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Large Rotations and Nodal Moments in Corotational
Elements

J.-M. Battini1

Abstract: This paper deals with the parameterisation of large rotations in corota-
tional beam and shell elements. Several alternatives, presented in previous articles,
are summarised, completed and compared to each other. The implementation of
applied external moments and eccentric forces, consistent with the different pa-
rameterisations, is also considered.
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1 Introduction

One difficulty in the implementation of non-linear beam and shell elements is the
treatment of large finite rotations. Since the initial work of Argyris (1982), several
computational procedures have been proposed by different authors, see e.g. the
works of Spring (1986), Iura and Atluri (1988) and the works of Ibrahimbegovic
(1997) and Liu (2006) for a review.

Concerning corotational elements, formulations based on non-additive spatial ro-
tations and additive rotational vectors have been proposed by Pacoste (1998) for
shell elements and Battini and Pacoste (2002) for beam elements. In particular,
it has been shown that the second parameterisation is obtained from the first one
through a change of variables. Recently, the same approach has been used in Bat-
tini (2007) to obtain a parameterisation based on three of the four Euler parameters
(quaternion).

The first purpose of this paper is to summarise these different approaches (in Sec-
tions 2 to 5) and to present their respective advantages and drawbacks, see Section
6. The second purpose concerns the definition of the internal moments at the nodes
which is different for the different parameterisations. As a consequence, see Sec-
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tion 7, applied moments and eccentric forces require a special treatment. Finally,
two numerical applications are presented in Section 8.

2 Rotational parameters

The finite rotation at a node of a beam or shell element is defined by 3×3 orthog-
onal matrix R involving nine components. However, due to the orthonormality, it
can be described in terms of three independent parameters.

The first alternative studied in this paper is based on the “rotational vector" defined
by

Ψ =

⎡
⎣ Ψ1

Ψ2

Ψ3

⎤
⎦ = uψ ψ =

√
Ψ2

1 +Ψ2
2 +Ψ2

3 (1)

The geometrical significance of this definition is that any finite rotation can be
represented by a unique rotation with an angle ψ about an axis defined by the unit
vector u. In terms of Ψ, the matrix R is given by

R = I+
sinψ

ψ
Ψ̃+

1
2

[
sin(ψ/2)

ψ/2

]2

Ψ̃2
(2)

or

R = I+ Ψ̃ +
1
2

Ψ̃2 + · · · = exp(Ψ̃) (3)

with

I =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ Ψ̃ =

⎡
⎢⎣

0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

⎤
⎥⎦ (4)

It can be noted that the relation between the orthogonal matrix R and the rotational
vector Ψ is a bijection only for angles ψ less than 2π .

The second alternative studied in this paper is based on the Euler parameters (quater-
nion) defined by

q =

⎡
⎣ q1

q2

q3

⎤
⎦ (5)
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In terms of q, the rotational matrix R is given by

R = 2

⎡
⎣q2

0 +q2
1 − 1

2 q1q2 −q3q0 q1q3 +q2q0

q2q1 +q3q0 q2
0 +q2

2 − 1
2 q2q3 −q1q0

q3q1 −q2q0 q3q2 +q1q0 q2
0 +q2

3 − 1
2

⎤
⎦ (6)

with

q0 =
√

1−q2
1 −q2

2 −q2
3 (7)

The proposed parameterisation based on Euler parameters requires only three pa-
rameters (q1,q2,q3) instead of four (q1,q2,q3,q0) as usually found in the litera-
ture. This is possible only for rotations characterised by an angle ψ less than π .
For such cases, the indeterminacy associated to the fact that both q0,q1,q2,q3 and
−q0,−q1,−q2,−q3 represent the same orthogonal matrix R can be be avoided by
replacing the equation

q0 = ±
√

1−q2
1 −q2

2 −q2
3 (8)

by the expression (7). Then, for angles ψ less than π , the relation between the
matrix R and the vector q is a bijection and q is related to the rotational vector by

q = sin(ψ/2)u (9)

