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Thermal Analysis of Reissner-Mindlin Shallow Shells with FGM Properties
by the MLPG
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Abstract: A meshless local Petrov-Galerkin
(MLPG) method is applied to solve problems of
Reissner-Mindlin shells under thermal loading.
Both stationary and thermal shock loads are an-
alyzed here. Functionally graded materials with
a continuous variation of properties in the shell
thickness direction are considered here. A weak
formulation for the set of governing equations in
the Reissner-Mindlin theory is transformed into
local integral equations on local subdomains in
the base plane of the shell by using a unit test
function. Nodal points are randomly spread on the
surface of the plate and each node is surrounded
by a circular subdomain to which local integral
equations are applied. The meshless approxima-
tion based on the Moving Least-Squares (MLS)
method is employed for the implementation.

Keyword: Meshless local Petrov-Galerkin
method (MLPG), Moving least-squares (MLS)
approximation, functionally graded materials,
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1 Introduction

In recent years, the demand for construction of
huge and lightweight shell and spatial structures
is increasing. To minimize the weight of shell
structures a layered profile of the shell is uti-
lized frequently. In such a case a delamination
of individual layers may occur due to a finite
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jump in the material properties across the layer-
interfaces. To alleviate this phenomenon, func-
tionally graded materials (FGMs) are often intro-
duced [Suresh and Mortensen, 1998; Miyamoto
et al., 1999]. FGMs are multi-phase materials
with a pre-determined property profile, whereby
the phase volume fractions are varying gradu-
ally in space. This results in continuously non-
homogenous material properties at the macro-
scopic structural scale. Often, these spatial gra-
dients in the material behaviour render FGMs to
be superior to conventional composites because of
their continuously graded structures and proper-
ties. FGMs may exhibit isotropic or anisotropic
material properties, depending on the processing
technique and the practical engineering require-
ments.

Many linear analyses of bending of shells are fo-
cused only on a lateral pressure loading, with the
assumption of uniformly distributed temperature
in the whole shell. However, shells with FGM
properties are frequently under a thermal load.
Therefore, it is interesting to analyze shells un-
der a general thermal load. Literature sources
on this subject are very limited, and they are
mostly restricted to analyses of plates. An ele-
gant introduction and overview of pioneering ef-
forts in thermal stress analyses was given by Bo-
ley and Weiner (1960). Later Tauchert (1991)
gave a comprehensive overview of thermally in-
duced flexure, buckling and vibration of plates de-
scribed by the Kirchhoff theory. Thermoelastic
analyses including transverse shear effects were
performed by Das and Rath (1972) and Bapu Rao
(1979). Nonlinear analysis of simply supported
Reissner-Mindlin plates subjected to lateral pres-
sure and thermal loading and resting on two-
parameter elastic foundations is given by Shen
(2000). Praveen and Reddy (1998) analyzed the
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thermomechanical response of thick plates with
continuous variation of properties through the
plate thickness. The FEM has been applied to
isotropic plates with a simple power law distri-
bution of ceramic and metallic constituents. Vel
and Batra (2002) obtained an exact solution for
three-dimensional deformations of a simply sup-
ported functionally graded rectangular plates sub-
jected to mechanical and thermal loads on its top
and bottom surfaces.

Due to the high mathematical complexity of the
boundary or initial-boundary value problems, an-
alytical approaches for FGMs are restricted to
simple geometries and boundary conditions. The
choice of an appropriate mathematical model to-
gether with a consistent computational method
is important for such kind of structures. Most
significant advances in shell analyses have been
made using the finite element method (FEM). It
is well known that standard displacement-based
type shell element is too stiff and thus suffers
from locking phenomena. Locking problem arises
due to inconsistencies in discrete representation
of the transverse shear energy and membrane en-
ergy [Dvorkin and Bathe, 1984]. Much effort has
been devoted to deriving shell elements which ac-
count for the out-of-plane shear deformation in
thick shells that are free from locking in the thin
shell limit. In view of the increasing reliability
on the use of computer modelling to replace or
reduce experimental works in the context of a vir-
tual testing, it is therefore imperative that alter-
native computer-based methods are developed to
allow for independent verification of the finite el-
ement solutions [Arciniega and Reddy, 2007].

