ)
∂Γ

]T

n+1−β0

[
∂W (Γ)

∂Γ

]
n+1−β0

Bn+1ΔΦn+1 (111)

where the coefficient β 0 is the value ensuring the conservative character of the
algorithmic internal stresses, as previously explained. Similar developments should
be considered in case of elastoplastic behaviour, as it will be shown in a later paper.

8 Examples

The following examples show the main properties of the algorithm in terms of ful-
fillment of the balance laws, both as regards momentum and energy of the system.
Attention is also focused on the convergence property of the scheme, resulting sec-
ond order by a consistent linearization of the vector of internal forces.

8.1 Dynamics of a damaged shell

In this example the comparison between hemispherical shells with a linear elastic
and an elastic-damaged constitutive laws is presented. The material parameters
taken into account are: Young’s modulus E = 203 GPa and Poisson’s ratio ν = 0.3,
energy at the beginning of damage process τ = 3 and at the final material collapse
τ = 75 (corresponding to a strain equal to 5% and 125%, respectively, in uniaxial
traction and compression). As far as the geometrical characteristics are concerned,
a diameter equal to 10 m has been assumed and a thickness/diameter ratio of 1/100.
The numerical experiment has been carried out in displacement control (due to the
softening behaviour in the damaged range), imposing a vertical displacement to the
upper point of the shell up to the material collapse in the damaged case.

It can be noticed that the mechanism of shell deformation is twofold (Figure 2
evidences the different deformed shapes in the damaged and elastic configurations).
One is related to the high membrane stresses in the zone close to the apex, the
other is due to the bending stresses in the zone where the maximum curvature is
attained. The results are summarized into two diagrams. The first one (Figure 3)
represents the reaction at the apex (where the displacement has been imposed) vs.
the apex vertical displacement. The loading phase and elastic unloading (in pink)
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Figure 2: Comparison between deformed shapes of damaged and elastic hemi-
spheres.

Figure 3: Reaction vs. displacements at the apex of the hemisphere where a vertical
displacement is imposed.

are evidenced, while the blue and red lines represent the loading and unloading
phases of the damaged material, respectively.

The finite strain model used for the shell allowed to discover that the damaged
hemisphere is more rigid than the elastic one. The oscillations in the loading phase
of the hemispherical damaged shell are due to the specific mechanism of deforma-
tion: the first separation between the curve representing the damaged material and
that of the elastic one appears when the limit bending stress is attained along a ring
of elements at about half the height of the hemisphere. Due to the softening ma-
terial behaviour (a descending branch in the reaction-displacements diagram can
be seen, Figure 3) a complete rotation of the elements belonging to the ring can
be observed until they are no more subjected to bending but to a membrane action
and hence an increase in stiffness can be seen (the slope of the diagram is again
positive).

This “saw” effect is clearly shown in Figure 3. The decrease in the lever effect
due to the above mechanism in the damaged hemisphere results in a more rigid be-
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haviour of the shell, up to the final collapse. Such oscillations can be circumvented
by a nonlocal damage approach still to be implemented. For a better understanding
of this behaviour, a second diagram has been produced (Figure 4), where the polar
mapping of damage level is represented: the main damage effect is concentrated at
the top and half height of the hemispherical shell.

Additionally, Figure 5 depicts the membrane and bending stresses for both the dam-
aged and elastic hemisphere.

8.2 Dynamic stability of an elastoplastic shell

A second example concerns the case of an elastoplastic instability phenomenon
found again in an hemispherical shell subjected to a concentrated load at the top.
The adopted material is supposed to be steel (Young’s modulus E = 203 GPa and
Poisson’s ratio ν = 0.3, yield limit k0 = 1680 MPa, corresponding to a 0.8% defor-
mation and isotropic hardening modulus k’ = 250 MPa). The kinematic hardening
is set equal to zero, in this case, for a clearer interpretation of the numerical results.
The instability phenomenon was discovered to be dependent on the adopted FE
mesh and on the applied loading speed. Deformed shapes with three, four and six
waves have been found. The numerical experiment has been carried out in displace-
ment control during loading and in force control during recovery. In the following
only the experiment corresponding to the three waves case is shown. The contour
maps of shear and bending stress resultants acting on the faces of the elements are
shown in Figure 6, for both the plastic and elastic hemisphere. The shear stress,
zero in the elastic case, assumes a primary role in the elastoplastic one.

