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Crack Propagation in Concrete Using Meshless Method

N. Sageresan and R. Drathi

Abstract: Crack propagation in concrete is
computed with a simplified meshless method.
The material is elastic of Neo-Hookian type until
fracture. Then a discrete cohesive crack method is
used. In the cohesive crack method, cohesive seg-
ments are introduced at the meshless nodes. No
representation of the crack surface is needed. The
method is well-suited for concrete since concrete
develops many cracks. Mesh independent results
are obtained due to the cohesive model that takes
into account the correct energy dissipation dur-
ing crack opening. We show the accuracy of our
method by comparison to experimental data.
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1 Introduction

Initiated in 1961 by Kaplan (1961), the study of
fracture mechanics has progressed by the turn of
the century quite far. Kesler, Naus, and Lott
(1972) showed that the classical linear elastic
fracture mechanics (LEFM) of sharp cracks was
inadequate for normal concrete structures. This
conclusion was supported in 1972 by the results
of Walsh (1972, 1976) who tested geometrically
similar notched beams of different sizes and plot-
ted the results in a double logarithmic diagram of
nominal strength versus size. Without attempting
a mathematical description, he made the point that
this diagram deviates from a straight line of slope
-1/2 predicted by LEFM.

An analytical study of size effect due to localiza-
tion of distributed cracking began in 1976 :331-
344; Disc.) (1976;102(EM2). Later, a simple for-
mula of size effect, which describes the size effect
for quasi-brittle failures preceded by tests, was
derived Bazant (1984) and the crack band model
Bazant and Oh (1983) was developed. This model
was shown to be in good agreement with the ba-

sic fracture data and size effect data Bazant and
Oh (1983), and has been found convenient in pro-
gramming. However, the crack band model fails
to predict crack paths that are not known in ad-
vance.

A major advance in concrete fracture was made in
1976 by Hillerborg, Modeer, and Peterson (1976).
Inspired by the softening and plastic models of
fracture process zone initiated in the works of
Barenblatt (1962, 1959) and Dugdale (1960) and
developed earlier for materials other than con-
crete by e.g. Rice (1968); Smith (1974), Hiller-
borg (1985b,a) improved and adapted the cohe-
sive crack model to concrete. Cohesive crack
models were later on coupled to element separa-
tion method Ortiz, Leroy, and Needleman (1987);
Xu and Needleman (1994) in the context of fi-
nite element method. However, the results de-
pend on the mesh unless adaptive remeshing al-
gorithms are used. Meshless methods have been
proven a powerful alternative to finite element
method. In combination with cohesive crack
methods, they give reliably mesh independent re-
sults Hao, Liu, Klein, and Rosakis (2004); Li and
Simonson (2003); Han and Atluri (2003); Tang,
Shen, and Atluri (2003); Liu, Han, Rajendran,
and Atluri (2006); Nairn (2003); Guo and Nairn
(2004); Maiti and Geubelle (2004); Guz, Men-
shykov, and Zozulya (2007); Gao, Liu, and Liu
(2006); Rabczuk and Areias (2006); Andreaus,
Batra, and Porfiri (2005); Le, Mai-Duy, and Tran-
Cong (2008); Nishioka (2005); Ma, Lu, and Wang
(2006) for complicated problems of concrete frac-
ture.

Meshless methods were pioneered by Atluri
and Zhu (1998, 2000); Atluri and Shen (2002),
Belytschko, Lu, and Gu (1994b); Belytschko
and Tabbara (1996); Belytschko, Krongauz, Or-
gan, Fleming, and Krysl (1996), Liu, Jun,
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and Zhang (1995) and other, see e.g. Duarte
and Oden (1996); Melenk and Babuska (1996)
and were specifically applied to applications
involving static and dynamic fracture in con-
tinua Hagihara, Tsunori, and Ikeda (2007); Nish-
ioka, Kobayashi, and Fujimoto (2007); Fujimoto
and Nishioka (2006); Chandra and Shet (2004);
Sladek, Sladek, and Zhang (2007); Rabczuk and
Zi (2007); Rabczuk and Belytschko (2005, 2006);
Nguyen-Van, N, and Tran-Cong (2008); Chen,
Gan, and Chen (2008); Guz, Menshykov, and
Zozulya (2007); Krysl and Belytschko (1999);
Guo and Nairn (2006); Sladek, Sladek, and Kri-
vacek (2005); Rabczuk and Belytschko (2007);
Rabczuk and Eibl (2003); Rabczuk, Belytschko,
and Xiao (2004); Maiti and Geubelle (2004); Guz,
Menshykov, and Zozulya (2007); Gao, Liu, and
Liu (2006); Andreaus, Batra, and Porfiri (2005);
Le, Mai-Duy, and Tran-Cong (2008); Ma, Lu, and
Wang (2006) and structures Andreaus, Batra, and
Porfiri (2005); Rabczuk, Areias, and Belytschko
(2007). An excellent book about meshless meth-
ods, their applications and abilities is given in
Atluri (2002). Meshless methods offer the oppor-
tunity to model a discrete crack. Due to the ab-
sence of a mesh, the crack can propagate arbitrar-
ily through the discretization. The visibility cri-
terion Belytschko, Lu, and Gu (1994a) and mod-
ifications such as the transparency and diffraction
method are used to model the kinematics of the
crack. One key issue in discrete crack methods
is how to track the crack path. This is especially
cumbersome for many cracks as they frequently
occur in concrete fracture.

