
Copyright c© 2008 Tech Science Press CMES, vol.31, no.1, pp.25-36, 2008

Vibration Analysis of Membranes with Arbitrary Sapes Using Discrete
Singular Convolution

Ömer Civalek1

Abstract: In this paper, free vibration analysis
of curvilinear or straight-sided quadrilateral mem-
branes is presented. In the proposed approach,
irregular physical domain is transformed into a
rectangular domain by using geometric coordi-
nate transformation. For demonstration of the
accuracy and convergence of the method, some
numerical examples are provided on membranes
with different geometry such as skew, trapezoidal,
sectorial, annular sectorial, and membranes with
four curved edges. The results obtained by the
DSC method are compared with those obtained
by other numerical and analytical methods.

keyword: Discrete singular convolution, mem-
brane, irregular domain, vibration.

1 Introduction

Numerical approaches are widely used in var-
ious engineering problems. Therefore, various
methods have been used for numerical solution of
mathematical physics and engineering problems
(Cho et al., 2004; Liu 2007; Jin 2004; Smyrlis
and Karageorghis, 2003; Lie et al., 2001; Parus-
suni 2007; Young et al., 2006; 2007).

Membranes are widely used in various engineer-
ing applications. Therefore, free vibration anal-
ysis of such structures is a most important task
for engineer in the design stage of microphones,
pumps, pressure regulators, and other acoustical
applications. Free vibration analysis of mem-
brane has been solved by several authors. An
analysis of the free vibration of circular and an-
nular membranes has been presented by Laura et
al. (1997). Jabareen and Eisenberger (2001) pro-
posed an exact method for free vibration analysis
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of non-homogeneous circular and annular mem-
branes. Buchanan and Peddieson (1999, 2005)
and Buchanan (2005) used Ritz and finite ele-
ment method respectively, for vibration analysis
of circular and elliptic membranes with variable
density. An experimental study has been made
for vibrations of circular membrane by Casper-
son and Nicolet (1968). Exact power series so-
lutions for axisymmetric vibrations of circular
and annular membranes with continuously vary-
ing density were presented by Willatzen (2002).
Mei (1969) presented a finite element solution of
free vibration problem of circular membranes un-
der arbitrary tension. Oden and Sato (1967) ap-
plied the finite element method for static analy-
sis of elastic membranes. Analytical solutions of
the free vibration problems of arbitrarily shaped
membranes have been investigated by Kang et
al. (1999) and Kang and Lee (2000) using non-
dimensional dynamic influence function. Ra-
dial basis function-based differential quadrature
method was used for free vibration analysis of ar-
bitrary shaped membrane by Wu et al. (2007).
Mashad (1996) proposed finite difference and per-
turbation method for vibration problem of mem-
branes. The method differential quadrature was
applied for frequency analysis of rectangular and
circular membranes by Laura et al. (1997). Ho
and Chen (2000) applied a hybrid method for vi-
bration of non-homogeneous membranes. Some
important studies concerning analysis of mem-
branes have been carried out, namely by Leung et
al. (2000), Houmat (2001, 2006), Pronsato et al.
(1999), Gutierrez et al. (1998), Nagaya and Yam-
aguchi (1991), Irie et al. (1981), Iura and Atluri
(1992), and Cazzani and Atluri (1993), Woo et al.
(2004). Because of its relationship to the wave
equation, the Helmholtz equation arises in prob-
lems in such areas of mathematical physics as the
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study of acoustics. As a result, it has been exten-
sively treated both analytically and numerically
(Shu and Chew, 1997; Shu and Xue, 1999; Bao
et al., 2004).

