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Meshless Method for Crack Analysis in Functionally Graded Materials with
Enriched Radial Base Functions

P.H. Wen1, M.H. Aliabadi2 and Y.W. Liu3

Abstract: Based on the variation of poten-
tial energy, the element-free Galerkin method
(MFGM) has been investigated for structures with
crack on the basis of radial base function interpo-
lation. An enriched radial base function is intro-
duced to capture the singularities of stress at the
crack tips. The advantages of the finite element
method are remained in this method and there is
a significant improvement of accuracy, particu-
larly for the crack problems of fracture mechan-
ics. The applications of the element-free Galerkin
method with enriched radial base function to two-
dimensional fracture mechanics in functionally
graded materials have been presented and com-
parisons have been made with numerical solutions
using different numerical approaches.

Keyword: element-free Galerkin method, func-
tionally graded materials, cracks, enriched radial
base function, static and dynamic load, stress in-
tensity factors.

1 Introduction

It is well-known that the finite element method
(FEM) is the most widely used numerical method
in dealing with linear, nonlinear and large scale
problems. However, the finite element method
suffers from drawbacks such as the generation of
a finite element mesh with thousands of nodes,
particularly for the crack propagation and mov-
ing boundaries. Although FEM has been very
successfully established and applied in engineer-
ing as one of the most powerful numerical tools,
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the development of new advanced methods nowa-
days is still attractive in computational mechan-
ics. Meshless approximations have received much
interest since Nayroles et al (1992) proposed
the diffuse element method. Later, Belyschko
et al (1994) and Liu et al (1995) proposed the
element-free Galerkin method (EFGM) and re-
produced the kernel particle method respectively.
One key feature of these methods is that they
do not require a structured grid and are there-
fore meshless. Recently, Atluri and his colleagues
presented a family of meshless methods, based
on the Local weak Petrov-Galerkin formulation
(MLPGs) for arbitrary partial differential equa-
tions [see Atluri et al (1998a, 1998b, 1999, 2002,
2004a) with moving least-square (MLS) approxi-
mation]. MLPG is reported to provide a rational
basis for constructing meshless methods with a
greater degree of flexibility. The Meshless Finite
Volume Method (MFVM) is developed for solv-
ing elasto-static problems, through a new Mesh-
less Local Petrov-Galerkin “Mixed”’ approach
(Atluri 2004b). The general Meshless Local
Petrov-Galerkin type weak-forms of the displace-
ment and traction boundary integral equations
are derived for solids undergoing small deforma-
tions (Atluri 2003). The Meshless Local Petrov-
Galerkin mixed collocation method is proposed
for solving elasticity problems (Atluri 2006). A
comparison study of the efficiency and accuracy
of a variety of meshless trial and test functions is
studied based on the general concept of the mesh-
less local Petrov-Galerkin method (Atluri 2002).
The Finite Difference Method (FDM), within the
framework of the Meshless Local Petrov-Galerkin
approach, is proposed for solving solid mechan-
ics problems (Atluri 2005). The implementation
of a three-dimensional dynamic code, for con-
tact, impact, and penetration mechanics, based on
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the Meshless Local Petrov-Galerkin approach has
been presented (Han 2006). A meshless computa-
tional method based on the local Petrov-Galerkin
approach for the analysis of shell structures is pre-
sented for three dimensional solid, allowing the
use of completely 3-D constitutive models (Jarak
2007). A truly meshless method, the Meshless
Local Petrov-Galerkin Method, is developed for
three-dimensional elasto-statics (Li 2003) and for
the problem of topology-optimization of elastic
structures (Li 2008). A new scheme, called sim-
plified finite difference interpolation (SFDI), is
devised (Ma 2008). A meshless method based
on the local Petrov-Galerkin approach is proposed
for the solution of boundary value problems for
coupled thermo-electro-mechanical fields (Sladek
2007a), crack analysis in two-dimensional (2-D)
and three-dimensional (3-D) axisymmetric piezo-
electric solids with continuously varying mate-
rial properties (Sladek 2007b) and the solution
of boundary value problems for coupled thermo-
electro-mechanical fields (Sladek 2007c).

