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A Simplified Meshless Method for Dynamic Crack Growth

Y.Y Zhang and L. Chen

Abstract: A simplified meshless method for
dynamic crack growth is presented. The method
uses an extrinsic enrichment based on a local par-
tition of unity concept. The crack is represented
by a set of crack segments. The crack segments
are required to pass through the entire domain
of influence of node. They are introduced when
the maximum principal stress exceeds the uniax-
ial tensile strength. The crack segments are al-
lowed to rotate in order to avoid too stiff system
responses. The major advantage of our method
is that it does not require algorithms to track the
crack path.

Keyword: meshless, crack, enrichment, frac-
ture

1 Introduction

Dynamic fracture is of interest in many industrial
applications, e.g. Earthquake Engineering, design
of armor, break of glass (windows), to name a
few. Numerical simulation of dynamic fracture
still remains a challenge. Particular difficulties
occur due to the huge amount of cracking under
dynamic loading. If dynamic fracture is to be
modelled realistically, it is essential to model the
initiation, propagation and coalescence of cracks.
Finite element methods are not well suited for this
task since cracks can only occur along element in-
terfaces. This requires computational expensive
remeshing algorithms and is only feasible for few
cracks. Recent developments of finite element
methods allow arbitrary crack growth. However,
due to the complexity of the crack representation,
these methods are only suitable for a few num-
ber of cracks. Smeared crack models Zimmer-
mann (1986); Bazant and Oh (1983); Jirasek and
Zimmermann (1998); Malvar and Fourney (1990)
are principally able to deal with large amount of

cracks. However, as the name might indicate,
they cannot describe the crack properly. There-
fore, they are not well suited for dynamic fracture
modelling.

Meshless methods have proven to be a power-
ful alternative to finite element methods Sladek,
V. Sladek, and Zhang (2007); Wu and Tao (2007);
Han and Atluri (2004); Rabczuk and Eibl (2003);
Han, Liu, Rajendran, and Atluri (2007); Wen and
Hon (2007); Shen and Atluri (2005); Idelsohn,
Onate, and Pin (2004); Rabczuk, Belytschko,
and Xiao (2004); Hao and Liu (2006). They
were pioneered by Atluri and Zhu (1998, 2000);
Atluri and Shen (2002), Belytschko, Lu, and
Gu (1994); Belytschko and Tabbara (1996); Be-
lytschko, Krongauz, Organ, Fleming, and Krysl
(1996), Liu, Jun, and Zhang (1995) and other,
see e.g. Duarte and Oden (1996); Melenk and
Babuska (1996). They were applied to vari-
ous problems involving non-linear material Nish-
ioka, Kobayashi, and Fujimoto (2007); Rabczuk
and Belytschko (2005), thermo-mechanical Chen,
Gan, and Chen (2008) and piezo-electrical anal-
ysis Nguyen-Van, N, and Tran-Cong (2008);
Wu and Liu (2007), contact Guz, Menshykov,
and Zozulya (2007), beams Andreaus, Batra,
and Porfiri (2005), plates Mai-Duy, Khennane,
and Tran-Cong (2007) and shells Rabczuk and
Areias (2006); Rabczuk, Areias, and Belytschko
(2007a); Wu and Liu (2007) as well as frac-
ture Sladek, Sladek, and Zhang (2007); Hagihara,
Tsunori, and Ikeda (2007); Guo and Nairn (2006);
Hao, Liu, and Chang (2000); Rabczuk and Be-
lytschko (2006); Fujimoto and Nishioka (2006);
Gao, Liu, and Liu (2006); Rabczuk and Zi (2007);
Zi, Rabczuk, and Wall (2007); Sladek, Sladek,
and Krivacek (2005); Nishioka, Tchouikov, and
Fujimoto (2006); Le, Mai-Duy, and Tran-Cong
(2008); Liu, Long, and Li (2008), shear bands
Rabczuk, Areias, and Belytschko (2007b); Hao,
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Liu, and Qian (2000) and multiscale analysis
Ma, Lu, and Wang (2006); Liu, Hao, and Be-
lytschko (1999); Haasemann, Kastner, and Ul-
bricht (2006). An excellent state-of-the-art text-
book about meshless methods, their applications
and abilities is given in Atluri (2002). Cracks
can be easily incorporated in meshless methods
due to the absence of a mesh Belytschko and
Lu (1995); Belytschko, Lu, and Gu (1995); Hao,
Liu, Klein, and Rosakis (2004); Li and Simonson
(2003); Han and Atluri (2003); Tang, Shen, and
Atluri (2003); Liu, Han, Rajendran, and Atluri
(2006). Typical methods in order to obtain a
discontinuous displacement field across the crack
surface are the visibility method Belytschko, Lu,
and Gu (1995), the diffraction method and the
transparency method Organ, Fleming, Terry, and
Belytschko (1996). However, these methods are
also suitable for small number of cracks.