The method of discrete singular convolution (Wei
1999) has been used recently for the vibration
analysis of structures. Discrete singular con-
volution (DSC) method has emerged as a new
approach for numerical solutions of differential
equations. This new method has a potential ap-
proach for computer realization as a wavelet col-
location scheme (Wei 2000; Wei 2001). The use
of the discrete singular convolution method for vi-
bration analysis of beams, plates and shells (Wei
2001a; Wei 2001b; Wei et al., 2002; Zhao et
al., 2002; Xiang et al., 2002) have been proven
to be quite satisfactory. Free vibration analy-
sis of plates and shells has been investigated by
the present author (Civalek, 2006, 2006a, 2007,
2007a, 2007b, 2007c, 2007d). In the past ten
years, the meshless methods for numerical anal-
ysis of partial differential equations have become
quite popular (Atluri and Shen, 2002; Atluri et
al., 1999; 2004; 2006; 2006a; Soric et al. 2004;
Han et al., 2005). A number of meshless meth-
ods have been proposed by this time. They
can be subdivided in accordance with the defi-
nition of the shape functions. Important type of
meshless methods are the Smoothed particle hy-
drodynamics, diffuse element method, element-
free Galerkin method, reproducing kernel parti-
cle methods, meshless local Petrov-Galerkin (Zhu
et al., 1998; Kim et al., 1999; Dai et al., 2004;
Liu and Chen, 2001, 2002; Sladek et al., 2002;
Han and Atluri, 2004; 2004a; Shen and Atluri,
2004; Long and Atluri, 2002; Gu and Liu, 2001;
Sladek et al., 2006; Andreaus et al., 2004; 2005).
A detailed discussion and comparison of differ-
ent type meshless methods can be found in Ref-
erences (Atluri and Zhu, 1998; 2000; Zhu et al.,
1999; Atluri and Shen, 2005). The meshless
methods are widely used for beam and plate prob-
lems (Qian et al., 2003; Suateke, 2006; Wen and
Hon, 2007; Wu et al., 2004; Jarak et al., 2007;
Mai-Duy et al., 2007; Hon et al., 2005; Shu et al.,
2005; Raju and Phillips, 2003). The aim of the
present paper is to present the DSC method for

free vibration analysis of membranes having dif-
ferent geometries. The physical domain is trans-
formed into a rectangular domain by using geo-
metric coordinate transformation. After this, the
method of DSC is applied to discretization of the
transformed set of governing equation and bound-
ary conditions. Finally, a series of numerical ex-
amples are presented to validity and accuracy of
the proposed method.

2 Discrete singular convolution (DSC)

Numerical methods are important tools in the
analysis of science and engineering problems.
Many numerical methods are available, but the fi-
nite element and finite difference methods are the
most common. In general, these methods are ei-
ther global or local approach. The local methods
include finite difference, finite element, bound-
ary element and many other methods. Discrete
singular convolution has the accuracy of global
methods and simplicity of local methods. Dis-
crete singular convolution was proposed as poten-
tial and effective numerical approach for solving
many engineering and mathematical physic prob-
lems. A detailed comparison of local and global
methods was given by Wei (1999). The discrete
singular convolution (DSC) method is an efficient
and useful approach for the numerical solutions
of differential equations. This method introduced
by Wei (1999). Following the notations given by
Wei (2000) consider a distribution, T and η(t) as
an element of the space of the test function. A sin-
gular convolution can be defined by (Wei 2001)

F(t) = (T ∗η)(t) =
∞∫

−∞

T (t−x)η(x)dx, (1)

where T (t − x) is a singular kernel. For example,
singular kernels of delta type (Wei 2001b)

T (x) = δ (n)(x); (n = 0,1,2, ..., ). (2)

Kernel T (x) = δ (x) is important for interpolation
of surfaces and curves, and T (x) = δ (n)(x) for
n > 1 are essential for numerically solving differ-
ential equations. With a sufficiently smooth ap-
proximation, it is more effective to consider a dis-
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crete singular convolution

Fα(t) = ∑
k

Tα(t−xk) f (xk), (3)

where Fα(t) is an approximation to F(t) and {xk}
is an appropriate set of discrete points on which
the DSC (3) is well defined. Note that, the origi-
nal test function η(x) has been replaced by f (x).
This new discrete expression is suitable for com-
puter realization. Recently, the use of some new
kernels and regularizer such as delta regularizer
was proposed to solve applied mechanics prob-
lem. The Shannon’s kernel is regularized as (Wei
2000)