The Local Boundary Integral Equation method
(LBIE) with moving least square and polynomial
radial basis function (RBF) has been developed by
Sladek et al (2004, 2005a, 2006b) for boundary
value problems in anisotropic non-homogeneous
media i.e. functionally graded materials. Both
methods (MLPG and LBIE) are meshless, as no
domain/boundary meshes are required in these
two approaches. However, Galerkin-base mesh-
less methods, except for MLGP presented by
Atluri (2004) still include several awkward imple-
mentation features such as numerical integrations
in the local domain. A comprehensive review of
meshless methods can be found in the book by
Atluri (2004).

Using the finite element method, we are able to
evaluate the displacements and stresses in each
element by its nodal values of displacement. In
addition, the material properties such as Young’s
modulus and Poisson ratio are treated as constants
in each element. Apparently the stresses are not
continuous crossing each element, despite the dis-
placements being continuous everywhere. Hence,
these discontinuities of stress and material prop-
erties in the field are considered to be one of the

reasons that affect the accuracy of numerical sim-
ulation. For instance, to achieve high accuracy
around a sharp corner or in front of the crack
tips, high density of element or special elements
must be introduced in the local region by FEM.
The application of meshless method to fracture
mechanics i.e. the evaluation of stress intensity
factors at crack tips and analysis of crack growth
were demonstrated by Fleming et al (1997) and
Rao et al (2001) using enriched basis function
with moving least square (MLS) interpolation.
However, this method is quite expensive com-
putationally, because the derivative of the shape
function is complicated at every Gauss integral
point. Functionally graded materials (FGM) have
continuous non-homogeneous material properties
and have been widely used in manufactory indus-
tries such as civil engineering and the aerospace
industry. To deal with crack problems in function-
ally graded materials for two-dimensional elastic-
ity, Sladek et al (2004) presented a local integral
equation formulation and a new equivalent do-
main integral to evaluate stress intensity factors.
In this paper, the element-free Galerkin method is
presented with compactly supported enriched ra-
dial basis function (RBF) interpolation. Follow-
ing the same way to derive system equations for
FEM, the stiffness matrix is determined by the
principle of potential energy variation using en-
riched RBF interpolations. It can be found that the
stiffness matrix of the system is still symmetric
and strip-diagonally distributed. Therefore, this
method can be easily combined with FEM. Nu-
merical results have been given for a rectangular
sheet and a circular plate with central and edge
cracks. Comparisons have been made with nu-
merical results by Sladek et al (2004) using LBIE.
This method can be easily extended to dynamic
fracture mechanics with all types of functionally
graded materials.

2 Variation of potential energy

In the case of a homogeneous anisotropic and
linear elasticity, we have a relation between the
stress and strain by Hooke’s law

σi j(x) = Ci jkl(x)εkl(x) = Ci jkl(x)uk,l(x), (1)
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where εkl = (uk,l +ul,k)/2, and Ci jkl denotes the
elasticity tensor, which has the following symme-
tries

Ci jkl = Cjikl = Ckli j. (2)

For a homogeneous isotropic solid, we have

Ci jkl(x) = λ (x)δi jδkl + μ(x)
(
δikδ jl +δilδ jk

)
(3)

where λ and μ are the Lame’s constants, which
are the function of coordinate for the continuous
non-homogeneity. For the isotropic plane stress
state, Hooke’s law can also be written in matrix
form, as

σσσ =

⎧⎨
⎩

σ11

σ11

σ11

⎫⎬
⎭= D(x)

⎧⎨
⎩

ε11

ε22

ε12

⎫⎬
⎭ = D(x)εεε (4)

where

D(x) =
E(x)

1−ν(x)2

⎡
⎣ 1 ν(x) 0

ν(x) 1 0

0 0 1−ν(x)
2

⎤
⎦ (5)

in which, E(x) is the Young’s modulus and ν(x)
the Poisson ratio. For the plane-strain state, we
need to change the Young’s modulus and the Pois-
son ratio by E/(1−ν2) and ν/(1−ν) in (5) re-
spectively. Consider the domain Ω enclosed by
the boundary Γ, we have the total potential energy
for the plane stress

Π = U −W (6)

where the initial elastic strain energy

U =
1
2

∫
Ω

σσσT (y)εεε(y)dΩ(y)

=
1
2

∫
Ω

εεεT (y)D(y)εεε(y)dΩ(y)
(7)

and the external energy, i.e. the sum of contribu-
tions from known interior and boundary forces

W =
∫
Ω

uT (y)b(y)dΩ(y)+
∫
Γ

uT (y)t(y)dΓ(y)

