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Masonry Walls under Shear Test: a CM Modeling

E. Ferretti1, E. Casadio and A. Di Leo1

Abstract: In this study, the Cell Method (CM)
is applied in order to investigate the failure mech-
anisms of masonry walls under shear force. The
direction of propagation is computed step-wise by
the code, and the domain is updated by means
of a propagation technique of intra-element nodal
relaxation with re-meshing. The crack extension
condition is studied in the Mohr/Coulomb plane,
using the criterion of Leon. The main advantage
of using the CM for numerical analyses of ma-
sonry is that the mortar, the bricks and the inter-
faces between mortar and bricks can be modeled
without any need to use homogenization tech-
niques, simply providing each of them with their
own constitutive properties. The capability of the
CM to handle domains with more than one ma-
terial is exploited to capture how the propagation
direction changes when the crack overcome the
joints or passes from the brick to the interface
and to the mortar. Also, the principal stresses and
principal directions of stress are mapped for the
bricks, the interfaces and the mortar. In compar-
ison with those presented in Ferretti (2003) and
Ferretti (2004a), the computational capabilities of
the CM code have been improved considerably.
Actually, a new version of the CM code has been
implemented, which is able to self-compute the
position of crack initiation and manage several
cracks propagating at the same time. This al-
lows us not to impose the number and the posi-
tion of crack initiations a-priori, letting the code
estimate them as the imposed displacement is in-
creased. Interactions between propagating cracks
are simply taken into account by the code, leading
to modification of the failure direction or to crack
arrest as soon as a new crack activates. The code
is also able to self-estimate whether or not one or
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more cracks bifurcate and to follow the propaga-
tion of each branch of bifurcation.
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1 Masonry modeling

Masonry is a heterogeneous material obtained by
regular arrangement of bricks and mortar. In a
broad sense, then, masonry may be considered as
a periodic composite continuum.

Numerous models have been proposed in litera-
ture, in order to study the mechanical behavior of
masonry. Nevertheless, a general approach, able
to predict the ultimate load bearing capacity of
masonry under in- and out-of-plane loads, is still
far for being proposed. The difficulty in modeling
masonry structures depends on many causes. The
two most important ones are the heterogeneous
character of masonry and the brittle behavior of
joints.

At present, the numerical models for studying ma-
sonry are based on three different approaches:

Micro-modeling. The masonry is modeled as a
two-phase medium (Fig. 1), with bricks and mor-
tar joints being taken into account distinctly as
separate units [Lofti and Benson Shing (1994),
Lourenço and Rots (1997), Gambarotta and Lago-
marsino (1997, Part I and Part II), Ferris and
Tin-Loi (2001), Giambanco Rizzo and Spallino
(2001), Formica Sansalone and Casciaro (2002),
etc.].

This approach allows a point-to-point prediction
of the stress and strain fields, but its applicabil-
ity is limited to the structural analysis of small
panels. In some cases, reasonable simplifica-
tions have been introduced, in order to extend
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Figure 1: Basic cell for micro-modeling

the method to complex walls belonging to exist-
ing real buildings, such as using zero-thickness
interfaces for the joints [Lofti and Shing (1994),
Lourenço and Rots (1997)].

Simplified micro-modeling: homogenization
techniques. The masonry is modeled as a ho-
mogeneous medium, equivalent to a strongly
heterogeneous one as far as the geometry and
property of the constituent materials are con-
cerned. The homogenization theory for periodic
heterogeneous media [Carvelli Maier and Talier-
cio (2000)] allows the global behavior of masonry
to be derived from the behavior of the constitu-
tive materials [Kralj Pande and Middleton (1991),
Maier Nappi and Papa (1991), Shrive and Eng-
land (1991), Pietruszczak and Niu (1992), Alpa
and Monetto (1994), de Felice (1995), Masiani
Rizzi and Trovalusci (1995), Lourenço (1996),
Lee Pande and Kralj (1998), Cecchi and Di Marco
(2000)]. The method identifies an elementary cell
(Fig. 2), which generates all the panel by regular
repetition. The core of the method is the formula-
tion of a differential problem based on the single
cell. The solution of such a problem leads to the
definition of homogenized constitutive relations,
which work as macroscopic descriptors for the be-
havior of the heterogeneous body.

