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A Post-Processing Scheme to Evaluate Transverse Stresses for Composite
Panels under Dynamic Loads

K. Lee1, H. Park2 and S.W. Lee3

Abstract: A post-processing scheme is presented
to accurately determine transverse shear and nor-
mal stresses in composite panels undergoing geo-
metrically nonlinear deformation under dynamic
loading conditions. Transverse stresses are as-
sumed through thickness at a point of interest and
are recovered via a one-dimensional finite ele-
ment method. The finite element method is based
on the least square functional of the error in the
equilibrium equation along the thickness direc-
tion and utilizes the in-plane stresses and resul-
tant transverse shear forces per unit length ob-
tained by a shell element analysis. Numerical re-
sults demonstrate that, with minimal addition of
computational efforts, the present post-processing
approach can be used to accurately determine the
time history of transverse stresses at a point of
interest in composite structures under dynamic
loading.
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1 Introduction

For multi-layered composite and sandwich
structures, accurate determination of transverse
stresses is prerequisite to investigation of ma-
terial damage and failure. For example, any
strength-based criteria for failure of composite
and sandwich panels such as delamination or
debonding require information on transverse
stresses. Accordingly, it is desirable to have
an efficient method to accurately evaluate
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transverse stress distributions in the thickness
direction. Analytical or semi-analytical solutions
for the transverse stresses, based on the three-
dimensional elasticity, have been available only
for simple geometries and boundary conditions
[Pagano (1970)]. Recently, Kant, Pendihari and
Desai (2007) have introduced semi-analytical
solutions for more general geometry and bound-
ary conditions. However, these semi-analytical
solutions are limited to geometrically linear
deformation.

Within the context of the finite element method,
one approach to determine the transverse stresses
is to use a sufficiently large number of elements
along the thickness direction. However, this ap-
proach may be impractical due to enormous com-
putational cost, especially for cases involving
geometrically nonlinear deformation under dy-
namic loadings. An alternative approach is to
carry out the finite element analysis with a single
plate or shell element through the thickness and
subsequently enhance the accuracy of transverse
stresses via using a post-processing scheme. An
extensive literature review on the post-processing
schemes, conducted by Yuan, Saleeb and Gendy
(2000), reveals that most schemes have been ap-
plied to geometrically linear static cases. Sev-
eral investigators [Lee and Lee (2003), Park and
Kim (2003), Park, Park and Kim (2003)] have
applied their schemes to geometrically nonlinear
static problems. However, their applicability to
geometrically nonlinear problems under dynamic
loadings is still unknown.

The objective of this study is to extend a post-
processing scheme, previously developed by Lee
and Lee (2003) for evaluation of transverse
stresses in composite panels under static loading
conditions, into the cases involving dynamic load-
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ing conditions. This post-processing scheme can
handle geometrically nonlinear cases as well as
linear ones. In this approach, transverse stresses
are recovered via a post-processing scheme using
a one-dimensional finite element method applied
at a point of interest. Unknown transverse shear
and normal stresses, assumed through the thick-
ness in terms of unknown nodal values, are in-
troduced into a least square functional based on
the error in the equilibrium. The minimization of
the least square functional leads to a simple lin-
ear algebraic equation, from which the unknown
nodal values can be determined. Dynamic effects
are incorporated into the equilibrium equation by
treating the inertia force as a body force. The
present post-processing scheme is based on the
premises that one can accurately obtain in-plane
stresses and resultant transverse shear forces per
unit length via either the geometrically nonlinear
finite element analysis using plate or shell ele-
ments [Park, Cho and Lee (1995), Yeom and Lee
(1989), Kim and Lee (1988)] or any other meth-
ods such as the meshfree method [Han, Rajendran
and Atluri (2005), Jarak, Soric and Hoster (2007),
Sladek, Saldek, Wen and Aliabadi (2006), Wen
and Hon (2007)]. For the finite element method,
it is known that inplane stresses are accurate at the
superconvergent stress points in an element and
various recovery techniques are available for ac-
curate determination of inplane stresses at other
points [Zienkiewicz and Zhu (1992), Lee, Park
and Lee (1997)].