(8)

where b = {b1,b2}T is the body force vector,
t = {t1, t2}T , in which ti = σi jn j is the vector of
traction on the boundary and ni denotes the com-
ponent of a unit outward normal vector. We as-
sume that the displacements u(y) at the point y
can be approximated by the nodal values in a lo-
cal domain (support domain), as shown in Figure
1 as

ui(y) =
n(y)

∑
k=1

φk(y,xk)ûk
i = ΦΦΦ(y,x)ûi

ΦΦΦ(y,x) =
{

φ1(y,x1),φ2(y,x2), ...,φn(y)(y,xn(y))
}

ûi =
{

û1
i , û2

i , ..., û
n(y)
i

}T
, i = 1,2

(9)

ûi(x) is the nodal values at point xk =
{

x(k)
1 ,x(k)

2

}
,

k = 1,2, ...,n(y), φk the shape function and n(y)
the total number of nodes in the local domain,
named as the supported domain. For the plane-
stress problem, we can rearrange the above rela-
tion as follows

u(y) = {u1,u2}T = ΦΦΦ(y,x)û

ΦΦΦ(y,x) =
[
ΦΦΦ 0
0 ΦΦΦ

]

=
[

φ1 0 φ2 0 ... φn(y) 0
0 φ1 0 φ2 ... 0 φn(y)

]

û =
{

û1
1, û1

2, û2
1, û2

2..., û
n(y)
1 , ûn(y)

2

}T

(10)

Therefore, the relationship between strains and
displacements is given by

εεε(y)

=

⎡
⎢⎢⎣

∂φ1
∂x 0 ∂φ2

∂x 0 ...
∂φn(y)

∂x 0

0 ∂φ1
∂y 0 ∂φ2

∂y ... 0
∂φn(y)

∂y
∂φ1
∂y

∂φ1
∂x

∂φ2
∂y

∂φ2
∂x ...

∂φn(y)
∂y

∂φn(y)
∂x

⎤
⎥⎥⎦ û

= B(y)û.

(11)

To obtain the system equations in terms of nodal
displacement, the minimum value principle of to-
tal potential energy with respect to each nodal dis-
placement is considered and it gives

δΠ = δU −δW = 0 (12)
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Figure 1: Sub-domain Ωy for RBF interpolation of the field point y and support domains.

Inserting the relationships u = ΦΦΦû,εεε = Bû and
σσσ = Dεεε into (12) yields 2×N linear algebraic
equations in global coordinate:

[K]2N×2N û2N +[M]2N×2N
ˆ̈u = f2N (13)

where N is the total number of nodes in the do-
main Ω. The stiffness matrix becomes:

K =
∫
Ω

BT (x,y)D(y)B(x,y)dΩ(y)

M = ρ
∫
Ω

ΦΦΦT (x,y)ΦΦΦ(x,y)dΩ(y)
(14)

and the nodal force vector is

f =
∫
Ω

ΦΦΦT (x,y)b(y)dΩ(y)+
∫

Γσ

ΦΦΦT (x,y)t(y)dΓ(y)

(15)

where Γσ denotes the boundary on which the trac-
tion is given. For two concentrated forces acting
at the node i, we can determine the nodal force
vector directly by

fi =
{

Fi
1,Fi

2

}T
(16)

where F1 and F2 denote the values of concentrated
forces either on the boundary (externally applied
force) or in the domain (inner body force). There-
fore the loads, including the boundary loads and
the body forces can be simplified to nodal forces
in the same way as FEM. Thus, the domain and

the boundary integrals in (15) can be evaluated
directly. It is worth noticing that by the finite ele-
ment method, the displacements at point y can be
determined approximately by the nodal values of
its own element and the number of nodes depends
on the element type. For instance, the number of
nodes is 3 for triangle element and is 4 for rect-
angular element respectively. From the interpola-
tion point of view, the accuracy of MLS and RBF
should be higher, since more nodes are considered
in the support domain.

3 The approximation schemes

The multiquadric RBF was introduced by Hardy
(1971) for the interpolation of topographical sur-
faces. Since all radial basis functions are defined
globally, the resulting matrix for interpolation is
dense and can be highly ill-conditioned, particu-
larly for a large number of interpolation points. It
poses serious stability problems and is also com-
putationally inefficient.