The boundary element method (BEM) has
emerged as an alternative numerical method to
solve plate and shell problems. A review on
early applications of BEM to shells is given by
Beskos (1991). The first application of BEM to
shells is given by Newton and Tottenham (1968),
where they presented a method based on the de-
composition of the fourth-order governing equa-
tion into a set of the second-order ones. Lu and
Huang (1992) derived a direct BEM formulation
for shallow shells involving shear deformation.
For elastodynamic shell problems it is appropri-

ate to use the weighted residual method with
the static fundamental solution as a test function
[Zhang and Atluri (1986), Providakis and Beskos
(1991)]. Dirgantara and Aliabadi (1999) applied
the domain-boundary element method for shear
deformable shells under a static load. They used
a test function corresponding to the thick plate
bending problem. Ling and Long (1996) used
this method for geometrically non-linear analy-
sis of shallow shells. All previous BEM appli-
cations are dealing with isotropic shallow shells.
Only Wang and Schweizerhof (1996a,b) applied
a boundary integral equation method for moder-
ately thick laminated orthotropic shallow shells.
They used the static fundamental solution corre-
sponding to a shear deformable orthotropic shell
and applied it for free vibration analysis of thick
shallow shells. The fundamental solution for a
thick orthotropic shell under a dynamic load is
not available according to the best of the author’s
knowledge.

Meshless approaches for problems of continuum
mechanics have attracted much attention during
the past decade [Belytschko et al., (1996), Atluri
(2004)]. In spite of the great success of the FEM
and the BEM as accurate and effective numeri-
cal tools for the solution of boundary value prob-
lems with complex domains, there is still a grow-
ing interest in developing new advanced numer-
ical methods. Elimination of shear locking in
thin walled structures by standard FEM is difficult
and techniques developed are not accurate. How-
ever, the FEM based on the mixed approxima-
tions with the reduced integration performs quite
well. Meshless methods with continuous approx-
imation of stresses are more convenient for such
kinds of structures [Donning and Liu (1998)]. In
recent years, meshfree or meshless formulations
are becoming to be popular due to their high adap-
tivity and low costs to prepare input data for nu-
merical analyses. Many of meshless methods are
derived from a weak-form formulation on global
domain or a set of local subdomains. In the global
formulation background cells are required for the
integration of the weak-form. It should be no-
ticed that integration is performed only on those
background cells with a nonzero shape function.
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In methods based on local weak-form formula-
tion no cells are required. The first application
of a meshless method to plate/shell problems was
given by Krysl and Belytschko (1996a,b), where
they applied the element-free Galerkin method.
The moving least-square (MLS) approximation
yieldsC1 continuity which satisfies the Kirchhoff
hypotheses. The continuity of the MLS approx-
imation is given by the minimum between the
continuity of the basis functions and that of the
weight function. So continuity can be tuned to
a desired value. Their results showed excellent
convergence, however, their formulation is not
applicable to shear deformable plate/shell prob-
lems. Recently, Noguchi et al. (2000) used a
mapping technique to transform the curved sur-
face into flat two-dimensional space. Then, the
element-free Galerkin method can be applied also
to thick plates or shells including the shear de-
formation effects. The reproducing kernel parti-
cle method (RKPM) [Liu et al. (1995)] has been
successfully applied for large deformations of thin
isotropic shells [Li et al. (2000)].

One of the most rapidly developed meshfree
methods is the Meshless Local Petrov-Galerkin
method (MLPG)[ Atluri and Zhu(1998)]. The
MLPG method has attracted much attention dur-
ing the past decade [Atluri and Shen, 2002; Atluri,
2004; Atluri et al., 2003; Sellountos et al., 2005]
for many problems of continuum mechanics. Re-
cent successes of the MLPG methods have been
reported in solving a 4th order ordinary differen-
tial equation [Atluri and Shen (2005)]; in ana-
lyzing vibrations of a beam with multiple cracks
[Andreaus et al (2005)]; in the development of
the MLPG finite-volume mixed method{ Atluri,
Han , and Rajendran (2004)], which was later
extended to finite deformation analysis of static
and dynamic problems [Han et al (2005)]; in
simplified treatment of essential boundary condi-
tions by a novel modified MLS procedure [Gao
et al (2006)]; in application to solving the Q-
tensor equations of nematostatics [Pecher et al
(2006)]; in analysis of transient thermomechani-
cal response of functionally gradient composites
[Ching and Chen (2006)]; in the ability for solv-
ing high-speed contact, impact and penetration