Therefore, we employ a discrete crack method
that does not need the representation of crack sur-
face. The discrete crack method introduces cohe-
sive crack segment at the nodes. The crack path
is represented by a set of cracked nodes. Crack
initiation and crack growth can be treated with
the same algorithmic procedure. This makes the
method especially well suited for studying frac-
ture of concrete. We apply this method to mixed-
mode fracture of concrete and show the good
agreement between numerical analysis and exper-
imental result.

The paper is structured as follows: In the next

B− B+N
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Γ−
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c
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n− n+F

ϕ

Figure 1: Kinematics of deformation map

section, we describe the crack model. This in-
cludes the derivation of the field equations, the
weak form and the discretization. Then, we apply
the crack model to concrete fracture, the Nooru-
Mohamed (1992) experiment that many concrete
researchers used for validation of crack models.
At the end, we conclude our paper and give future
research directions.

2 Crack Model

2.1 Kinematic Equations

Consider a continuous body B crossed by a dis-
continuity Γc, figure 1. The deformation ϕ map-
ping particles from their original position X in the
reference configuration B to their current posi-
tion x in the deformed configuration S is intro-
duced on both sides of the discontinuity, B+ and
B−:

ϕ =
{

ϕ+

ϕ− , F =
{

F+ = ∇ϕ+ ∀ X ∈ B+

F− = ∇ϕ− ∀ X ∈ B−

Accordingly, we can introduce independent defor-
mation gradients F++ and F− and associated Ja-
cobians J+ = det(F+) and J− = det(F−) on each
side of the discontinuity. This parametrization in-
herently captures jumps [[ϕ]] = ϕ+ − ϕ− ∀ X ∈
Γc in the deformation map.

As illustrated in Figure 1, all particles initially lo-
cated on the unique discontinuity surface Γc are
mapped onto two surfaces Γ+

c and Γ−
c in the de-

formed configuration. To uniquely characterize
discontinuous failure at finite deformations, the
concept of fictitious discontinuity ϕ is used. We
assume ϕ is placed right between the two discon-
tinuity surfaces Γ+

c and Γ−
c in the deformed con-
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figuration:

ϕ = 0.5
(
ϕ+ +ϕ−)

,

F = 0.5
(
F+ +F−) ∀ X ∈ Γc

(1)

With these definitions, the normaln = JF
−t · N

with J = detF is obtained by Nanson’s formula.

2.2 Equilibrium Equations

The equations of equilibrium is given by

div(P)+b = 0 ∀ X ∈ B\Γc (2)

where P and b is the stress tensor and body
force vector, respectively. On the external bound-
ary ∂B with ∂B = ∂Bu

⋃
∂Bt , ∂Bu

⋃
∂Bt = /0

where the subscript u and t denote displacement
and traction boundary conditions, the boundary
conditions are

ϕ = ϕ̃ on Γu (3)

P ·N = T = T̃ on Γt (4)

where the tilde denotes superimposed values. On
the crack boundary Γc, the following equilibrium
conditions hold

P+ ·N = P− ·N = T̃ ∀ X ∈ Γc (5)

2.3 Constitutive Equations

In the bulk, we assume a compressible elastic con-
stitutive behavior of Neo-Hooke type:

σ = J−1 (
λ lnJ I−μ I+ μ F ·Ft) ∀ X ∈ B\Γc

(6)

with Lame constants λ and μ and P = Jσ · F−t

that relates the Piola stress tensor P to the Cauchy
stress tensor σ .

After cracking, we apply the cohesive crack con-
cept in order to take into account the energy dissi-
pation during crack opening/sliding. The cohe-
sive tractions t in the current configuration can
be related to the cohesive tractions T on the un-
deformed domain through Nanson’s formula in
terms of area elements da and dA. We assume a

decoupling of the normal and tangential constitu-
tive behavior and use the following cohesive law:

t = fn exp

(− fn

G f
[[ϕ]] ·n

)
n

+G(I−n⊗n) · [[ϕ]]

T =
da
dA

t ∀ X ∈ Γc (7)

In the normal direction, fn and G f denote the ten-
sile strength and the fracture energy, respectively.
In the tangential direction, G denotes the shear
stiffness.