A sub-domain Ωy, as shown in Figure 1 is the
neighbourhood of a point y and is also called the
support domain to an arbitrary point y. The dis-
tribution of function u in the sub-domain Ωy over
a number of randomly distributed nodes {xi} , i =
1,2, ...,n(y) can be interpolated at the point y by

u(y) =
n(y)

∑
i=1

Ri(y,xi)ai = RT (y,x)a(y) (17)

where RT (y,x) =
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{
R1(y,x), R2(y,x), ..., Rn(y)(y,x)

}
is a set

of radial basis functions centred at the point
y, {ak}n(y)

k=1 are the unknown coefficients to be
determined. To capture the singular stresses in
front of the crack tip, the enriched radial basis
function has been selected to be the following

Rk(y,x) = R(y−xk)+Q(y)

=
√

c2 + |y−xk|2 +
(
β +

√
re−αr) (18)

where r = |y−yc|; α , β and c are three free pa-

rameters; yc (y(c)
1 ,y(c)

2 ) denotes the crack tip. Also
we select c = b(b is the specified length such as
the width of the rectangular plate or the radius of
the circular disk etc) in this paper. To deal with
mixed-mode fracture problems, generally the sub-
region technique used by the boundary element
method and the mesh-free method should be em-
ployed. Due to the discontinuities of displace-
ment and traction between upper and lower crack
surfaces, the traditional support domain such as a
circular domain is not valid for mixed-mode prob-
lems. In this paper, a C-shaped support domain
is adopted for a collocation point, which is near
to the crack surfaces. Four cases are shown in
Figure 2, where the straight line CB is the exten-
sion of the line connecting points A (collocation
y,) and C (crack tip yc). Therefore, the disconti-
nuity of displacement can be described using the
radial basis functions.

For the interpolation strategy in (18) for RBF, a
linear system for the unknown coefficients a is ob-
tained by

R0a = û (19)

where coefficient matrix

R0 =⎡
⎢⎢⎢⎢⎢⎢⎣

R1(x1,x1) R2(x1,x2) . . .
R1(x2,x1) R2(x2,x2) . . .

. . . . .

. . . . .

. . . . .
R1(xn(y),x1) R2(xn(y),x2) . . .

Rn(y)(x1,xn(y))
Rn(y)(x2,xn(y))

.

.

.
Rn(y)(xn(y),xn(y))

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

As RBFs are positive definite, the matrix R0 is
assured to be invertible. Therefore, we can obtain
the vector of unknowns from (19)

a = R−1
0 (x)û(x) (21)

So that the approximation u(y) can be represented
at domain point y by

u(y) = RT (y,x)R−1
0 (x)û(x)

= ΦΦΦ(y,x)û =
n(y)

∑
k=1

φkûk

(22)

where the nodal shape function are defined by

ΦΦΦ(y,x) = RT (y,x)R−1
0 (x) (23)

It is worth noticing that the shape function de-
pends uniquely on the distribution of scattered
nodes within the support domain and has the Kro-
necker Delta property. As the inverse matrix of
the coefficients R−1

0 (x) depends only on the distri-
bution of nodes xi in the support domain, it is sim-
ple to evaluate the partial derivatives of the shape
function with respect to coordinates. From (22),
we have

u.k(y) =
∂u(y)
∂yk

= ΦΦΦ,k(y,x)û =
n(y)

∑
i=1

φi,kûi (24)

where

ΦΦΦ,k(y,x) = RT
,k(y,x)R−1

0 (x)

= [R1,k(y,x),R2,k(y,x), ...,Rn(y),k(y,x)]R−1
0 (x)

(25)

in which

Ri,k(y,xi) =

yk −x(i)
k√

c2 + |y−xi|2
+

yk −y(c)
k

r

(
1

2
√

r
−α

)
e−αr.

(26)
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Figure 2: Local support domains near to the crack surfaces.

Therefore, the strains are of singularity with 1/
√

r
near the crack tip, as expected. In order to guaran-
tee a unique solution of the interpolation problem,
a polynomial term should be added to the interpo-
lation in Eq.(18) as

u(y) =
n(y)

∑
k=1

Rk(y,x)ak +
t

∑
j=1

Pj(y)b j

= R0(y,x)a+P(y)b

(27)

along with the constraints

t

∑
j=1

Pk(x j)a j = 0, 1 ≤ k ≤ t (28)

where {Pk}t
k=1 is a basis for Pm−1, the set of d-

variate polynomials of degree ≤ m−1 and

t =
(

m+d −1
d

)
(29)

is the dimension of Pm−1. A set of linear equations
can be written in the matrix form as

R0a+PT b = û, Pa = 0 (30)

where the matrix

P(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1(x1) P2(x1) . . . Pt(x1)
P1(x2) P2(x2) . . . Pt(x2)

. . . . . .