2 Formulation for stress recovery

The equilibrium equations for solids, undergoing
geometrically nonlinear deformation, can be ex-
pressed as
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where Sxx, · · · ,Szz are the 2nd Piola-Kirchhoff
stress components, andR is the position vector in
the deformed configuration. The position vector
R can be expressed as
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⎩
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y+v
z+w

⎫⎬
⎭ (3)

where u,v,w are the displacements along x,y, z di-
rection, respectively. The body force vector due
to the inertia forces can be expressed as
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−ρ v̈
−ρẅ
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where ρ is the mass per unit volume and ü, v̈, ẅ are
the accelerations of the solids along thex,y, z di-
rections, respectively.Using the indicial notation,
one can express the k−th component (k = 1,2,3)
of the equilibrium equations Qk as
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where δ jk is the Dirac delta function and displace-
ments u1,u2,u3 correspond to u,v,w respectively.
The left hand side of the equation (5) can be di-
vided into two parts as follows:

Qk = Qk1 +Qk2 (6)

where Qk1 represents a known part and Qk2 is an
unknown part. We assume that the in-planes stress
terms and the inertia force terms are accurately
obtained by the results of the shell element anal-
ysis. Accordingly, the known part can be written
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in terms of in-plane stresses and the inertia forces
only. The unknown part is composed of the trans-
verse stress terms that are to be determined. The
known part of equation (5) can be expressed as
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All remaining terms constitute the unknown part,
which can be expressed as
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The procedure for stress recovery can be de-
scribed via expressing the transverse stresses as-
sumed in the thickness direction as follows:

Sxz = Nxzx1, Syz = Nyzx2, Szz = Nzzx3 (9)

where Nxz,Nyz,Nzz are the row vectors of assumed
shape functions and x1,x2,x3 are the correspond-
ing vectors of unknown nodal values along the
thickness direction.

With the use of equation (9), εεε , the error of the
equilibrium equation (1), can be symbolically ex-
pressed in matrix form as follows.
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where matrix A and column vector b are known
quantities and x is the vector of unknown nodal
values of the assumed transverse stresses. The un-
known x vector can be determined by minimizing
the least square functional based on the error of

equilibrium equation defined as follows:
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Note that the integration is through the thickness
only. The minimization condition of L(x) with
respect to x leads to[∫ (
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or
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In the finite element approximation, one-
dimensional elements are introduced along the
thickness and the K and f are assembled from the
element values. For this, the least square func-
tional can be expressed as
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where εεεe is the error of the equilibrium equation
within the element expressed as
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The K matrix and f vector can be expressed with
the quantities defined in each element as follows:
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The unknown x vector is determined by solving
equation (13). As shown in equations (7) and
(8), the current scheme requires the information
on the in-plane derivatives of in-plane stresses as
well as the in-plane derivatives of the transverse
shear stresses. The in-plane stress derivatives can
be obtained by using the stress values at the su-
perconvergent stress points of the elements that
share common boundaries with the element that
contains the point of interest at which the trans-
verse stresses are being recovered [Lee and Lee
2003]. On the other hand, the derivatives of the
transverse shear stresses can be obtained using the
following equations:
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where Qx and Qy are the resultant transverse shear
forces per unit length computed from the analysis
using a shell finite element model or a meshless
method. One may refer to Lee and Lee [2003]
for additional details on the implementation of the
current scheme.

3 Numerical examples

Numerical tests are conducted to evaluate the
validity and effectiveness of the present post-
processing scheme to determine the transverse
stresses under dynamic loading conditions. The
structures chosen for test are laminated compos-
ite plates under uniform pressure loads, either
constant or triangular in time. The nine-node
assumed strain solid shell elements are used to
generate the displacement, in-plane stresses and
resultant transverse shear forces per unit length
that are needed as the input to the stress recov-
ery scheme described in the present paper. As for
the unknown transverse stresses, the transverse
shear stresses are assumed to be quadratic while
the transverse normal stress is assumed cubic in
an element. Twelve one-dimensional elements are
used through the thickness at a selected point of
interest.

3.1 A clamped composite plate under uniform
step function pressure loads

The first example chosen for test is a laminated
composite plate with all four edges clamped, sub-
jected to uniform transverse pressure load in step
input form initiated at t = 0. The material proper-
ties of the composite panel are shown in Table 1,
and the geometrical data and lay-up sequence are
given in Table 2.

Table 1: Mechanical properties of laminate com-
posite

Longitudinal Modulus, E1 43.34 GPa
Transverse Modulus, E2 12.73 GPa
Shear Modulus, G12 4.46 GPa
Poisson’s Ratio, ν12 0.29
Density, ρ 1800 kg/m3

Table 2: Ply lay-up and geometrical dimensions
of the plate

Lay-Up
Sequence

No. of
Plies

Length
(mm)

Width
(mm)

Thickness
(mm)

[0/90]S 4 220 220 3.43

As shown in Fig. 1, utilizing the symmetry in
geometry and loading, the left upper quarter of
the plate is chosen for finite element analysis with
fourteen elements in the length and the width di-
rections.