δΔ,σ (x−xk) =

sin[(π/Δ)(x−xk)]
(π/Δ)(x−xk)

exp

[
−(x−xk)

2

2σ2

]
; (4)

where Δ is the grid spacing. It is also known that
the truncation error is very small due to the use
of the Gaussian regularizer, the above formula-
tion given by Eq. (4) is practically and has an
essentially compact support for numerical inter-
polation. In the DSC method, the function f (x)
and its derivatives with respect to the x coordinate
at a grid point xi are approximated by a linear sum
of discrete values f (xk) given by (Wei et al., 2002)

f (n)(x)≈
M

∑
k=−M

δ (n)
Δ,σ (xi −xk) f (xk); (5)

where δΔ(x− xk) = Δδα(x− xk) and superscript
(n) denotes the nth-order derivative, and 2M+1 is
the computational bandwidth which is centered
around x and is usually smaller than the whole
computational domain. For example the second
order derivative at x = xi of the DSC kernels for
directly given

f (2)(x)
∣∣∣ ≈ M

∑
k=−M

δ (2)
Δ,σ (kΔxN) fi+k, j. (6)

3 DSC method for irregular domains

Consider an eight-node curvilinear quadrilateral
domain as shown in Fig. 1. The geometry of this
domain can be mapped into a rectangular domain

in the natural ξ −η plane, as shown in Fig. 1.
By employing the following transformation equa-
tions the physical domain is mapped into the com-
putational domain

x =
N

∑
i=1

xiΦi(ξ ,η) (7)

and

y =
N

∑
i=1

yiΦi(ξ ,η) (8)

where xi and yi are the coordinates of node i in the
physical domain, N is the number of grid points,
and Φi(ξ ,η); i = 1,2,3, . . .,N are the interpola-
tion or shape functions.

ξ

η

Figure 1: Mapping of arbitrary plates into natural
coordinates
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These are given for node i;

Ψi(ξ ,η) =
1
4
(1+ξξi)(1+ηηi)(ξξi +ηηi −1)

for i = 1,3,5,7 (9)

Ψi(ξ ,η) =
1
4
(1−ξ 2)(1+ηηi)

for i = 2,6 (10)

Ψi(ξ ,η) =
1
4
(1+ξξi)(1−η2)

for i = 4,8 (11)

Using the chain rule, the first-order, and second
order derivatives of a function are given{

ux

uy

}
= [J11]−1

{
uξ
uη

}
(12)

⎧⎨
⎩

uxx

uyy

2uyx

⎫⎬
⎭ = [J22]−1

⎧⎨
⎩

uξξ
uηη
2uξη

⎫⎬
⎭

− [J22]−1[J21][J11]−1
{

uξ
uη

}
(13)

where ξi and ηi are the coordinates of Node i in
the ξ −η plane, and Ji j are the elements of the
Jacobian matrix. These are expressed as follows:

[J11] =
[

xξ yξ
xη yη

]
, (14)

[J21] =

⎡
⎣xξξ yξξ

xηη yηη
xξη yξη

⎤
⎦ (15)

[J22] =

⎡
⎣ xξ

2 yξ
2 xξ yξ

xη
2 yη

2 xη yη
xξ xη yξ yη

1
2 (xξ yη +xη yξ )

⎤
⎦ . (16)

The above transformations will be used later to
transform the governing differential equations and
related boundary conditions from the physical do-
main x-y into the computational domain ξ −η .
Thus an arbitrary-shaped quadrilateral plate may
be represented by the mapping of a square plate

defined in terms of its natural coordinates. For ex-
ample, the second-order derivatives with respect
to the -x coordinate can be written, as

∂ 2w
∂x2 = [J22]−1

M

∑
i=−M

δ (2)
Δ,σ (kΔξ )wik

− [J22]−1[J21][J11]−1
M

∑
i=−M

δ (1)
Δ,σ (kΔξ )wik (17)