All these methods require a representation of the
crack surface. That makes these methods difficult
to implement with increasing numbers of cracks.
Therefore, we propose a meshless method that
does not need crack representation but that simul-
taneously is capable of capturing the discontinu-
ous displacement field. This is accomplished by
representing the crack as a set of crack segments.
These crack segments pass through the entire do-
main of influence of the nodes. The discontinuous
displacement field is obtained by an extrinsic en-
richment based on a local partition of unity con-
cept.

In linear elastic fracture mechanics, the singular-
ity dominates the stress field around the crack tip.
Stress intensity factors or the energy release rate
is used as failure criterion. However, linear elas-
tic fracture mechanics is only applicable to very
brittle materials. If nonlinear material behavior
is to be modeled, different approaches have to be
used. Cohesive zone models Barenblatt (1962);
Hillerborg, Modeer, and Peterson (1976) are com-
monly used to describe the post-localization be-
havior. This is necessary for materials with strain
softening since the use of pure continuum mod-
els lead to mesh dependent results Bazant and Be-
lytschko (1985). We will use cohesive zone mod-
els in our meshless crack segment method.

2 Meshless Method

Meshless methods are based only on nodal ap-
proximations. We use the element-free Galerkin
(EFG) method. The shape functions are obtained
by Moving Least Square (MLS) approximation.
The EFG approximation is written in terms of a
polynomial basis p(X) and unknown coefficients
a(x):

ucon(X, t) = ∑
i

pi(X) ai(X) = PT (X) a(X) (1)

where p is a polynomial basis; here chosen to
be linear pT (X) = (1,X ,Y) since the linear ba-
sis guarantees conservation of linear momentum
and angular momentum. Minimization of a dis-
crete weighted L2 error norm J with respect to
the unknown coefficients a

J = ∑
I

(
PT (XI) a(XI)−uI

)2
w(X−XI ,h) (2)

leads to the final EFG approximation

ucon(X, t) = ∑
I∈W

NI(X)uI(t) (3)

with the EFG shape functions

NI(X) = pT (X) A−1(X) DI(X) (4)

and

DI(X) = w(X−XI ,h)pT (XI)
AI(X) = ∑

I
w(X−XI ,h) p(XI) pT (XI) (5)

The superscript con in eq. (3) denotes the con-
tinuous displacement field; w(X − XI ,h) is the
so-called Lagrangian weighting function and h is
the interpolation radius of this weighting func-
tion. For dynamic fracture, it is important to ex-
press all quantities in material coordinates X in-
stead of spatial coordinates x as commonly done
in SPH-methods Randles and Libersky (1997);
Rabczuk and Eibl (2003). Belytschko, Guo, Liu,
and Xiao (2000) have shown that the use of Eule-
rian weighting functions can lead to artificial frac-
ture.
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3 Displacement Field

Crack is a strong discontinuity in the displace-
ment field. It is captured by decomposing the dis-
placement field into a continuous and discontinu-
ous part:

u(X) = ucon(X)︸ ︷︷ ︸
continuous

+ udis(X)︸ ︷︷ ︸
discontinuous

(6)

The continuous approximation was given in the
previous chapter. The discontinuous approxima-
tion will be explained subsequently.