Complete and technical presentations of the ho-
mogenization theory, based on asymptotic analy-
sis, may be found in Bensoussan Lions and Pa-
panicolaou (1978), Duvaut (1984) and Sanchez-
Palencia (1980).

The homogenization techniques have been em-

Figure 2: Basic cell for simplified micro-
modeling

ployed extensively for modeling masonry struc-
tures in the elastic field: for the elastic linear
field, see Pande Liang and Middleton (1989), An-
thoine (1995), Cecchi and Rizzi (2001), Cecchi
and Sab (2002), Cecchi Milani and Tralli (2004);
for the elastic non-linear field, see Zucchini and
Lourenço (2002). For the inelastic range, Lu-
ciano and Sacco (1997) proposed a brittle dam-
aging model with a unit cell composed of bricks,
mortar and a finite number of fractures on the
interfaces, Massart (2003) and Pegon and An-
thoine (1997) used a finite element approach as-
suming either elastic-plastic or damaging consti-
tutive laws for bricks and mortar, De Buhan and
de Felice (1997) proposed a homogenized limit
analysis of masonry with a pure Mohr Coulomb
failure criterion, where the bricks are supposed to
be infinitely resistant and the joint interfaces to be
of zero thickness. The limit analysis combined
with homogenization techniques is able to repro-
duce the anisotropy at collapse and the scarce ten-
sile strength, requiring only a reduced number of
mechanical parameters of the constituent materi-
als. Once the homogenized strength domain for
masonry is available, the limit analysis can be ap-
plied easily to entire panels.

Macro-modeling. The goal of this approach is
large-scale structural calculation. To this end, the
masonry is modeled as a homogeneous medium
(Fig. 3), by means of the definition of a ficti-
tious continuous material and yield surfaces ex-
tracted by fitting technique of experimental results
[Lourenço de Borst and Rots (1997)].
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Figure 3: Basic cell for macro-modeling

Usually, the mechanical properties required by the
model are derived from experimental data, with
the consequence that the results are limited to
the conditions under which the data are obtained.
Thus, these models must be calibrated over the
single test and are not generalizable.

One of the most widely adopted macro-modeling
approaches models masonry as a no tension ma-
terial (NTM) [Heyman (1966), Romano and Ro-
mano (1979), Como and Grimaldi (1985), Gi-
aquinta and Giusti (1985), Romano and Sacco
(1987), Del Piero (1989), Di Pasquale (1992), Del
Piero (1998)]. According to this approach, the
masonry is schematized as a homogeneous elastic
material which cannot support tensile stress. This
formulation is very attractive because of the sim-
plicity of the mechanical assumptions, but does
not seem able to lead to robust numerical tools
[Milani (2004)]. The main reason for this is that
the constitutive equations for masonry are gener-
ally non associated, both for taking into account
the role played by the friction between the bricks
in determining the strength in masonry panels
subjected to horizontal actions, and avoiding the
positive principal stresses, not admissible for an
NTM, provided by an associate flow rule when
a plane stress state with shear stress and vertical
compressive pressure is assumed.

Several other models of macro-modeling can be
found in the technical literature, some of which
[Lourenço (1995), Berto Saetta Scotta and Vital-
iani (2002)] were developed in order to take into
account some distinctive aspects of masonry, such

as anisotropy in the elastic range and the post-
peak softening behavior.

Another possible classification of the models for
masonry analysis is the one that distinguishes be-
tween discrete and continuum models [Luciano
and Sacco (1998)]. The discrete models are
used to analyze superimposed blocks, schema-
tized as linear elastic, while the interfaces are
modeled using the unilateral Coulomb friction
law [Chiostrini and Vignoli (1989), Grimaldi Lu-
ciano and Sacco (1992)]. Micro-modeling with
zero-thickness interfaces for the joints is an ex-
ample of discrete model.