3 Non-additive formulation

Corotational beam and shell formulations are derived using the principal of vir-
tual work for which infinitesimal displacements and rotations are required. The
infinitesimal variation δR of the orthogonal matrix R can be obtained in the fol-
lowing way, see Fig. 1. The rotation at a node is given by the orthogonal cartesian
frame (t1, t2, t3) and the rotational matrix R such as

ti = Rei i = 1,2,3 (10)

where (e1,e2,e3) is the global cartesian system for the structure. An incremental
rotation carries the moving frame (t1, t2, t3) into a new position (t′1, t′2, t′3), through
a spatial rotation Rs = exp(θ̃) applied to (t1, t2, t3), i.e.

t′i = Rs ti = Rs Rei = Rn ei = exp(θ̃ )Rei (11)

If the rotation Rs is infinitesimal, Eq. (11) can be rewritten using Eq. (3) as

Rn = R+δR = exp(δ θ̃ )R = (I+δ θ̃ )R (12)
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Figure 1: Successive finite rotations

which gives

δR = δ θ̃ R (13)

The derivation of non-linear corotational beam and shell elements is done using
Eq. (13), which implies that obtained internal force vectors fθ and tangent stiffness
matrices Kθ are consistent with infinitesimal spatial rotations δθ as defined in
Eq. (11). For a 3D beam element with two nodes an six degrees of freedom at
each node (i.e. without warping degree of freedom), it gives

fθ =

⎡
⎢⎢⎣

f1

mθ1

f2

mθ2

⎤
⎥⎥⎦ δpθ =

⎡
⎢⎢⎣

δu1

δθ 1

δu2

δθ 2

⎤
⎥⎥⎦ δ fθ = Kθ δpθ (14)

where u1 and u2 are the nodal displacements. The internal virtual work produced
by fθ is expressed by

Wi = δpT
θ fθ (15)

Using Eq. (11), the updating after each Newton-Raphson iteration of the rotational
matrix at each node is performed according to

Rn = exp(dθ̃ )Ro (16)

The superscripts o and n denote the “old" and “new" quantities whereas dθ are the
iterative spatial rotations obtained through the Newton-Raphson iteration.



Large Rotations and Nodal Moments in Corotational Elements 5

4 Totally additive formulations

In order to avoid the update procedure in Eq. (16), parameterisations based on the
rotational vector and the Euler parameters have been presented in Pacoste (1998)
and Battini (2007). Then, the rotations become additive and can be updated at each
iteration using

Ψn = Ψo +dΨ qn = qo +dq (17)

The internal force vectors fΨ, fq and tangent stiffness matrices KΨ, Kq consistent
with Ψ, q are obtained from fθ , Kθ using a change of variables from δθ to δΨ and
δθ to δq defined by

δθ = TΨ(Ψ)δΨ δθ = Tq(q)δq (18)

The virtual displacements vectors and internal forces vectors are defined by

δpΨ =

⎡
⎢⎢⎣

δu1

δΨ1

δu2

δΨ2

⎤
⎥⎥⎦ δpq =

⎡
⎢⎢⎣

δu1

δq1

δu2

δq2

⎤
⎥⎥⎦ (19)

and

fΨ =

⎡
⎢⎢⎣

f1

mΨ1

f2

mΨ2

⎤
⎥⎥⎦ fq =

⎡
⎢⎢⎣

f1

mq1

f2

mq2

⎤
⎥⎥⎦ (20)

By equating the virtual work in the two systems, i.e.