Lines of 
Symmetry 

Element for 
stress recovery 

x

y

Figure 1: Analysis region and location of the ele-
ment of interest
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Geometrically nonlinear dynamic analyses are
carried out under a step loading of uniform pres-
sure of 1.0 kPa and 100.0 kPa. Subsequently, the
transverse stresses are evaluated via the present
post-processing approach at the center of the
shaded element as shown in Figure 1.

Figures 2 and 3 show the time histories of the nor-
mal displacement at the center of plate. As shown
in the figures, due to the geometrically nonlin-
ear effect, the amplitude is not proportional to the
magnitude of the applied load. For the pressure
load of 100.0 kPa, the maximum displacement is
about 1.3 times the plate thickness.

Figure 2: Center displacement vs. time for p = 1
kPa

Figures 4 and 5 show the six stress components
at three locations through the thickness direction
obtained by using the 14x14 mesh and time incre-
ment Δt = 1.0×10−4 (sec). In these figures the z
coordinate is normal to the plate with z = 0 at the
midplane and t is the plate thickness. The three in-
plane stresses are the direct result of the finite el-
ement analysis using the solid shell element. For
the higher pressure of 100 kPa, the asymmetries
in the inplane stresses through the thickness are
highly pronounced due to geometrically nonlin-
ear behavior of the composite plate. As for the
transverse stresses, we observe that their maxi-
mum values are very small relative to those of the
inplane normal stresses.

Figure 3: Center displacement vs. time for p =
100 kPa

3.2 A clamped plate under time-varying pres-
sure loads

In this example, a laminated composite plate is
subjected to a dynamic pressure load which is uni-
form over the plate surface but is in the form of
two triangular shapes in time. The material prop-
erties for the composite plate are shown in Table
1, and the geometrical data and lay-up sequence
are given in Table 3. Figure 1 shows the compos-
ite plate, clamped along the four edges. Due to
the symmetry in geometry and loading, only the
left upper quarter of the plate is chosen for finite
element analysis with a mesh of 14x14 elements.

Table 3: Ply lay-up and geometrical dimensions
of the plate

Lay-Up
Sequence

No. of
Plies

Length
(mm)

Width
(mm)

Thickness
(mm)

[0/90]S 4 440 440 3.43

The applied pressure is assumed vary in time as
follows:

P(t) =

{
2Pmax

t
T 0 ≤ t < T

2

2Pmax
(
1− t

T

)
T
2 ≤ t ≤ T

(20)

where the two parameters Pmax and T determine
one cycle of the triangular dynamic pressure load-
ing. Two cycles of dynamic loading with Pmax
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Figure 4: Stress components vs. time at three different locations through the thickness (14x14 mesh, p = 1
kPa, Δt = 1.0×10−4 (sec))
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Figure 5: Stress components vs. time at three different locations through the thickness (14×14 mesh, p =
100 kPa, Δt = 1.0×10−4 (sec))



120 Copyright c© 2008 Tech Science Press CMES, vol.32, no.3, pp.113-122, 2008

= 0.1 MPa and T = 1/150 second are applied
as shown in Figure 6. Geometrically nonlin-
ear dynamic analyses are carried out and subse-
quently the transverse stresses are evaluated at
a selected point of interest via using the present
post-processing approach.

Figure 6: Pressure vs. time for the triangular dy-
namic pressure loading

Figure 7 shows the time history of the transverse
displacement at the plate center. As shown in the
figure, the maximum displacement is more than
four times the plate thickness.

Figure 7: Center displacement vs. time for the
triangular dynamic pressure loading

Figure 8 shows the stress components vs. time
at the three different locations through the thick-
ness. The stresses are evaluated at the center of

the shaded element shown in Fig. 1. The in-plane
stresses, which are obtained directly from the geo-
metrically nonlinear dynamic analyses, are highly
asymmetric through the thickness due to geomet-
rically nonlinear nature of the deformation. Once
again, we observe that the maximum values of the
transverse stresses are very small compared with
the maximum inplane normal stress values.

4 Conclusions

The results of numerical tests demonstrate the
validity and effectiveness of the present post-
processing scheme to recover transverse stresses
of geometrically nonlinear composite panels un-
der dynamic loading conditions. The present ap-
proach is attractive in that the transverse stresses
are evaluated only at a point of interest at a given
instant in time via utilizing a one-dimensional fi-
nite element method along the thickness direction.
Accordingly, the scheme requires minimal com-
putational effort, when used to determine trans-
verse stresses in composite panels undergoing ge-
ometrically nonlinear deformation subjected to
dynamic loadings. Moreover, the scheme is
equilibrium-based and is independent of consti-
tutive behavior of the structural material.
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