As in the previous example, a diagram showing the reaction at the hemisphere
apex (where a vertical displacement is imposed) vs. the apex vertical displacement
is reported (Figure 7). As in the previous case, due to the different deformation
mechanisms involved, the structure stressed in the plastic range is more rigid than
the one deformed in the elastic domain. At unloading, a straight line can be seen,
demonstrating that the recovery happens in a purely elastic stage and in membrane
regime. Moreover, the irreversible plastic strains are mainly of membrane type.

As far as the instability mechanism is concerned, a change in the deformed shape,
from an axial-symmetric one to a shape with three or four waves, has been ob-
served, linked to an increasing load and to the imposed boundary conditions. In
the following an explanation of the phenomenon is given. First of all, it should be
noticed that the finite strain effects in the elastoplastic range leads the structure to
withstand to the applied load in a completely different way compared to the elastic
case.

When the elastic limit is attained, the bending along a ring of elements allows for
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Figure 4: Damage vs. hemisphere latitude (from equator) at different time stations.

Figure 5: Membrane (left) and bending (right) stresses for the damaged (top) and
elastic (bottom) hemisphere.
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Figure 6: Shear (left) and bending (right) stresses for the plastic (top) and elastic
(bottom) hemisphere.

Figure 7: Reaction vs. displacements at the apex of the hemisphere where a vertical
displacement is imposed.

the formation of plastic hinges, causing the top elements to displace inner wards
to the shell. After experiencing such a rotation, the element is no more stressed
by bending, being the dominant action represented by the membrane one. The
structure can be divided into two zones: the central one, highly stressed in traction
and where plastic deformations occur, and the surrounding zone, still in the elastic
range, where the stress state is mainly of membrane type. On the other hand, in



Dynamic Nonlinear Material Behaviour of Thin Shells 77

the elastic case, the structure assumes a smoother curvature with a more balanced
distribution of membrane and bending stresses. For comparison purposes, the insta-
bility modes of a ring subject to radial forces have been found and the critical load
determined. In this case a commercial FE code has been used [Straus7 (2004)].

The second and third buckling shapes in Figure 8 correspond to the deformed con-
figuration of the hemispherical shell in the two previously recalled instability cases
(they depend on the chosen boundary conditions). To confirm the above behaviour,
the case of a portion of a cone has also been analysed, applying an inner wards
radial load, as shown in Figure 9a.

Even in this situation very similar results to the case of the hemispherical shell
have been obtained, with the exception of the first shape which is elliptical (Figures
10b,c,d). At the end, the numerical experiment has been carried out directly on the
hemispherical shell.

The deformed shape immediately before the instability phenomenon has been as-
sumed as the initial deformed configuration and the central elements at the top have
been excluded. The hemisphere has been fully hinged at the equatorial line (vertical
supports along the line and free rotations around it) as in the experiments carried
out with our approach. Hence the boundary conditions produced the jump of the
first buckling shape. The results are shown in Figure 10.

The specific adopted boundary conditions resulted in an inversion of the first two
buckling deformed shapes, also taking into account that the load multipliers in the
two cases are very close (they differ by only a 6%). Finally, a vertical buckling load
of 300000 KN has been estimated. The deformed shape of the central part of the
hemisphere has been approximated by a cone and a pure membrane stress state has
been applied. As a consequence, the ratio between the vertical and the horizontal
components of the load resulted equal to 0.36. Finally, the plastic moment acting in
the inner side of the elements has been estimated. The found instability deformed
shapes are again in agreement with the previous results. The three-waves deformed
shape appeared for a loading multiplier higher than in the case of the four-waves
shape, but the multipliers are again very close (the difference is now 5.6 %).