2.4 Weak Form

The weak form can be derived from the strong
form by making use of the method of weighted
residuals. The weak form is given by: Find ϕ ∈
U ∀δϕ ∈ U0 such that

∫
B\Γc

δF : P dΩ =
∫

∂Bt

δϕ ·T̃ dΓ−
∫

Γc

[[ϕ]] ·T dΓ

(8)

with the approximation spaces

U =
{

ϕ|ϕ ∈ H 1,ϕ = ϕ̃ on ∂Bu,

ϕ discontinuous on Γc

}
(9)

U0 =
{

δϕ|δϕ ∈ H 1,δϕ = 0 on ∂Bu,

δϕ discontinuous on Γc

}
(10)

2.5 Discretization

Our formulation is based on the element-
free Galerkin method Belytschko, Lu, and Gu
(1994b); Rabczuk and Belytschko (2004). For the
meshless approximation, it is convenient to de-
compose the displacement field into continuous
parts and discontinuous parts:

ϕ = ∑
J∈W

NJ(X)ϕJ

︸ ︷︷ ︸
continuous

+ ∑
J∈Wc

ÑJ(X)ϕ̃J

︸ ︷︷ ︸
discontinuous

(11)

where N(X) denote the shape functions, Ñ(X) =
N(X)Ψ(X) with enrichment function Ψ, W are
the set of all nodes in the discretization and Wc
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are the set of nodes influenced by the crack, i.e.
the set of nodes containing the cohesive crack seg-
ments. Additional degrees of freedom ϕ̃J are in-
troduce to describe the kinematics of the crack.
The enrichment function Ψ is chosen such that the
shape function Ñ is discontinuous:

Ψ(X) =
{

1 ∀ X ∈ B+

−1 ∀ X ∈ B− (12)

Hence, the displacement jump [[ϕ]] depends only
on the discontinuous displacement field and is
given by

[[ϕ]] = 2 ∑
J∈Wc

N(X)ϕ̃J (13)

Note that only nodes that contain cohesive seg-
ments are enriched. The cohesive segments pass
through the entire domain of influence of the
meshless shape function. Hence, no representa-
tion of the crack surface is needed that makes the
method convenient for many cracks.

The test functions have the same structure:

δϕ = ∑
J∈W

NJ(X)δϕJ + ∑
J∈Wc

ÑJ(X)δ ϕ̃J (14)

The weak form can now be cast into the following
discrete residual statement:

RJ = Rint
J −Rext

J +Rcoh
J = 0 (15)

with

Rint
J =

∫
B\Γc

∇NJ(X) ·P dΩ (16)

Rext
J =

∫
B\Γc

NJ(X)b dΩ+
∫

∂Bt

NJ(X)T̃ dΓ

(17)

Rcoh
J =

∫
Γc

NJ(X)T dΓ (18)

By using an incremental iterative Newton-
Raphson scheme to solve the non-linear set of
equations, Equation (15), we arrive at the follow-
ing linearized system of equations

Rk+1
J = Rk

J +dRJ = 0 (19)

with

dRJ = ∑
I∈B

KJI dϕI (20)

and the incremental stiffness matrix

KJI =
∂RJ

∂ϕI
= Kint

JI −Kext
JI +Kcoh

JI (21)

with

Kint
JI =

∫
W \Γc

BT
J CBI dΩ+

∫
W \Γc

BT
J ·P ·BI I dΩ

(22)

Kext
JI =0 (23)

Kcoh
JI =

∫
Γc

NI(X)TτNI(X) dΓ

+
∫

Γc

NI(X)Tn ·G ·∇NI(X) dΓ

+
∫

Γc

NI(X)T⊗ (A ·B) dΓ (24)

where B is the matrix that contain the derivatives
of the shape functions N and Ñ, C is the tangent
stiffness matrix, Kext

JI vanishes since Rext
J does not

depend on ϕ and the cohesive tangent operators
are given by

Tτ =

∂ t
∂ [[ϕn]]

· (n⊗n)+
∂ t

∂ [[ϕτ ]]
· (I−n⊗n) (25)

Tn =(
∂ t

∂ [[ϕn]]
− ∂ t

∂ [[ϕτ ]]

)
· (n⊗ [[ϕ]]+ [[[ϕ]] ·n]I)

(26)

with

∂ t
∂ [[ϕn]]

=
− f 2

n

G f
exp

(
fn

G f
[[ϕn]] ·n

)
n⊗n (27)

∂ t
∂ [[ϕτ ]]

= dI (28)

and with the second order tensor

A = (I−n⊗n) ·F−t

and fourth order tensor

G = −n ·
(

I⊗F
−t

)
+n⊗n⊗n ·F−t

(29)

For more details on the cohesive law, the reader is
referred to Larsson and Fagerstrom (2005).
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2.6 Crack criterion

The classical Rankine criterion is used to initiate
and propagate crack. Due to the simplicity of our
method, crack initiation does not need to be dis-
tinguished from crack propagation. To avoid spu-
rious crack path oscillations, a non-local averag-
ing is applied and the maximum principal tensile
stress is computed for the averaged stress tensor
σ̃ rather than the local stress tensor. The averaged
stress tensor is computed by

σ̃ =
∑

J∈B
wJ(X)σJ

∑
J∈B

wJ(X)

with weighting function wJ(X). As weighting
function, we used the normalized quartic B-spline
that is also used within the element-free Galerkin
method. The averaged stress tensor is computed
in the vicinity of all crack segments.