The continuum models may use both phenomeno-
logical and micromechanical constitutive laws for
the masonry. When a phenomenological law is
used, the constitutive response of the masonry
must be determined by experimental tests. This
is the case of the macro-modeling and, in par-
ticular, of the NTM phenomenological continu-
ous law. The micromechanical analysis, on the
contrary, models the masonry as a heterogeneous
material, made of bricks in a matrix of mortar.
This is the case of the micro-modeling and the
simplified micro-modeling, when a homogeniza-
tion technique based on micromechanical models
of the periodic structure [Aboudi (1990), Mura
(1987)] is added to the micromechanical analysis.

2 General remarks on the Cell Method (CM)

With the aim of framing the CM [Tonti (2001a)], a
Finite Formulation Technique, into the traditional
approaches used for modeling masonry (Section
1), we could say that the CM allows us to build
a continuum model which lies at the level of the
micro-modeling, affording a high degree of detail
in the analysis.

As far as the main characteristics of the CM are
concerned, we will only recall here that the stress
field is evaluated on the dual elements (blue ele-
ments in Fig. 4) of a Delaunay triangulation (red
elements in Fig. 4), by means of a discrete analy-
sis, and that the method allows us to treat domains
easily with several materials (Fig. 5). For a com-
plete discussion on the advantages connected to
the Discrete Formulation, see Ferretti (2005).
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Figure 4: Mesh of Delaunay/Voronoi

Figure 5: Example of modeling on domain made
up of several materials: each color represents a
different material

Since it performs a discrete analysis, the CM
has often been compared to the direct or physi-
cal approach initially used in the Finite Elements
Method (FEM). Nevertheless, it must be said that
in the direct or physical approach, the discrete
formulation is induced by the differential for-
mulation, which represents an intermediate step
with limit process and field variables associated
to points, well described by means of systems
of coordinates (Fig. 6). The discrete formula-
tion is then obtained using the two theorems of

Gauss and Stokes. The Finite Volume Method
(FVM) and the Finite Differences Method (FDM)
are also based on a differential formulation. In
the CM, on the contrary, only discrete operators
are used and the cell complexes replace the coor-
dinate systems for describing not only points, but
also lines, surfaces, and volumes (Fig. 6). 0- and
more than 0-dimensional variables are described
directly, avoiding the limit process and the sub-
sequent reduction of the global variables to point
variables, by associating them with nodes, edges,
surfaces, and volumes of the cell complexes. The
governing equations are expressed in the discrete
form directly.

Figure 6: How to achieve the solution thought the
Cell Method and the differential formulation in
the mechanics of solids

The geometrical structure of space is very rich
with the CM. It is possible, for example, to de-
fine an inner orientation for the elements in di-
mension 0, 1, 2 and 3 (see the inner orientation
for the green elements in Fig. 6). These oriented
elements define the first cell complex. Then, by
considering the planes which are equidistant from
the nodes of the first cell complex, we can define
a second cell complex (the elements of which are
the orange ones in Fig. 6), which turns out to be
provided with an outer orientation.

CM has been applied to different fields of physics
science and engineering, such as acoustics [Tonti
(2001b)], electrostatics [Bettini and Trevisan
(2003)], magnetostatics [Trevisan and Kettunen
(2004)], Eddy currents [Specogna and Trevisan
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(2005)], electromagnetics in the time-domain
[Marrone and Mitra (2004)] and in the frequency-
domain [Marrone Grassi and Mitra (2004)], frac-
ture mechanics [Ferretti (2003), Ferretti (2004a),
Ferretti (2004c), Ferretti and Di Leo (2003)], elas-
todynamics [Cosmi (2005)] and fluid dynamics
[Straface Troisi and Gagliardi (2006)]. The CM
has been also applied to problems of thermal con-
duction, diffusion, biomechanics, heterogeneous
materials modeling, mechanics of porous mate-
rials and structural mechanics. Recently, Hesh-
matzadeh and Bridges (2007) have compared in
detail CM and FEM in electrostatics, proving
the equivalence of the coefficient matrices for a
Voronoi dual mesh and linear shape functions in
the FEM, also showing that the use of linear shape
functions in FEM is equivalent to the use of a
barycentric dual mesh for charge vectors.