4 Problem formulations and solution

The governing differential equation for free vibra-
tion of membranes is (Chen and Wu, 1996)

∂ 2W
∂x2 +

∂ 2W
∂y2 +

ρ
T

ω2W = 0, (18)

where W is the transverse deflection, ρ is the mass
per unit area, ω is the circular frequency, and T
is the tension per unit length. The density of the
membrane is the linear function of the x. Eq. (18)
can be given in non-dimensional form written as
follows:

∂ 2W
∂X2 +λ 2 ∂ 2W

∂Y 2 +Ω2W = 0, (19)

In Eq. (19) the non-dimensional variables have
been used given below

X = x/a, Y = y/b, (20)

Ω2 = ρω2a2/T, λ = a/b, (21)

Applying the discrete singular convolution to the
governing equation yields

M

∑
k=−M

δ (2)
Δ,σ (kΔx)Wi+k, j +λ 2

M

∑
k=−M

δ (2)
Δ,σ (kΔy)Wi, j+k

+ Ω2Wi j = 0, (22)

The boundary conditions are as follows:

W = 0 at edges (23)

Employing the transformation rule, the governing
Eq. (21) becomes,
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[J22]−1
M

∑
i=−M

δ (2)
Δ,σ (kΔξ )Wik

− [J22]−1[J21][J11]−1
M

∑
i=−M

δ (1)
Δ,σ (kΔξ )Wik

+λ 2

[
[J22]−1

M

∑
i=−M

δ (2)
Δ,σ (kΔη)Wjk

]

−λ 2

[
[[J22]−1[J21][J11]−1

M

∑
i=−M

δ (1)
Δ,σ (kΔη)Wjk

]

+ Ω2Wi j = 0 (24)

5 Numerical results

In this section, free vibration of membranes hav-
ing different geometries is analyzed. Numerical
results are presented for the frequencies analysis
of trapezoidal, rhombic, skew, sectorial, annular
sectorial, elliptic, convex and concave membranes
(Figs. 2-9). A few investigators have attempted
to analyze the vibration of membranes by using
the different numerical and analytical methods.
These methods are the finite element, differential
quadrature, Ritz and radial basis function based
differential quadrature.

To check the validity of the fundamental solution
and the proposed formulation, the results for fre-
quencies of trapezoidal and square membrane are
obtained with different grid numbers. The results
are compared with the available results and are
listed here. Free vibration analysis of trapezoidal
membrane (Fig.3) is considered. The results ob-
tained by the present method are compared with
the finite element solution (Kang and Lee, 2004).
The frequency values are given in Table 1. The re-
sults are matching very well with the results given
by Kang and Lee (2004).

Another convergence study is presented in Table 2
for the first six modes of vibration for the rectan-
gular (b/a=0.75) plate. For the using 15 grids, the
rate of convergence remains reasonable and the
agreement with the results from references (Kang
et al., 1999; Kang and Lee, 2000; Wu et al.,2007)
is excellent. First five frequency values of the
skew membrane are listed in Table 3 for four dif-
ferent skew angles.
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x

y 

a 

b 

Figure 2: Skew membrane
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Figure 3: Trapezoidal plate
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Figure 4: Membrane with four concave edges
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Figure 5: Membrane with four convex edges
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Figure 6: Membrane with a quarter-circular edge
cuts
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Figure 7: A typical sectorial membrane
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Figure 8: Annular sectorial membrane
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Figure 9: Elliptic membrane

Table 4 and Table 5 summarize the five small-
est frequency values of the sectorial and annular
sectorial membrane (Figs.7-8). The calculated re-
sults are compared with results given by Houmat
(2006). It is shown that the good agreement is ob-
served in all cases. The free vibration of elliptic
membrane as shown in Fig. 9 was studied. The
results obtained are presented in Table 6. The first
three frequency values are presented in this table
for four different a/b ratio of elliptic plate. Fi-
nally, the fundamental frequency values are listed
in Table 7 for different curvilinear shaped mem-
brane (Figs. 4-6). These are labeled as the mem-
brane four concave edges, membrane four con-
vex edges and square membrane with a quarter-
circular edge cuts. It is found that the frequency
parameters of membranes with concave shaped
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show larger than those of convex membrane. It
is also concluded that, as the parameter k increase
and the shape of membranes become more irreg-
ular, the frequency values monotonically increase
due to the decrease of the area.