δpT
Ψ fΨ = δpT

θ fθ δpT
q fq = δpT

θ fθ (21)

and using Eqs. (18), it is obtained

fΨ = BT
Ψ fθ fq = BT

q fθ (22)

with

BΨ =

⎡
⎢⎢⎣

I 0 0 0
0 TΨ(Ψ1) 0 0
0 0 I 0
0 0 0 TΨ(Ψ2)

⎤
⎥⎥⎦ (23)
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and

Bq =

⎡
⎢⎢⎣

I 0 0 0
0 Tq(q1) 0 0
0 0 I 0
0 0 0 Tq(q2)

⎤
⎥⎥⎦ (24)

The expressions of the tangent stiffness matrices KΨ and Kq are obtained by dif-
ferentiation of Eqs. (22) and by introducing Eq. (14). It gives

KΨ = BT
ΨKθ BΨ +KhΨ Kq = BT

q Kθ Bq +Khq (25)

with

KhΨ =
∂ (BT

Ψfθ )
∂pΨ

∣∣∣∣∣
fθ

Khq =
∂ (BT

q fθ )
∂pq

∣∣∣∣∣
fθ

(26)

The derivations and expressions of Matrices TΨ, Tq, KhΨ and Khq can be found in
Pacoste (1998) and Battini (2007).

5 Incrementally additive formulations

The operator TΨ(Ψ) is singular for ψ = 2π whereas the operator Tq(q), is not
defined for q0 = 0, which corresponds to a rotation ψ = π . Physically, it is due to
the fact that the relations between the matrix R and the vectors Ψ and q cease to be
bijections for these two angles. Consequently, the changes of variables defined in
the previous section are limited to angles ψ less than 2π for the parameterisation
with the rotational vector and to angles ψ less than π for the parameterisation with
Euler parameters.

This implies that the procedure described in the previous section cannot be used for
highly flexible structures or mechanisms which undergo very large rotations. One
solution, proposed by Ibrahimbegovic (1997) is to introduce incremental rotational
vectors and incremental Euler parameters. The idea is to use the change of vari-
ables presented in the previous section but to define the rotational vector and Euler
parameters only within the increments. The update procedure is then performed in
the following way:

Ro is the rotational matrix at the end of last step. At the beginning of the new step,
the incremental rotational vector and incremental Euler parameters are zero. At
each iteration i, they are updated using

Ψi+1 = Ψi +dΨ Ψ0 = 0 (27)

qi+1 = qi +dq q0 = 0 (28)



Large Rotations and Nodal Moments in Corotational Elements 7

and the rotational matrix is updated using

Ri+1 = exp(Ψi+1)Ro Ri+1 = R(qi+1)Ro (29)

Hence, additive updates still apply, but only within each increment and the ampli-
tudes of the rotations are not limited. Regarding the required changes of variables,
the only difference in Eqs. (22) and (25) is that Ψ and q are no longer total quanti-
ties but incremental ones.

6 Comparison of the different formulations

The different parameterisations presented in Sections 3 to 5 have been implemented
in both beam and shell corotational elements, see Battini and Pacoste (2002) and
Battini (2007). Many numerical tests in statics have shown that all the formulations
give the same numerical results and and have the same convergence properties re-
garding the Newton-Raphson iterations. It is therefore not possible to state that
one approach is better than another one. However, the following aspects can be
considered in the choice of the parameterisation:

• If the amplitudes of the rotations are larger than 2π , the rotational vector can
not be used; if the amplitudes of the rotations are larger than π , the Euler
parameters can not be used.

• With the formulations based on totally additive variables, the rotations are
handled in the same way as displacements at the structural level and only
three rotational parameters at each node are required. With the other formu-
lations, the rotational matrix and three rotational parameters (for the incre-
mentally additive formulations) are necessary at each node at the structural
level. This requires more memory space, especially for large scale problems.

• For corotational beam elements, the tangent stiffness matrix is not symmet-
ric. However, for the formulations based on additive variables (totally or
incrementally), the tangent stiffness matrix can be symmetrised without af-
fecting the convergence properties of the Newton-Raphson iterations. This
is not possible for the formulation based on non-additive spatial rotations.
For corotational shell elements, the tangent stiffness matrix is symmetric if
additive (totally or incrementally) variables are used and the tangent stiff-
ness matrix can be symmetrised if spatial rotations are used. This aspect is
particularly interesting for large scale problems.