As discussed in Ferretti (2005), the main differ-
ence between the differential and the discrete ap-
proaches concerns the nonlocal description of the
continuum. The different description of nonlocal-
ity comes from performing (differential approach)
or not performing (discrete approach) the limit
process. In the first case, the global variables are
reduced to point (and instant) variables, causing
the loss of metrics. Consequently, metrics must
be reintroduced a-posteriori, by means of a length
scale, if we want to describe the nonlocal effects.
Usually, the length scale is introduced into the
material description, leading to nonlocal consti-
tutive relationships. In the second case, on the
contrary, we do not need to recover the length
scale, since the limit process is avoided and the
length scale is preserved in the governing equa-
tions. Thus, the CM allows us to obtain a non-
local formulation by using local constitutive laws
and discrete operators.

3 CM analysis for self-weight of a masonry
wall

As said above (Section 2), the CM manages do-
mains made of several materials very easily, al-
lowing a micro-modeling approach. The constitu-
tive laws we used for mortar and bricks are shown
in Figs. 7 and 8, respectively.

The monotonic non-decreasing law used for the

0

20

40

60

0 2000 4000 6000 8000
Strain ε [με]

St
re

ss
 σ

 [M
Pa

]

Figure 7: Constitutive law adopted for the mortar
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Figure 8: Constitutive law adopted for the bricks

mortar is an effective law, analogous to that de-
rived for concrete, by means of the procedure
of the effective law [Ferretti (2001); Ferretti and
Di Leo (2003); Ferretti (2004b)]. The proce-
dure of the effective law is a new experimen-
tal procedure for identifying the constitutive law
in uniaxial compression for brittle heterogeneous
materials. This procedure produces evidence
against the existence of strain-softening (i.e. the
decline of stress at increasing strain) and iden-
tifies a monotone strictly nondecreasing material
law for concrete specimens in uniaxial compres-
sion (Fig. 10), having average stress versus aver-
age strain diagrams, σ − ε, which are softening
(Fig. 9).

The high degree of detail allowed by the CM
can be appreciated on the stress analysis for
self-weight, performed for the masonry wall in
Fig. 11. The cell-to-cell map of the stress along
the y axis (Fig. 12a and detail in Fig. 12b) shows
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Figure 9: Size and softening effect for the σ − ε
laws
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Figure 10: Dispersion range of the effective law
for variable slenderness and average curve
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Figure 11: Scheme of the wall for self-weight
analysis

an effect of negative friction on the vertical joints.
Actually, due to the difference between the stiff-
ness of the two materials, the mortar gets hold of
the bricks, which are more stressed just near the
vertical joints. The mortar, on the contrary, un-
loads near the vertical joints and this unloading

also involves the brick below. The principal di-
rections of stress are plotted in Fig. 12c, which
shows another interesting phenomenon: the rota-
tion of the principal directions of stress at the in-
tersection between vertical and horizontal joints.

As far as the isolines of stress are concerned, we
can see that they are strongly influenced by the
masonry lay-up, in the sense that they follow the
interfaces between mortar and bricks. The iso-
lines for the first and the second principal stress
are shown in figs. 13 and 14, respectively. Since
the masonry wall is subjected only to its own
weight, the two principal stresses are quite similar
to the stresses along the x and y axes. In particu-
lar, the second principal stress coincides with the
stress along the x axis. Moreover, from the three-
dimensional surface of the second principal stress
(Fig. 15) we can see once more how the stress
field is influenced by the mortar lay-up, with the
mortar being more stressed than the bricks on the
horizontal joints and less stressed on the vertical
joints. The neutral plane in Fig. 15 (the plane
σx = 0) shows a sort of arch effect of the stress,
due to the constraint on the base, with compres-
sion stresses near the base of the wall and weak
tensile stresses on the upper part of the wall.