problems with large deformations and rotations
[Han et al (2006)]; in the development of the
mixed scheme to interpolate the elastic displace-
ments and stresses independently [Atluri et al
(2006a), (2006b)]; in proposal of a direct solution
method for the quasi-unsymmetric sparse matrix
arising in the MLPG [Yuan et al (2007)]; in mod-
elling nonlinear water waves [Ma (2007)]; in the
development of the MLPG with using the Dirac
delta function as the test function for 2D heat con-
duction problems in irregular domain [Wu et al
(2007)]; for studying the diffusion of a magnetic
field within a non-magnetic conducting medium
with nonhomogeneous and anisotropic electrical
resistivity [Johnson and Owen (2007)]; in the de-
velopment of the MLPG with using simplified fi-
nite difference interpolation [Ma (2008)] and in 3-
D modelling of homogeneous shells under a me-
chanical load [Jarak et al. (2007)]. The MLPG
Mixed Finite Volume Method [Atluri, Han, and
Rajendran (2004) has proved to be an effective
way in eliminating shear and thickness locking
in shells [Jarak et al (2007)], and in eliminating
locking and the necessity for upwinding in solv-
ing convection dominated flows of incompress-
ible fluids [Han and Atluri (2008a,b)].

In the present paper, the authors have developed
a meshless method based on the local Petrov-
Galerkin weak-form to solve thermal problems of
orthotropic thick shells with material properties
continuously varying through the shell thickness.
The Reissner-Mindlin theory [Reissner (1945),
Mindlin (1951)] reduces the original 3-d thick
plate problem to a 2-d problem. Nodal points
are randomly distributed over the base plane of
the considered shell. Each node is the center of
a circle surrounding this node. Similar approach
has been successfully applied to a thin Kirchhoff
plate [Long and Atluri, 2002; Sladek et al., 2002,
2003]. The MLPG method has been also applied
to Reissner-Mindlin plates under dynamic load by
Sladek et al. (2007a). Soric et al. (2004) have
performed a three-dimensional analysis of thick
plates, where a plate is divided by small cylin-
drical subdomains for which the MLPG is ap-
plied. Homogeneous material properties of plates
are considered in previous papers. Recently, Qian
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et al. (2004) extended the MLPG for 3-D de-
formations in thermoelastic bending of function-
ally graded isotropic plates. The MLPG has been
successfully applied also to shell with homoge-
neous [Sladek et al. (2007b)] and FGM properties
[Sladek et al. (2008a)] under a mechanical load.

The solution of the uncoupled problem in the
present paper is split into two tasks. In the first
task the temperature distribution in the shell has
to be obtained by solving the diffusion equation.
The temperature distribution in shell has to be an-
alyzed as 3-D problem. The MLPG is applied
to transient heat conduction equations in a con-
tinuously nonhomogeneous solid. The Laplace
transform technique is used to eliminate the time
variable too. Several quasi-static boundary value
problems must be solved for various values of
the Laplace-transform parameter. The Stehfest’s
inversion method [Stehfest, 1970] is applied to
obtain the time-dependent solution. In the sec-
ond task the set of governing differential equa-
tions for Reissner-Mindlin shell bending theory
with Duhamel-Neumann constitutive equations is
solved. Since thermal changes in solids are rel-
atively slow with respect to the elastic wave ve-
locity, the inertial terms in Reissner-Mindlin gov-
erning equations are not considered. The problem
is considered as a quasi-static with time depen-
dent thermal forces. The MLPG method is ap-
plied again to the solution of that problem with
the meshless Moving Least-Squares (MLS) ap-
proximation of primary field variables. The nodal
points are spread freely in the analyzed domain
and on its boundary. The essential boundary con-
ditions are satisfied by collocation of approxi-
mated fields at nodes with prescribed values. In
other nodes, the governing PDEs are considered
on subdomains around these nodes in the local
weak-form with the use of unit test functions. The
resulting local integral equations are discretized
within the assumed approximation of field vari-
ables. Numerical results for simply supported
and clamped square shells with a uniform or sinu-
soidal temperature distribution on the top surface
of the shell are presented to illustrate the accuracy
and efficiency of the proposed method. A ther-
mal shock with Heaviside time variation on the

top surface of the simply supported shell is also
analyzed. The comparisons of the present numer-
ical results with FEM results show good agree-
ment.