The displacement approximation is based on a lo-
cal partition of unity method. Additional degrees
of freedoms used to describe the crack kinemat-
ics are added only around the crack. This mini-
mizes computational cost. Instead of describing
the crack as continuous line, we propose to model
the discrete crack by cohesive crack segments that
pass through the domain of influence of node, fig-
ure 1. This avoids the need of tracking the crack
path. Complicated phenomena such as branching
cracks can be treated with ease and good accu-
racy. The discontinuous displacement approxima-
tion that is active only for nodes that contain the
cohesive crack segments is given by:

udis(X) = ∑
I∈Wc

NI(X) Ψ(X) qI (7)

where Wc are the nodes where the cohesive crack
segments pass through, qI are additional un-
knowns and Ψ(X) is the enrichment function de-
scribing the crack kinematics. It is required that
the crack segments pass through the node but with
adaptive methods, crack segments can be intro-
duced anywhere in the solid. To capture the cor-
rect crack kinematics, Ψ is the step function

Ψ(X) =
{

1 if n · (X−XI) > 0
−1 if n · (X−XI) < 0

(8)

Note that only cracked nodes are enriched. The
length of the cohesive segment is equal to the
size of the domain of influence of the associated
cracked node. The jump in the displacement field
is computed by

[[u]] = uΩ+ −uΩ− (9)

crack
crack segments

Figure 1: Crack and representation of the crack
with crack segments

where the subscript of Ω indicates the different
sides of the crack. The jump in the displacement
field obviously depends only on qI :

[[u]](X) = ∑
I∈Wc

2 NI(X) qI (10)

where the factor 2 comes from the jump in the
step function.

We used the Rankine criterion to generate a crack.
The orientation of the crack is perpendicular to the
direction of the maximum principal stress. Since
the stress around the crack tip is inaccurate espe-
cially at crack initiation, we use a rotating crack
segment approach where the crack segments are
allowed to rotate when the direction of the maxi-
mum principal stress changes.

The discrete strain field can be derived as

∇us(X) = ∑
I∈W

∇NI(X) uI + ∑
I∈Wc

∇NI(X) Ψ(X) qI

(11)

4 The cohesive law

In the cohesive model, the traction is related to the
crack opening, equation (10):

tn = ft − ft
δmax

[[u]]nif[[u]]n < δmax

and [[u]]t+Δt
n > [[u]]tn

otherwise tn = 0 when [[u]]t+Δt
n > [[u]]tn (12)

where

[[u]]n = n · [[u]] (13)

is the crack opening and δmax is the point where
the traction have decayed to zero. Unloading is
linear elastic.
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Due to its simplicity, we employed the Rankine
criterion where the crack is inserted once the max-
imum principal tensile stress exceeds the tensile
strength.

5 Governing equations and discretization

Governing equation is the linear momentum equa-
tion. The strong form in a total Lagrangian de-
scription is given by

∇ ·P+ρb = ρ ü X ∈ Ω (14)

where P is the nominal stress tensor, ρ is the den-
sity, b are body forces and the superimposed dots
denote material time derivatives. The displace-
ment and traction boundary conditions are:

u = u X ∈ Γu (15)

nt ·P = t X ∈ Γt (16)

nc ·P = tc([[u]]) X ∈ Γc (17)

where the subscript c refers to the crack. The
weak form of the linear momentum equation is:
Find u ∈V and v ∈V0 such that

δW = δWint −δWext +δWinertia +δWcoh = 0 (18)

with

δWint =
∫

Ω
∇v : P dΩ

δWext =
∫

Γt

v · t dΓ+
∫

Ω
ρv ·b dΩ

δWinertia =
∫

Ω
ρv · ü dΩ

δWcoh =
∫

Γc

[[v]] · tc dΓ (19)

where v are the test functions that have the same
structure as the trial functions and V and V0 are the
approximation spaces for the trial and test func-
tions:

V =
{

u(X, t)|u ∈ H1, u = u on Γu,

u discontinuous on Γc

}
V0 =

{
v|v ∈ H1, v = 0 on Γu,

v discontinuous on Γc

}
(20)

Substituting v and u into the weak form of the
linear momentum equation, we obtain

n

∑
j=1

∫
Ω j

∇v j : P dΩ−
n

∑
j=1

∫
Γt, j

v · t dΓ

−
n

∑
j=1

∫
Ω j

ρv ·b dΩ+
∫

Γc, j

[[v]] · tc dΓ

+
n

∑
j=1

∫
Ω j

ρv · ü dΩ = 0 (21)

With the test and trial functions in eq. (21), the
final system of equations is given by:

[
Muu

IJ Muq
IJ

Mqu
IJ Mqq

IJ

]
·
[

üJ

q̈J

]
=

[
fu
I,ext − fu

I,int

fq
I,ext − fq

I,int

]
(22)

with

fu
I,ext =

∫
Γt

(Nu
I )

T tdΓ+
∫

Ω
(Nu

I )
T bdΩ (23)

fq
I,ext =

∫
Γt

(
Nq

I

)T tdΓ+
∫

Ω

(
Nq

I

)T bdΩ

+
∫

Γc

[[
(
Nq

I

)T ]] tcdΓ with Nq
I = NI Ψ(X)

(24)

fu
I,int =

∫
Ω

(Bu
I )

T PdΩ (25)

fq
I,int =

∫
Ω

(
Bq

I

)T PdΩ with Bq
I = Ψ(X)∇NI (26)

Muu
IJ = Mqq

IJ =
∫

Ω
ρNI NT

J dΩ

Muq
IJ = Mqu

IJ =
∫

Ω
ρΨ(X) NI NT

J dΩ (27)

We use stress point integration to evaluate the in-
tegrals as explained detailed in Rabczuk and Be-
lytschko (2004).



A Simplified Meshless Method for Dynamic Crack Growth 193

40m
m

1MPa

1MPa

50mm

100mm

20m
m

Figure 2: Plate with a horizontal initial notch un-
der tensile tractions

6 Results

6.1 Crack branching

Let us consider the pre-notched specimen illus-
trated in figure 2. The specimen is loaded with
tensile tractions, t = 1MPa, on the both of the top
and the bottom edges as a step function in time.
Numerical results for this problem have been
given by Song, Areais, and Belytschko (2006);
Rabczuk and Belytschko (2004); Xu and Needle-
man (1994) and experimental results with dif-
ferent dimensions are available in Ravi-Chandar
(1998); Sharon, Gross, and Fineberg (1995);
Fineberg, Sharon, and Cohen (2003). The mate-
rial properties are: Young’s modulus: E = 32GPa
and Poisson’s ratio ν = 0.20. The initial Rayleigh
wave speed is cR = 2119.0m/s. We modelled the
domain with 4,000 and 18,000 nodes using struc-
tured and unstructured nodal arrangements. We
use explicit time integration with a Courant num-
ber of 0.1.

Cracking criterion is Rankine criterion. In con-
trast to the simulations in Song, Areais, and Be-
lytschko (2006), crack branching occurs natu-
rally. The pattern of crack propagation is shown
in figure 4 and the crack tip speed is shown in
figure 3. The crack begins to propagate at 15
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Figure 3: Crack tip speed for the crack branching
problem

μs. From this initial phase until crack branch-
ing, the crack tip speed increases linearly and
peaks at around 20 μs; at this point the crack
branches into two cracks. The crack speed drops
after branching. Considering the upper branch,
we observe an increase in the crack tip speed
before the crack branches again. This agrees
with the results, which were reported by Sharon,
Gross, and Fineberg (1995); Fineberg, Sharon,
and Cohen (2003). The numerical simulation
finishes at 59 μs shortly before the crack tip
reaches the boundary of the specimen, figure
4(b)/(d). The crack pattern is similar to the ex-
perimental results reported in References Ravi-
Chandar (1998); Sharon, Gross, and Fineberg
(1995); Fineberg, Sharon, and Cohen (2003). The
basic crack pattern remains even with only 4,000
nodes. However, we found that coarser meshes
cannot be used for this problem.