Table 1: Comparison of frequency values of the
trapezoidal membrane (a/b=2.0; β = 70◦; α =
60◦)

Mode
Methods

Kang Present Present Present
and DSC DSC DSC

Lee(2004) N=11 N=13 N=15
1 3.81 3.83 3.82 3.82
2 5.29 5.30 5.27 5.27
3 6.58 6.58 6.56 6.56
4 7.07 7.07 7.05 7.05
5 7.62 7.64 7.62 7.60
6 8.75 8.76 8.74 8.73

Table 2: Comparison of frequencies of the rectan-
gular membrane (b/a=0.75)

Mode
Methods

Kang Wu Kang Present
et al. et al. et al. DSC

(1999) (2007) (1999) (N=15)
1 4.3633 4.3633 4.3651 4.3633
2 6.2929 6.2929 6.3006 6.2930
3 7.4560 7.4561 7.4669 7.4561
4 8.5947 8.5948 8.6213 8.5948
5 8.7266 8.7267 8.7407 8.7267
6 10.508 10.508 10.537 10.508

Table 3: First five frequency values of the skew
membrane (b/a=1)

Mode
Skew angles

θ = 75◦ θ = 70◦ θ = 60◦ θ = 45◦

1 4.5671 4.6708 4.9912 5.9019
2 6.9514 7.0061 7.2588 8.1477
3 7.4940 7.7520 8.4751 10.0261
4 8.8954 8.9403 9.1623 10.3592
5 10.2019 10.4162 11.0856 11.8780

Table 4: Comparison of five smallest frequency of
the sectorial membrane (a=1; φ = 90◦)

Mode
Methods

Houmat Houmat Present DSC
(2006) (2006) N=15

1 5.136 5.136 5.136
2 7.589 7.588 7.590
3 8.417 8.147 8.148
4 9.937 9.936 9.939
5 11.065 11.065 11.067

Table 5: Comparison of five smallest frequencies
of the annular sectorial membrane (a/b=1/2; φ =
90◦)

Mode
Methods

Houmat Houmat Present Present
DSC DSC

(2006) (2006) N=13 N=15
1 6.813 6.813 6.814 6.8141
2 8.266 8.266 8.267 8.2670
3 10.189 10.188 10.189 10.189
4 12.311 12.311 12.311 12.311
5 12.855 12.855 12.870 12.862

Table 6: First three frequency values of the elliptic
membrane

Mode
a/b

1 1.5 2 2.5
1 2.406 2.041 1.892 1.814
2 5.528 4.830 4.006 3.817
3 8.663 7.026 6.517 5.820

6 Conclusions

In the presented study, the method of discrete sin-
gular convolution has been proposed as a new nu-
merical algorithm for the eigenvalue analysis of
membranes having different geometries. The fre-
quency values of skew, trapezoidal, sector, an-
nular sector, elliptic, convex and concave mem-
branes have been obtained. Where available, the
obtained results have been compared with the re-
sults given by literature. Furthermore, some re-
sults provided are benchmark solutions for which
future comparisons can be made. Finally, it is
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Table 7: Fundamental frequency values of the membrane with different geometries

MembraneShape
k/a

0.1 0.15 0.20 0.25
Concave membrane 4.68 4.76 4.89 5.01
Convex membrane 4.34 4.29 4.27 4.24

Membrane with quarter-circular edge cuts 4.49 4.53 4.62 4.75

worth nothing that the present DSC method could
be extended to free vibration analysis of triangular
membranes using a different geometric mapping
technique. This study will be reported in another
paper.
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