3 Nooru-Mohamed test

δT = 0.5(δT 1 +δT 2)

δT 1 δT 2

δS

FT

FS

a a
D

D

D = 250mm

a = 25mm

thickness = 50mm

Figure 2: Nooru-Mohamed test: experimental set-
up

Figure 2 depicts the setup of the mixed-mode frac-
ture test of Nooru-Mohamed (1992). A double-
notched prism (200 mm × 200 mm × 50 mm)

with two 25 mm deep notches, was loaded simul-
taneously in tension (T) and shear (S). Various
proportional and non-proportional loading paths
were followed, with both displacement and load
controls. Here we consider loading paths 4 and 6,
which are frequently used as benchmarks to check
the ability of constitutive models to simulate com-
plex crack paths. Path 4 is non-proportional. The
shear force, FS, is first increased up to a certain
value while tensile force FT is kept zero. After-
wards, the shear force is kept constant while a
tensile force is applied under displacement con-
trol until the specimen fails completely. In Nooru-
Mohamed’s experiments, the shear force was kept
constant at 5 kN ≈ FS,max/6 (path-4a), 10 kN ≈
FS,max/3 (path-4b) and FS,max = 27.38 kN (path-
4c), where FS,max is the maximum shear force
that the specimen could sustain in absence of the
tensile force. Paths 6 is, by contrast, propor-
tional, with the ratio of tensile displacement δT

to shear displacement δS being constant. Nooru-
Mohamed’s tests featured three different values of
this ratio: δT /δS = 1, δT /δS = 2, and δT /δS = 3,
labeled as path 6a, 6b and 6c, respectively.

(a) 4a (b) 4b

(c) 4c (d) 6a

Figure 3: von Mises stress at the deformed speci-
men at failure of the Nooru-Mohamed test for dif-
ferent load paths
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The material parameters for this problem are
Young’s modulus E=36.0GPa, Poisson’s ratio
ν=0.22, tensile strength fn=2.2MPa and frac-
ture energy G f =100.0N/m. Figure 3 shows the
crack path for different loading paths, see above.
They agree well with the results reported in
Nooru-Mohamed (1992). The associated load-
displacement curves are shown in figures 4-7 and
match the experiment well. Loading paths 4a and
4b predicts the maximum tensile force reduction
due to the presence of the shear force of around
11% and 27% that agrees with the experimen-
tal observations of 12% and 29.5%. For loading
path 6c, the tensile load carrying capacity is com-
pletely lost and the tensile force becomes nega-
tive due to the concrete dilatancy. The influence
of the mesh refinement for problem 4b is shown
in figure 5 for three different meshes: coarse, fine
and very fine that correspond to 450 nodes, 1900
nodes and 7600 nodes, respectively. We used un-
structured node distributions. The distances be-
tween the nodes are approximately the same. The
influence of mesh refinement for the other prob-
lems is very similar. Concluding, we can say that
our method is able to predict the different crack
paths and load-displacement behavior very accu-
rately.
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Figure 4: Tensile Force-displacment curve of the
Nooru-Mohamed test for different load paths: 4a,
4b, 4c
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Figure 5: Mesh refinement study for specimen 4b
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Figure 6: Tensile Force-displacment curve of the
Nooru-Mohamed test for different load paths: 6a,
6b, 6c

4 Conclusions

We presented crack growth simulation in concrete
structure by simplified meshless discrete crack
method. The crack is modeled by set of crack
segment. The advantage of modeling the crack
as set of disconnected segments is its robustness,
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Figure 7: Shear Force-displacment curve of the
Nooru-Mohamed test for different load paths: 6a,
6b, 6c

simple implementation and ability to handle many
cracks. The latter point is important for cracking
in concrete and reinforced concrete.

We studied the Nooru-Mohamed (1992) experi-
ment with complicated crack paths and mixed-
mode failure. The results obtained with the
method are promising and in close agreement to
the experimental data and other more complicated
methods proposed in the literature Zi, Rabczuk,
and Wall (2007); Patzak and Jirasek (2004). The
next step is to study real-world concrete and also
reinforced-concrete structures of larger dimen-
sions that failure mechanism is governed by many
cracks.
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