. . . . . .

. . . . . .
P1(xn) P2(xn) . . . Pt(xn)

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

Solving equations in Eq.(31) gives

b =
(
PT R−1

0 P
)−1

PT R−1
0 û,

a = R−1
0

[
I−P

(
PT R−1

0 P
)−1

PT R−1
0

]
û

(32)

where I denotes the diagonal unit matrix. It is
clear that the coefficients a and b are functions
of nodal coordinate x in the support domain. In
addition, the accuracy has been shown to be the
same by using RBF with/without these polynomi-
als. Therefore, the shape functions with radial ba-
sis function are selected by Eq.(23) for simplicity
in the following analysis.
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4 Numerical process to evaluate stiffness ma-
trix

To determine the stiffness matrix K in (13), a do-
main integral in (14) over the domain Ω should
be calculated numerically. For the convenience of
analysis, we assume that the domain can be di-
vided into M rectangular sub-regions (cells). For
the irregular shape of the integral sub-domain, co-
ordinate transformation i.e. technique of coordi-
nate transformation should be introduced. A two-
dimensional domain integral over a rectangular
area can be evaluated by the Gaussian integral for-
mula

∫∫
A

f (x1,x2)dx1dx2 ≈ A
L

∑
l=1

wl f (x(l)
1 ,x(l)

2 ) (33)

where wl denotes the weight of integral, L the
number of integral Gaussian points and (x(l)

1 ,x(l)
2 )

is the coordinate of Gaussian points, as shown
in Figure 2. The matrix of stiffness can be rear-
ranged by four-Gaussian-points scheme as

K(x) =
∫
Ω

BT (x,y)D(y)B(x,y)dΩ(y)

=
M

∑
m=1

4

∑
l=1

Am

4
BT (x,y(l)

m )D(y(l)
m )B(x,y(l)

m )

=
M

∑
m=1

4

∑
l=1

ΔKm
l

(34)

where coefficients wl are given by

y(1,2,3,4)
m =

(
ym

1 ±
√

1
3

h1,ym
2 ±

√
1
3

h2

)
,

w1,2,3,4 =
1
4
, (35)

in which ym(ym
1 ,ym

2 ) presents the centre of the sub
integral domain with area Am (rectangular), h1 and
h2 are the half lengths of width and height respec-
tively and Am= 4h1h2. For each Gaussian point yl ,
the elements in the sub-matrix ΔKm

l can be simpli-
fied for the plane-stress state as

ΔKm
l =

AmE(yl)
4[1−ν2(yl)]

[
∂φi
∂y1

∂φ j

∂y1
+ 1−ν(yl)

2
∂φi
∂y2

∂φ j

∂y2

ν(yl)
∂φi
∂y2

∂φ j

∂y1
+ 1−ν(yl)

2
∂φi
∂y1

∂φ j

∂y2

ν(yl)
∂φi
∂y1

∂φ j

∂y2
+ 1−ν(yl)

2
∂φi
∂y2

∂φ j

∂y1
∂φi
∂y2

∂φ j

∂y2
+ 1−ν(yl)

2
∂φi
∂y1

∂φ j

∂y1

]
i j

=
[

al
11 al

12
al

21 al
22

]
i j

(36)

where i and j denote the number of nodes in the
local support domain centred at yl , φi = φi(yl,x),
i, j=1,2,. . . n(yl). These four values in (37) should
be added to the global stiffness matrix K, i.e. to
the elements k2I−1,2J−1,k2I−1,2J,k2I,2J−1 and k2I,2J

respectively, where I and J denote the numbers in
the global coordinate for the node i and j in the
local support domain. For the stiffness matrix K
in (35), the integral function has strong singularity
1/r around the crack tip, due to an enriched radial
base function. Therefore, we need to use coor-
dinate transformation to cancel that singularity in
the sub-region integrals near the crack tip. For ex-
ample, the sub-region (two squares) needs to be
divided into four triangular sub-domains and each
sub-domain is transformed into a square as shown
in Figure 3. The transformations can be presented
by, [see Aliabadi (2002)]