Near the neutral axis (the line of intersection be-
tween the neutral plane and the three-dimensional
surface in Fig. 15), the stresses in the mortar and
the bricks have opposite sign: tension for bricks
(red arrows in Fig. 16) and compression for the
mortar (blue arrows in Fig. 16).

On the basis of this analysis, we can say that
the presence of the mortar is disadvantageous for
the masonry, in the sense that it is the bricks
which confine the mortar, and not the contrary,
due to the higher stiffness of bricks in compari-
son to the stiffness of the mortar. The stress also
changes sign inside the bricks near the neutral axis
(Fig. 17), with compression stresses on the middle
of the brick, which corresponds to the intersec-
tions between vertical and horizontal joints. Once
more, the change of stress sign depends on the
difference between the two stiffnesses.

The behavior of the tensile state of stress is more
emphasized by the frontal view of the stress sur-
face (Fig. 18), showing a weak tensile stress for
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Figure 12: a): Discrete map of the vertical stress. b): Detail of the discrete map of the vertical stress for the
boxed area. c): Principal directions of stress for the boxed area.
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Figure 13: Isolines of the first principal stress, quite similar to the stress along the y axis, with and without
superimposition of the masonry lay-up
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Figure 14: Isolines of the second principal stress, quite similar to the stress along the x axis, with and without
superimposition of the masonry lay-up
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Figure 15: Three-dimensional surface of the stress along the x axis
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 σ

Figure 16: Sign of the stress along the x axis near the
neutral axis (detail of Fig. 14)

 σ

Figure 17: Sign of the stress along the x axis inside
the bricks near the neutral axis (detail of Fig. 15

 x

 σx 

Figure 18: Frontal view of the three-dimensional surface of the stress along the x axis

the central bricks of the first course. Also the
three-dimensional surface of the first principal
stress (Fig. 19) shows that the mortar is more
stressed than the bricks on the horizontal joints
and less stressed on the vertical joints.

4 The CM code for modeling crack propaga-
tion of masonry walls in shear load

The code we present here preserves the ability to
operate in the discrete on domains of several ma-
terials, which comes from using the CM, and is
characterized by a procedure of re-meshing, acti-

vated by the stress analysis on the Mohr/Coulomb
plane. Of the two strategies commonly used for
modeling the crack propagation - sharp drop in
the normal stress and displacement discontinuity,
requiring mesh re-definition (Fig. 20) - we have
employed the one describing the crack as a dis-
placement discontinuity, together with a nodal re-
laxation technique. According to this technique,
once the propagation direction has been identi-
fied, the crack may be let to propagate either along
the mesh side nearest to the computed direction,
with an inter-element propagation, or along the
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Figure 19: Three-dimensional surface of the stress along the y axis

computed direction, with an intra-element prop-
agation (Fig. 21). In the first case, we need to
redefine the inner and outer sides of the mesh. In
the second case, we need to update the domain ge-
ometry with the new free surfaces and re-generate
the mesh. The first technique is faster than the
second but is mesh-dependent, while the second
is not. Our code uses an intra-element technique.

The stress state on the tip is compared with the
Leon criterion in the Mohr/Coulomb plane:

τ2
n =

c
fc

(
ftb
fc

+σn

)
. (1)

In Eq. 1, c is the cohesion, fc the compressive
strength, and ftb the tensile strength.

The Leon criterion has been adopted both for
bricks, mortar and the interfaces, modifying the
values of cohesion and angle of internal friction:

Cohesion (c) Angle of internal
friction (ϕ)

Mortar 5.238 N/mm2 10
Brick 11.286 N/mm2 10

Interface 3 N/mm2 10

We have then defined a parameter of safeness
with respect to the propagation, d, as the mini-
mum distance between the circle of Mohr and the
limit curve, with d greater than zero in safeness
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Figure 20: Strategies available to study fracture
mechanics using the FEM: sharp drop in the nor-
mal stress and displacement discontinuity
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Figure 21: Inter and intra element propagation for
the nodal relaxation technique

(Fig. 22) and equal to zero when the crack acti-
vates (Fig. 23).