2 The MLS approximation

In general, a meshless method uses a local inter-
polation to represent the trial function with the
values (or the fictitious values) of the unknown
variable at some randomly spread nodes. The
moving least squares approximation may be con-
sidered as one of such schemes, and is used in
the current work. Consider a sub-domain Ωx, the
neighbourhood of a point x and denoted as the do-
main of definition of the MLS approximation for
the trial function at x, which is located in the prob-
lem domain Ω. To approximate the distribution of
the function u in Ωx, over a number of randomly
located nodes {xa}, a = 1,2, . . .,n, the MLS ap-
proximant uh(x) of u, ∀x ∈ Ωx, can be defined by

uh(x) = pT (x)a(x) ∀x ∈ Ωx, (1)

where pT (x) =
[
p1(x), p2(x), . . ., pm(x)

]
is a

complete monomial basis of order m; and a(x)
is a vector containing coefficients a j(x), j =
1,2, . . .,m which are functions of the space co-
ordinates x = [x1,x2,x3]

T . For example, for a 2-d
problem

pT (x) = [1, x1, x2] , linear basis m = 3 (2a)

pT (x) =
[
1, x1, x2, (x1)2, x1x2, (x2)2] ,

quadratic basis m = 6 (2b)

The coefficient vector a(x) is determined by min-
imizing a weighted discrete L2 norm, defined as

J(x) =
n

∑
a=1

va(x)
[
pT (xa)a(x)− ûa]2

, (3)

where va(x) is the weight function associated with
the node a, with va(x) ≥ 0. Recall that n is the
number of nodes in Ωxfor which the weight func-
tions va(x) > 0 and ûa are the fictitious nodal val-
ues, and not the nodal values of the unknown trial
function uh(x) in general. The stationarity of J in
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eq. (3) with respect to a(x) leads to the following
linear relation between a(x) and û

A(x)a(x) = B(x)û, (4)

where

A(x) =
n

∑
a=1

wa(x)p(xa)pT (xa)

B(x) =
[
v1(x)p(x1),v2(x)p(x2), . . .,vn(x)p(xn)

]
.

(5)

The MLS approximation is well defined only
when the matrix A in eq. (4) is non-singular. A
necessary condition to be satisfied that require-
ment is that at least m weight functions are non-
zero (i.e. n ≥ m) for each sample point x ∈ Ω and
that the nodes in Ωx will not be arranged in a spe-
cial pattern such as on a straight line.

Solving for a(x) from eq. (4) and substituting it
into eq. (1) give a relation

uh(x) = ΦT (x) · û =
n

∑
a=1

φ a(x)ûa;

ûa �= u(xa)∧ ûa �= uh(xa), (6)

where

ΦT (x) = pT (x)A−1(x)B(x). (7)

φ a(x) is usually called the shape function of the
MLS approximation corresponding to the nodal
point xa. From eqs (5) and (7), it may be seen that
φ a(x) = 0 when va(x) = 0. In practical applica-
tions, va(x) is generally chosen such that it is non-
zero over the support domain of the nodal point
xa. The support domain is usually taken to be cir-
cle of radius ra centered at xa (see Fig. 1). This
radius is an important parameter of the MLS ap-
proximation because it determines the range of in-
teraction (coupling) between degrees of freedom
defined at nodes.

Both the Gaussian and spline weight functions
with compact supports are most frequently used
in numerical analyses. The Gaussian weight func-
tion can be written as

va(x) =

⎧⎪⎪⎨
⎪⎪⎩

exp
[
−( da

ca

)2
]
−exp

[
−( ra

ca

)2
]
,

0 ≤ da ≤ ra

0, da ≥ ra

(8)
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Figure 1: Local boundaries for weak formulation,
the domain Ωx for MLS approximation, and sup-
port area of weight function around node xi

where da = |x−xa|; ca is a parameter control-
ling the shape of the weight function va and ra

is the size of support. The radius of the support
domain ra should be large enough to have a suf-
ficient number of nodes covered in the domain of
definition to ensure the regularity of matrix A.

A 4th-order spline-type weight function

va(x) =

⎧⎪⎨
⎪⎩

1−6
(

da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
,

0 ≤ da ≤ ra,

0, da ≥ ra,

(9)

is more convenient for modelling since the C1-
continuity of the weight function is ensured over
the entire domain. Then, the continuity conditions
for the bending moments, the shear forces and the
normal forces are satisfied.