Triangular I: y1 = ξ1 and y2 =
1
2 [(1+ξ1)ξ2 − (1−ξ1)]; Jc = 1

2 (1+ξ1)
Triangular II: y1 = 1

2 [(1+ξ1)ξ2 − (1−ξ1)] and
y2 = ξ1; Jc = 1

2(1+ξ1)
Triangular III: y1 = 1

2 [(1+ξ2)ξ1 +(1−ξ2)] and
y2 = ξ2; Jc = 1

2(1+ξ2)
Triangular IV: y1 = −ξ2 and y2 =
−1

2 [(1+ξ2)ξ1 +(1−ξ2)]; Jc = 1
4(1+ξ2)

Thus, the integral with a strong singularity at
yc(−1,−1) can be written as

1∫
−1

1∫
−1

F(y1,y2)
r

dy1dy2 =

1∫
−1

1∫
−1

F(y1,y2)
r

JI
c(ξ1)dξ1dξ2

+
1∫

−1

1∫
−1

F(y1,y2)
r

JII
c (ξ2)dξ1dξ2



140 Copyright c© 2008 Tech Science Press CMES, vol.30, no.3, pp.133-147, 2008

I

II 

IV 

III 1ξ

2ξ  

O 

II 

crack tip 

Figure 3: Transformation of a triangle to a square.

+
1∫

−1

1∫
−1

F(y1,y2)
r

JIII
c (ξ1)dξ1dξ2

+
1∫

−1

1∫
−1

F(y1,y2)
r

JIV
c (ξ2)dξ1dξ2 (37)

in which the Jacobian factors cance1 out the 1/r
singularity successfully.

Obviously the system stiffness matrix K is sym-
metric and has a diagonal strip distribution, which
is similar to the stiffness matrix for the finite ele-
ment method. As there are more nodes in the lo-
cal support domain than FEM (one element), it is
believed that more accurate stress and strain (con-
tinuous) solutions should be obtained. The imple-
mentation of this method can be carried out ac-
cording to the following routines, which are sim-
ilar to the meshless method discussed by Atluri
(2004):

Choose a finite number of nodes N in the domain
Ω and on the boundary Γ of the given physical do-
main; choose interpolation scheme such as MLS
or RBF,

Select the size and shape of local support domain
or the minimum number in the support domain Ωy

Divide the domain Ω into segments and choose
the shape of integral sub-domain

Loop over the integral in the sub domain m
(m=1,2,. . . ,M) centred at ym

Loop over the integral Gaussian points yl

(l=1,2,3,4) in the sub-domain,

Loop over all nodes in the support domain (i, j);

Calculate the shape function φi(y,xi) and first
derivative φi,k(y,xi);

Evaluate the elements ΔKm
l =

[
al

kl

]
i j with enrich-

ment at crack tip;

Assemble the system stiffness matrix K(I,J);

End the node loop in the local domain,

End the Gaussian point loop,

End the sub-domain of integral loop,

Introduce the displacement boundary condition
and modify the system equation,

Solve the linear equations for the nodal values,

Calculate the stresses and unknown variables by
using the interpolations in the local support do-
main.

In addition, the width of the strip in the system
matrix depends on the size of the support do-
main or on the number of nodes in the support re-
gion. Therefore, the combination of element-free
Galerkin method with the finite element method
can be realised easily. The mixed mode stress in-
tensity factors are evaluated using the crack open-
ing displacements (COD) near the crack tip xc, for
plane-stress state by

KI =
E(yc)

8

√
2π
r0

Δu2, Δu2 = u+
2 −u−2

KII =
E(yc)

8

√
2π
r0

Δu1, Δu1 = u+
1 −u−1

(38)
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Figure 4: Square plate with a central crack (H = L) under tensile load σ0: (a) a half of the plate with edge
crack; (b) a quarter of the plate with central crack; (c) uniformly distributed nodes (138 nodes).