When the circle of Mohr becomes tangent to the
Leon curve, the crack activates and the propaga-

-20 -15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

d>0 

Figure 22: Evaluation of d in safeness conditions
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Figure 23: Evaluation of d in limit conditions

tion directions are given by the line joining the
pole of Mohr to the two tangent points (Fig. 24).
Of the two propagation directions, only one or
both activate, depending on the constraint con-
ditions along the directions themselves [Ferretti
(2004c)].

The code has been used for simulating a shear
test on masonry walls of different boundary con-
ditions and dimensions. The analysis has been
carried out in displacement control, leaving the
code to identify the initiation points on the two
vertical sides of the wall. The code controls the
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Figure 24: Limit condition and directions of prop-
agation

three-dimensional surface of the safeness param-
eter for the points of the two vertical sides of the
wall (Figs. 25÷27) and identifies a point of ini-
tiation whenever the surface intersects the neutral
plane of the safeness parameter. For the first value
of impressed displacement (Fig. 25), the surface
reaches its minimum distance from the neutral
plane at the interfaces, for which the safeness pa-
rameter is minimum, a medium distance in cor-
respondence of the mortar and its maximum dis-
tance in correspondence of the bricks.

d 

Figure 25: Three-dimensional surface of d on the
vertical sides: first value of impressed displace-
ment

For each value of impressed displacement, the

d 

Figure 26: Three-dimensional surface of d on the
vertical sides: intermediate value of impressed
displacement

d 

Figure 27: Three-dimensional surface of d on the
vertical sides: impressed displacement of crack
initiation

code evaluates the parameter d on the two verti-
cal sides of the wall (Fig. 31). If d is greater than
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zero, the impressed displacement is increased and
the parameter d is re-evaluated for the points of
the two vertical sides (Fig. 31 when no crack has
initiated).

As we can see in Fig. 26, for a subsequent in-
creases of displacement, the surface of the param-
eter d modifies in the neighborhood of the point in
which the displacement is impressed, stating that
in this zone the safeness parameter is decreasing
with the increase of impressed displacement. The
safeness parameter for the neighborhood of the
point of impressed displacement continues to de-
crease until the surface intersects the neutral plane
of the safeness parameter (Fig. 27). At this point,
the parameter d is no more greater than zero, and
the code updates the domain by adding the two
new surfaces where the surface has intersected the
neutral plane (detail in Fig. 27). Then, the code
performs a static analysis on the tip of the inserted
crack (the detail in Fig. 27 shows the principal di-
rections of stress at the tip), in order to evaluate
whether or not the crack is propagating (Fig. 31).
If not, the impressed displacement is increased,
while, if the crack is propagating, the domain is
updated once more (Fig. 31), evaluating the prop-
agation directions in the Mohr/Coulomb plane.

Figure 28: Crack paths for the impressed dis-
placement of first initiation

Figure 29: Principal directions of stress at the tip
of the first crack after two propagation of the sec-
ond crack

Figure 30: Principal directions of stress at the tip
of the first crack after three propagation of the sec-
ond crack

It is worth noting that the Mohr/Coulomb limit
condition always identifies two propagation di-
rections, that is, always identifies crack branch-
ing. Nevertheless, the difference between the two
propagation directions identified is often negli-
gible. Our code estimates that actually a crack
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Figure 31: Flow chart of the CM code

branching only occurs if the difference between
the two identified propagation directions is greater
than a prefixed value, of around 5˚. When the
crack is let to bifurcate, the uploading procedure
of the domain geometry is modified in order to
split the new crack tip into two crack tips. More-
over, the crack is let to bifurcate only when the
crack tip lies in a brick (crack branching in the
mortar or in the interfaces are not taken into ac-
count).

Contemporarily to the static analysis on the tip of
the inserted crack, the code also performs a static
analysis on the two vertical sides, looking for new
initiation points. The Fig. 28 shows that, for the
value of impressed displacement of first activa-
tion, the first crack propagates twice and a second
crack initiates just above the first crack.