• As pointed out by Ibrahimbegovic (1997), the totally or incrementally ad-
ditive formulations are very interesting in dynamics. As a matter of fact,
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classical Newmark time-stepping algorithms based on additive variables can
be directly used. If spatial rotations have to be used, many difficulties are
encountered. The choice of the additive variables seems to be still open. As
example, Cardona and Gerardin (1988) used the rotational vector to develop
a beam element and Spring (1986) showed that Euler parameters are also a
very good alternative.

• The numerical tests performed on small case problems have shown that the
formulation based on spatial rotations requires the least computational time.
The slowest formulation is the one based on the incremental rotational vector
and requires about 20% more computational time. This aspect is illustrated
in the examples.

• All these formulations are based on different parameterisations of the nodal
rotations and consequently different definitions of the internal moments at
the nodes. This is not a problem but must be carefully considered if external
moments or eccentric forces are applied. This is the purpose of the next
section and will be illustrated in Example 2.

7 Applied moments and eccentric forces

7.1 Applied moments

Consider that at a node i, an external moment mθ is applied and that the formulation
based on spatial rotations is used. This moment performs the external virtual work

We = δθ T
i mθ (30)

Consider now that the same problem is to be analysed using the formulations based
on the rotational vector and Euler parameters. The applied external moments mΨ
or mq must perform the same virtual work as in Eq. (30),

δΨT
i mΨ = δθ T

i mθ δqT
i mq = δθ T

i mθ (31)

which, introducing Eqs. (18), gives

mΨ = TT
Ψ(Ψi)mθ mq = TT

q (qi)mθ (32)

Differentiation of the above equations gives the 3×3 moment-correction stiffness
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terms

KcΨ =
∂ (TT

Ψ(Ψi)mθ)
∂Ψi

∣∣∣∣∣
mθ

Kcq =
∂ (TT

q (qi)mθ )
∂qi

∣∣∣∣∣
mθ

(33)

which must be subtracted from the tangent stiffness matrices KΨ and Kq.

If the parameterisations in terms of incremental rotational vector and incremental
Euler parameters are adopted, the same transformations are required. The impor-
tance of these transformations will be shown in Example 2. In particular, it will
be shown that if these transformations are not applied, the different formulations
produce different results.

7.2 Eccentric forces

The physical interpretation of the different applied moments is not trivial. As ex-
ample, let us consider the case

mθ =

⎡
⎣ 1

0
0

⎤
⎦ Ψi =

⎡
⎣ π/4

π/4
π/4

⎤
⎦ (34)

Using Eq. (32), it is obtained

mΨ =

⎡
⎣ 0.813

0.429
−0.242

⎤
⎦ (35)

Both mθ and mΨ are associated to rotations in radians and represent the same
physical moment. Then, why are they completely different?

One way to obtain a physical interpretation is to consider that these moments are
due to eccentric forces applied to the ends of rigid links, see Izzuddin (2001).

Let us consider that the constant external force vector fa is applied at the point a,
and that point a is rigidly connected to node i through the rigid link defined by the
vector vo such as

xa = xi +vo (36)

where xa and xi denote the initial positions of a and i. The displacement vector of
the point a is given by

ua = ui +(Ri − I)vo Ri = Ra (37)
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fi and mi, the external load and moment vectors at node i, can be obtained by
considering that the applied loads at a and i must perform the same external virtual
work,

δuT
a fa = δuT

i fi +δθ T
i mi (38)

Differentiation of Eq. (37) gives

δua = δui +δRi vo (39)

which, using Eq. (13), can be rewritten as

δua = δui +δ θ̃ i v = δui − ṽδθ i v = Ri vo (40)

and finally as

δuT
a = δuT

i +δθ T
i ṽ (41)

Then, from Eqs. (38) and (41), it is obtained

fi = fa mi = ṽ fa = v× fa (42)

Eq. (42) shows that the components of mi are the moments around the global axes
e1,e2,e3 created by fa at point i. Since mi is associated to spatial rotations δθ i,
it can then be deduced that the components of the vector mθ , see Eq. (30), are
moments around the fixed global cartesian axes. To find physical interpretations of
mΨ and mq seems much more difficult.