5 Numerical examples

5.1 A rectangular plate with an edge crack

A rectangular plate with width L and height 2L
containing an edge crack of length a=0.2L is con-
sidered. Due to the symmetry, half of the plate is
analyzed, as shown in Figure 4 (a). Plane- strain
state is assumed and Poisson ratio ν=0.3 in the
domain (constant) for all examples. Densities of
node (11×11) and (21×21) are selected in this ex-
ample and thus, 138 and 458 nodes in total are
uniformly distributed respectively in the domain
and on the boundary, including extra nodes in
two special cells (integral with singularity). Fig-
ure 4(c) shows the uniform distribution for 138
nodes. The grid of sub-region for domain inte-
gral is selected as (10×10) and therefore the sub-
region number M=100 in Figure 4(c). Uniform
stress σ0 is applied on the top of the plate. The
support domain is selected as a circle of radius
dy centered at the field point y, which is deter-
mined such that the minimum number of nodes
in the sub-domain n(y) ≥ N0, here N0 = 10 for
all of the following examples. However, we no-
ticed that for a large number of support nodes in
the sub-domain, the interpolation will become un-
stable for RBF interpolations, due to the computa-

tional precision of FORTRAN. The Young’s mod-
ulus is graded along the crack exponentially as
E(x1) = E1 exp(δx1/L), where δ = ln(E2/E1).E1

and E2 denote the Young’s modulus when x1 = 0
and L respectively. In addition, free parameters
α = 1/L,β = L, c = L in (18) and r0 = 2Δ in all
examples, where Δ is the gap between two nodes
in front of the crack tip. The optimization for
these parameters selection was discussed in detail
by Wen et al (2007) for isotropic materials. Nu-
merical results of normalized stress intensity fac-
tor KI/σ0

√
πa for two groups of different mesh

density are shown in Table 1. Also, the results
given by Sladek et al (2004) and Kim et al (2002)
are presented in the table for comparisons. It can
be seen that for higher density of the node distri-
bution, the percentage of relative error is less than
5%.

5.2 A single centred crack in rectangular plate
under tensile load

A square plate of width 2L containing a centred
crack of half length a =0.2L subjected to a
uniform shear load σ0 on the top and the bottom
is studied. Due to the symmetry, a quarter of the
plate is considered, as shown in Figure 4(b). The
same distribution format of nodes in Example
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Figure 5: Normalized stress intensity factors for continuous non-homogeneity.

Table 1: SIFs KI/σ0
√

πa for an edge crack under tensile load

E2/E1
This paper

Sladek et al (2005) Kim et al (2002)
Ntotal = 138 Ntotal = 458

0.1 1.1643 1.2502 1.3198 1.284
0.2 1.3057 1.3498 1.3950 1.390
1.0 1.3432 1.3278 1.3520 1.358
5.0 1.1406 1.1022 1.1385 1.132
10.0 1.0195 0.9785 1.0255 1.003

5.1 is selected (Ntotal = 458). To compare with
numerical results given by Sladek et al (2004),
three kinds of variation of the gradation function
with respect to x2 are considered too i.e. (a)
E(x2) = E0 [cos(δx2/L)+5exp(−δx2/L)]2 ;
(b) E(x2) = E0 (1+δx2/L)2 ; (c) E(x2) =
E0 [cos(δx2/L)+3sin(δx2/L)]2. Figure 5 shows
the variations of normalized stress intensity
factor KI/σ0

√
πa against parameter δ . Excellent

agreement with the solutions by Sladek et al
(2004) is achieved.

5.3 A circular disk with a central crack under
tension

A circular disk of radius R containing a central
crack of half length a =0.4R subjected to a uni-
form tension σ0 on the boundary along the normal
direction is shown in Figure 6(a). A quarter of
the disk shown in Figure 6(b) is analyzed. In this
model, we consider two densities of the uniformly
distributed nodes in the domain, i.e. Ntotal =
118 and 370 respectively. Three kinds of varia-
tion of the gradation function are considered i.e.
the Young’s modulus (a) E(x1) = E1 exp(δx1/R);
(b) E(x2) = E1 exp(δx2/R) and (c) E(x1,x2) =
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                                (a)                                                                             (b)   
Figure 6: A circular disk of radius R with a central crack of length 2a subjected to uniform load σ0 on the
boundary: (a) geometry; (b) distribution of nodes (118 nodes).
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Figure 7: Geometry of a rectangular plate with an edge slant crack: (a) uniform tensile load at the ends; (b)
regular distribution of nodes (637); (c) random distribution of nodes (600).