The code continues to evaluate the stress field on
the new tips and on the two vertical sides, until

all the crack stabilizes and there are no more ini-
tiation points. Only at this point, is the impressed
displacement increased once again (Fig. 31).

We can see how sensitive the code is to the inter-
actions between two propagating cracks, by com-
paring the principal directions at the tip of the
first crack (Fig. 29) with the principal directions
at the same tip after one propagation of the second
crack (Fig. 30): the principal directions of stress
have changed and the tensile state of stress has in-
creased.

I II

III IV

V VI

Figure 32: Analyzed boundary conditions

4.1 Stress analysis for different boundary con-
ditions

In Fig. 32, we have six different ways for impress-
ing the displacement to the specimen, simulating
six different experimental lay-ups. In the first, the
horizontal displacement is impressed only on the
upper right corner, which is able to move verti-
cally. In the second, the horizontal displacement
is impressed on the upper right corner once more,
but the vertical displacement of the upper right
corner is constrained. In the third, the horizon-
tal displacement is impressed on each node of
the upper side, with free vertical displacements.
The fourth is analogous to the third, but the ver-
tical displacement on the upper side is now con-
strained. The fifth and the sixth are analogous to
the fourth, but they take into account the fact that
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Figure 33: Vertical stresses for the six boundary conditions
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Figure 34: Principal directions of stress for the six boundary conditions
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Figure 35: Initiation points for the six boundary conditions: schemes I and II fail in the upper right brick,
while schemes III, IV, V, and VI fail in the interfaces between brick and mortar
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Figure 36: Crack path for the third boundary condition
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Figure 37: Deformed configuration for the third boundary condition
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the bond between testing machine and specimen
is unilateral and is able to work only in compres-
sion. For this reason, the testing machine is not
able to constrain the node vertically on the left of
the upper side, since these nodes should be con-
strained in tension. In the fifth scheme, the test-
ing machine impresses the horizontal displace-
ment onto the relaxed nodes, while it does not do
so in the sixth scheme. The number of nodes to
unbound is evaluated by the code in function of
the impressed displacement.

The Fig. 33 shows the map of the vertical stresses
for each scheme of Fig. 32. Of special interest is
the comparison between the fourth and the sixth
schemes, in the sense that the fourth is the scheme
we would realize in laboratory for simulating the
masonry answer to a seismic load, while the sixth
is the scheme we can actually realize, due to the
limits of the bond between the testing machine
and the specimen. The stress distribution is quite
different in the two cases, and this fact should call
our attention to the way in which we have to treat
the experimental data when we perform this type
of tests.

In Figs. 34 and 35, we have the principal direc-
tions of stress and the initiation points for the six
schemes, these too being strongly dependent on
the way to impress the displacement.

Fig. 36 provides the complete crack path for the
third scheme. At it can be seen from the picture,
the crack path for this scheme does not feature any
crack branching since it always propagates into
the mortar. The deformed configuration and the
load/displacement diagram for the third scheme
are shown in Figs. 37 and 38, respectively. The
rotation of the upper side, allowed by the bound-
ary conditions, is clearly evident in Fig. 37.

4.2 Stress analysis for different number of
courses

The Fig. 39 shows the stress distribution provided
by the CM code for the fourth boundary scheme
with three base bricks and three courses, five
courses, seven courses, nine courses, and eleven
courses of bricks. The stress concentration at
the corner of the bricks is clearly evident. The
stresses of tension and compression which alter-

0 0.5 1 1.5
0

1000

2000

3000

4000

5000

6000

7000

8000

Displacement

Lo
ad

Figure 38: Load/displacement diagram for the
third boundary condition

nate at the corners are due to the tendency of the
bricks to rotate inside the mortar matrix. We can
appreciate the same from the stress maps with
continuous coloring, with alternate tension and
compression stresses (Fig. 40).

Moreover, we can see how the stress trans-
fer scheme evolves towards the compressed rod
scheme as the wall assumes square dimensions.
Also the relationship between the stress distribu-
tion and the masonry lay-up is well evident in the
square wall.