Since mi is not constant, a 3×3 moment-correction stiffness term Kc defined by

δmi = Kc δθ i (43)

must be be subtracted from the tangent stiffness matrix Kθ . Differentiation of
Eq. (42) gives

δmi = δ ṽ fa = −f̃a δv = −f̃a δ θ̃ i v = f̃a ṽδθ i (44)

Finally, mi and Kθ are consistent with infinitesimal spatial rotations δθ . If the
formulations based on the (incremental) rotational vector or (incremental) Euler
parameters are to be used, the transformations in Sections 7.1 and 4,5 must be
performed.
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Figure 2: Example 1: Pinched cantilever cylinder

Table 1: Example 1 – numerical performances

Formulation spat. rot. rot. v. inc. rot. v. Euler inc. Eul.
cpu time 119 135 139 124 126

8 Numerical examples

8.1 Example 1: Pinched cantilever cylinder

The purpose of this first example, depicted in Fig. 2, is to compare the numerical
performances of the different formulations. The cylinder, which is clamped at one
end and free at the other, is subjected to two opposite loads P. Using symmetry,
only one quarter of the cylinder is modelled with a 16× 16 mesh of corotational
shell elements. The analysis is performed using 16 steps, up to a displacement of
about 1.6R, ignoring the physically occuring contact. All the formulations give
exactly the same numerical results, see Fig. 3 and required the same number of
Newton-Raphson iterations (102). The numerical performances given Table 1 show
that the fastest formulation (spatial rotations) is 17% faster than the slowest one
(incremental rotational vector).

8.2 Example 2: L-shaped cantilever frame

The second example, see Fig. 4, is loaded by a moment at the free end A. As noted
by Gendy and Saleeb (1994), the buckling load and post-buckling response depend
on the method used to generate the applied moment. Two cases are studied here: in
the first case, a moment vector [00m ]T is applied; in the second case, two opposite
and conservative forces F/2 are applied at the ends of rigid links of unit length.
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Figure 3: Example 1: Load-displacement diagram

Table 2: Example 2 – case 2 – numerical performances

Formulation spat. rot. rot. v. inc. rot. v. Euler inc. Eul.
nb. iterations 150 156 155 156 157
cpu time 4.01 4.98 5.01 4.29 4.41

In both cases, small imperfections are introduced by applying at A a force of mag-
nitude m/1000 and F/1000 in z-direction. For case 1, the results, see Fig. 5, are
obtained without the moment transformation defined in Section 7.1, which means
that a moment [00m ]T is applied for the three considered parametrisations. As
expected, the obtained results are different since the applied moments are physi-
cally different. For case 2, both transformations in sections 7.1 and 4,5 have been
applied and all the parameterisations give exactly the same results. The numerical
performances given in Table 2 show that the fastest formulation (spatial rotations)
is 25% faster than the slowest one (incremental rotational vector).
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Figure 4: Example 2: L-shaped cantilever frame

9 Conclusion

This paper has presented and compared different approaches to parameterise finite
rotations in corotational beam and shell elements. The first one, based on spatial
rotations, is obtained naturally during the derivation of the element. The rotational
parameters are non-additive and a special updating procedure is required. For the
other approaches, based on the rotational vector and the Euler parameters, the ro-
tational variables are totally or incrementally additive. These parameterisations are
obtained from the first one through a change of rotational variables which is inde-
pendent on the element formulation. As a consequence, this method is not limited
to corotational elements but can also be used for other non-linear beam and shell
elements.

Many tests in statics, see also Section 8, have shown that all the formulations give
the same numerical results and have the same convergence properties regarding the
Newton-Raphsons iterations. However, as explained in Section 6, all these formu-
lations have advantages and drawbacks and the choice of an efficient formulation
depends on the problem that must be studied.

Finally, if moments or eccentric forces are applied, transformations of the moments
and moment-correction stiffness terms, consistent with the parameterisation of the
rotations, are required.
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Figure 5: Example 2: Load-displacement diagrams
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