E1 exp(δ
√

x2
1 +x2

2/R), where δ = ln(E2/E1). Ta-
ble 2 shows the results of normalized stress inten-
sity factor KI/σ0

√
πa varying with the ratio of the

Young’s modulus E2/E1 for three cases. More ac-
curate results are expected by using higher density
for the node distribution.

5.4 A rectangular plate with an inclined edge
crack under dynamic load

A rectangular plate with a crack slanted at an an-
gle α = 45◦ to the boundary with three edges
simply supported shown in Fig.7(a) is instanta-
neously loaded by a uniform tensile stress σ0H(t)
(where H is a Heaviside function). The geome-
try of the cracked plate is shown in Fig.7(a) and
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Table 2: SIFs KI/σ0
√

πa for a central crack under tensile load

E2/E1
Case (a) Case (b) Case (c)

Ntotal = 118 Ntotal = 370 Ntotal = 118 Ntotal = 370 Ntotal = 118 Ntotal = 370
0.1 1.3792 1.5000 2.2529 2.2161 1.7446 1.8440
0.2 1.3115 1.4092 1.8651 1.8669 1.5761 1.6594
1.0 1.1778 1.2288 1.1778 1.2288 1.1778 1.2288
5.0 1.0883 1.1017 0.7515 0.8174 0.8058 0.8321
10.0 1.0631 1.0622 0.6302 0.6975 0.6642 0.6823
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Figure 8: Dynamic stress intensity factors by different methods when E1 = E0.

the crack is of length a = 22.63 mm with an-
gle φ=45◦. The plate has the following mate-
rial properties: Poisson ratio ν = 0.286, shear
modulus μ0 = E0/2(1 + ν) = 29.4× 109 Pa on
the bottom of the plate and density ρ = 2450
kgm−3 (Poisson ratio and density are constants).
The Young’s modulus is graded along the crack
exponentially as E(x2) = E0 exp(δx2/h), where
h=44mm and δ = ln(E1/E0). E0 and E1 denote
the Young’s modulus when x2 = 0 and h respec-
tively. The problem was solved using two types of
distribution of the nodes, i.e. regular distribution
with 637 nodes and random distribution with 600
nodes, as shown in Fig.7(b) and (c) respectively.
Here, the method given by Durbin (1975) is em-
ployed. Demonstration of the Durbin’s inverse
method was made by Wen et al (1996) for elas-

todynamic fracture mechanics. For the Laplace
transform, 26 transform parameters (K=25) are
selected in this example. Figure 8 shows the
normalized stress intensity factors KI(t)/K0 and
KII(t)/K0 if E1/E0 = 1, where K0 = σ0

√
πa. The

results given by Fedelinski et al (1996) using the
dual boundary element method are plotted for
comparison in this figure. The normalized stress
intensity factors vs normalized timec1t/b, where
b=32mm and c1 =

√
E(1−ν)/ρ(1+ν)(1−2ν)

is the speed of longitudinal wave, are plotted in
Figures 9 and 10 for three cases: E1/E0 = 0.5,1
and 2. With a regular distribution of the nodes,
the static stress intensity factors when E1/E0 = 1
are KI = 0.7575σ0

√
πa and KII = 0.5273σ0

√
πa

respectively. These results are found to be within
5% of the accurate solutions by DBEM.
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Figure 9: Time dependent normalized stress intensity factor KI/σ0
√

πa for a rectangular plate with a slant
edge crack under tensile Heaviside load.
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Figure 10: Time dependent normalized stress intensity factor KII/σ0
√

πa for a rectangular plate with a slant
edge crack under tensile Heaviside load.

6 Conclusions

By using enriched RBF interpolation in the lo-
cal supported domain in this paper, the singular
stresses (1/

√
r) at the crack tip can be captured.

The external load and internal body forces can be
treated as concentrated forces in the same way as
FEM. The computational strategy of the accurate
static and dynamic stress intensity factors of two-

dimensional mixed mode cracked structures with
functionally graded materials have been demon-
strated by several examples. We can conclude
with the following observations: (1) The satisfied
accurate SIFs can be obtained by enriched RBF
for two dimensional static and dynamic problems;
(2) Enriched RBF is more flexible and simpler
to program than moving least square interpola-
tion; (3) Similar to FEM, the stiffness matrix is
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still symmetric and strip diagonal. Therefore, the
combination of methods can be easily realised;
(4) Proposed method can be easily developed
to mixed mode problems and three-dimensional
elasticity, plate bending and dynamic problems.
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