4.3 Crack propagation for the first boundary
condition

In this section, we present how the CM code
works for the first boundary condition with three
courses and three bricks of base.

The code identifies the propagation of three
cracks in the upper right brick, one crack in the
upper right joint and one crack in the bottom right
joint (Fig. 41).

The first crack to enucleate is in the brick
(Fig. 42). Then we have propagation of the first
crack and initiation and propagation of a second
and a third crack in the brick (Fig. 42). When
the crack in the upper joint also initiates, the three
cracks in the brick stop propagating (Fig. 42). The
crack in the upper joint propagates for a while
through the mortar, then it reaches and follows
the interface and, finally, it penetrates the bottom
brick (Fig. 42).
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Figure 39: Discrete maps of the vertical stress for the fourth boundary condition and variable number of
courses

From this moment forth, this crack does not prop-
agate any more, and the only active crack is the
one in the bottom joint (Fig. 42). The detail of the
final deformed configuration is shown in Fig. 43.

As it can be seen form Figs. 41–43, for this bound-
ary condition all the cracks propagate without bi-
furcating, even if some of them lie in a brick.

4.4 Crack propagation for the second bound-
ary condition

In order to compare the propagation paths for un-
constrained and constrained vertical displacement
on the same scheme, let us now consider the sec-
ond boundary condition. The propagation dif-
fers sensitively in the two cases: when the ver-
tical displacements are constrained, all the ini-
tiation points are in the upper right brick and
the propagation paths feature several bifurcations,

due to the punching effect of the vertical con-
straint (Fig. 44).

5 Conclusions

The CM modeling is a micro-modeling which
provides us with an accurate two-material analy-
sis, able to show interaction effects between mor-
tar and bricks and stress concentration effects at
the corners of the bricks.

The computational capabilities of the CM code
have been improved considerably, if compared
with those presented in previous studies. In par-
ticular, the code is now able to self-estimate the
position of crack initiation, which no longer re-
quires definition by the operator. Moreover, the
code is able to self-estimate how many cracks
initiate, and to manage several cracks propagat-
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Figure 40: Continuous maps of the vertical stress and deformed configurations for the fourth boundary
condition and variable number of courses
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Figure 41: Complete crack path for the first boundary condition with three courses and three bricks of base

ing at the same time. The code is also able to
self-estimate whether or not one or more cracks
bifurcate and to follow the propagation of each
branch of bifurcation. This last peculiarity of the
code is particularly remarkable, since, to the au-
thors’ knowledge, it is the first time that CM is

used for simulating dynamic crack branching. It
is worth noting how the use of CM with automatic
re-meshing allows us to overcome some typical
unresolved difficulties pointed out in FEM nu-
merical simulations of dynamic crack propagation
[Guo and Nairn (2006)] and bifurcation [Abra-
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Figure 42: Subsequent steps of crack propagation: detail of the upper right corner
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Figure 43: Deformed configuration: upper right
corner
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Figure 44: Subsequent steps of crack propagation:
detail of the upper right corner

ham (2000), Chen Hu and Chen (2000), Kim and
Atluri (2000), Ching and Batra (2001), Nishioka
Furutuka Tchouikov and Fujimoto (2002)], such
as moving the singularities at the tips, avoiding
the spurious oscillations in models with nodal re-
lease technique when a propagating crack bifur-

cate and evaluating fracture parameters such as
the dynamic J integral and the dynamic stress in-
tensity factors for the branched short cracks, im-
mediately after the bifurcation.

As a consequence of the ability of the code to
manage several cracks propagating at the same
time, it is possible to take into account the inter-
actions between the propagating cracks.

Finally, the analysis performed on several bound-
ary conditions provides useful information on
how to treat the experimental data.

As possible future developments, we can hope
that the accurate analysis provided by the code
could be useful for calibrating the parameters of
the homogenization techniques and for perform-
ing a multi-scale analysis, in which the informa-
tion at the micro-level is provided by the Cell
Method alone.
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