6.2 Mixed mode fracture in a beam under im-
pact loading

An experimental study of mixed mode dynamic
crack propagation in concrete beams has been re-
ported by John and Shah (1988). The experi-
mental configuration is shown in figure 5. The
thickness of the beam is 0.0254cm and the cross-
sectional area is rectangular. It was found that the
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(a) t = 33μs; 18,000 nodes

(b) t = 53μs; 18,000 nodes

(c) t = 33μs; 4,000 nodes

(d) t = 53μs; 4,000 nodes

Figure 4: Crack pattern in the crack branching
problem

0.2032m

0.019m

0.0762m

γ L/2

(a)

0.72 L/2

600

(b)

0.77 L/2

(c)

0.875 L/2

(d)

Figure 5: Test configuration of concrete beam
with an offset notch for a mixed mode test and
experiment crack configurations for various off-
set parameters John and Shah (1988): (a) experi-
ment set-up; (b) mixed mode fracture at the initial
notch; (c) transition stage; and (d) mode I fracture
at the mid-span.
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pattern of crack propagation depends mainly on
the location of the initial notch characterized by
the offset parameter γ = 2dnotch/L where dnotch is
the distance between the notch and the mid-span
of the beam and L is the span between the sup-
ports. For γ = 0, John and Shah (1988) reported
pure mode I fracture, while γ > 0 can result in ei-
ther a mode I fracture at the midspan or a mixed
mode fracture at the offset notch, figure 5(b/d).

We did simulations with various offset parame-
ters γ to examine the different crack growth tra-
jectories. We assumed plane stress conditions.
The material properties are: Young’s modulus
E = 31.37 GPa and Poisson’s ratio ν = 0.20. To
represent an impact loading, we used a ramp load-
ing instead of a direct impact loading because of a
rubber pad which is located between the beam and
impact hammer (for more details, refer to Refer-
ences John and Shah (1988)).

Figure 6 shows the numerical results. For γ = 0.7,
the crack propagates only from the offset notch
since the stress is released at the mid-span. In
this case, the crack propagates at an angle of 520,
which is in reasonable agreement with the exper-
imental result of 600. For the offset notch in the
transition zone (i.e. γ = 0.77), the crack is initi-
ated at the mid-span and both cracks propagate si-
multaneously. In this simulation, the transition is
observed around γ = 0.75, which is similar to that
observed experimentally. Finally, when the offset
notch is too far from the loading point and it can-
not relax the stress at the mid-span, the crack is
initiated at the bottom of the mid-span and prop-
agates as shown in figure 6(d). For all cases, the
crack starts to grow at around 620 μs.

7 Conclusions

We presented a simplified meshless method. The
crack is described by a set of cohesive segments
that pass through the entire domain of influence
of a node. Therefore, there is no need to track
the crack path. Complicated problems such as
branching cracks can be treated naturally. The
method is also simple to implement. The cohe-
sive segments are allowed to rotate after initiation
similar to rotating crack models. This removes in-
accuracies in the crack pattern caused by inaccu-

(a) gamma = 0.7

(b) gamma = 0.7

(c) gamma = 0.77

(d) gamma = 0.8

(e) gamma = 0.8

Figure 6: Final crack path for different offset pa-
rameters γ
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rate stress field that occur once a crack is initiated.

We applied the methods to two problems and
showed good agreement to experimental results
and other more complicated numerical methods.
One drawback of the method is that it needs a
fine mesh for accurate results. Rabczuk and Be-
lytschko (2007) showed that adaptive methods
can alleviate these difficulties. This will be stud-
ied in the future. Adaptive node insertion will
be implemented that allows crack initiation at any
position in the body.
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