9 Conclusions

The proposed work is a contribution to the actual development of fully nonlinear
shell solutions using FEM. In the chosen approach finite rotations, displacements
and strains are incorporated. Nonlinear constitutive laws like hyperelastic-damaged
and elastoplasticity are also included. Tangent stiffness matrices ensures quadratic
convergence and hence fast, accurate and robust solution. Post-buckling behavior,
elastoplastic and hyperelastic-damaged solution are compared for different geo-
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Figure 8: Circular ring subject to radial load (a); 1st buckling shape (b), 2nd shape
(c), 3rd shape (d).

Figure 9: Portion of a cone subject to radial load (a); 1st buckling shape (b), 2nd

shape (c), 3rd shape (d).
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Figure 10: Portion of an hemisphere subject to radial load (a); 1st buckling shape
(b), 2nd shape (c).

metrically exactly described shapes. This paper can be useful for comparisons with
solutions presented in several cited papers in the field, where alternative approaches
to FEM were mainly used, like MLPG and BEM. Useful comparison can be made
in terms of solution speed, incorporation of concurrent nonlinear material and geo-
metrical effects, number of equation in the resolving matrices, etc.

More in detail, a non-linear dynamic analysis of thin shells has been presented here.
Among the features of this shell element, the fulfilment of an energy-momentum
method has been recalled which, together with a consistent numerical formula-
tion, allowing for a fast and accurate time integration of the shell. The adopted
constitutive relationships incorporate hyperelasticity, scalar elastic-damage mode
and an elastoplastic one including isotropic/kinematic hardening. The conservative
characteristics of the time integration algorithm are still valid if applied to a struc-
tural system with internal dissipation. The stability of the time integration scheme
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arising from the particular choice of algorithmic forms of the stresses and inter-
nal dissipation must be intended as the fulfilment of the discrete form in time of
the Clausius-Duhem inequality. The shell model allows to describe the dynamics
of real structures made of materials with internal dissipation and undergoing large
displacements, rotations and moderately large deformations.

Acknowledgement: The authors gratefully thank Dr. Carlo Janna for the help
given during the preparation of the numerical examples.
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Appendix

The terms of the matrix of the stored energy function (27) are given by

Cn =
EH

1−ν2 C̄ Cq = χGH ¯̄C Cm =
EH3

12(1−ν2)
C̄ (A.1)

where the matrix ¯̄C and C̄ are given respectively by

¯̄C =
[

A11 A12

symm. A22

]
(A.2)

and

C̄ =

⎡
⎣A11A11 νA22A11 +(1−ν)A12A12 A11A12

A22A22 A22A12

symm. 1−ν
2 A11A12 + 1+ν

2 A12A12

⎤
⎦ (A.3)

Here H is the thickness of the shell. The coefficients E, G, ν , are the Young’s
modulus, the shear modulus and the Poisson’s ratio. Finally χ represents the shear
factor.

The expressions of the strain operators used in (93), (94) and (95) are given by

Bε
n =

⎡
⎢⎢⎣

∂x
∂ξ1

T ∂
∂ξ1 0

∂x
∂ξ1

T ∂
∂ξ1 0

∂x
∂ξ1

T ∂
∂ξ2 + ∂x

∂ξ2

T ∂
∂ξ1 0

⎤
⎥⎥⎦

n

(A.4)
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Bγ
n =

⎡
⎣tT ∂

∂ξ1
∂x

∂ξ1

T

tT ∂
∂ξ2

∂x
∂ξ2

T

⎤
⎦

n

(A.5)

Bκ
n =

⎡
⎢⎢⎣

∂ t
∂ξ1

T ∂
∂ξ1

∂x
∂ξ1

T ∂
∂ξ1

∂x
∂ξ2

T ∂
∂ξ2

∂x
∂ξ2

T ∂
∂ξ2

∂ t
∂ξ1

T ∂
∂ξ2 + ∂ t

∂ξ2

T ∂
∂ξ1

∂x
∂ξ1

T ∂
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∂ξ2

T ∂
∂ξ1

⎤
⎥⎥⎦

n

(A.6)