The partial derivatives of the MLS shape func-
tions are obtained as [Atluri (2004)]

φ a
,k =

m

∑
j=1

[
p j

,k(A−1B) ja + p j(A−1B,k +A−1
,k B) ja

]
,

(10)

wherein A−1
,k =

(
A−1

)
,k represents the derivative

of the inverse of A with respect to xk, given by

A−1
,k = −A−1A,kA−1.

3 Meshless local integral equations for heat
conduction problems in shallow shells

Because of the present use of an uncoupled
thermo-elastic theory, the thermal problem should



82 Copyright c© 2008 Tech Science Press CMES, vol.30, no.2, pp.77-97, 2008

be solved first, in order to determine the temper-
ature distribution within the shell in solving the
shell problem under thermal loading. Material
properties are assumed to be continuously vari-
able along the shell thickness. Therefore, we shall
consider a boundary value problem for the heat
conduction problem in a continuously nonhomo-
geneous anisotropic medium, which is described
by the governing equation:

ρ(x)c(x)
∂θ
∂ t

(x, t) = [λi j(x)θ, j(x, t)],i +Q(x, t)

(11)

where θ (x, t) is the temperature field, Q(x, t) is
the density of body heat sources, λi j is the thermal
conductivity tensor, ρ(x) is the mass density and
c(x) the specific heat.

Let the analyzed domain of the shallow shell is de-
noted by Ω with the top and bottom surfaces being
S+ and S−, respectively. Arbitrary temperature or
heat flux boundary conditions can be prescribed
on all considered surfaces. The initial condition
is assumed

θ (x, t)|t=0 = θ (x,0)

in the analyzed domain Ω.

M21

M12

M11

M22

Q2

Q1

x2

x1

x3

h

Pb

Pt

q( ,t)x

Figure 2: Sign convention of bending moments
and forces for FGM shallow shell

A similar problem for a plate has been recently
solved by Qian and Batra (2005) by an approxi-
mate computational technique. In their approach,

the temperature field is expanded in the plate
thickness direction by using Legendre polynomi-
als as basis functions. The original 3-D problem
is transformed into a set of 2-D problems there.
In the present paper, a more general 3-D analysis
based on the MLPG method is applied. The MLS
approximation is used here. The approximations
described in Sect. 2 for 2-D problems are still
valid with only a modification of basis polynomi-
als as

pT (x) = [1, x1, x2, x3] , linear basis m = 4

pT (x) =
[
1, x1, x2, x3, (x1)2, (x2)2, (x3)2,

x1x2, x3x2, x1x3, (x1)2x3, (x2)2x3, (x3)2x1
]

quadratic basis m = 10.

(12)

Applying the Laplace transformation to the gov-
erning equation (11), one obtains

[
λi j(x)θ , j(x, s)

]
,i −ρ(x)c(x)sθ(x, s) = −F(x, s)

(13)

where

F(x, s) = Q(x, s)+θ (x,0)

is the redefined body heat source in the Laplace
transform domain, with the inclusion of the initial
boundary condition for the temperature and s is
the Laplace transform parameter.

Again the weak form is constructed over local
subdomains Ωs, which is a small sphere taken
for each node inside the global domain. The lo-
cal weak form of the governing equation (13) for
xa ∈ Ωa

s can be written as

∫
Ωa

s

[(
λl j(x)θ , j(x, s)

)
,l −ρ(x)c(x)sθ(x, s)

+ F(x, s)
]
θ ∗(x)dΩ = 0 (14)

where θ ∗(x) is a weight (test) function.

Applying the Gauss divergence theorem to equa-
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tion (14), we obtain

∫
∂Ωa

s

q(x, s)θ ∗(x)dΓ−
∫
Ωa

s

λl j(x)θ , j(x, s)θ ∗
,l(x)dΩ

−
∫
Ωa

s

ρ(x)c(x)sθ(x, s)θ ∗(x)dΩ

+
∫
Ωa

s

F(x, s)θ ∗(x)dΩ = 0, (15)

where ∂Ωa
s is the boundary of the local subdo-

main and

q(x, s) = λl j(x)θ , j(x, s)nl(x).

The local weak form (15) is a starting point to de-
rive local boundary integral equations providing
an appropriate test function selection. If a Heav-
iside step function is chosen as the test function
θ ∗(x) in each subdomain

θ ∗(x) =

{
1 at x ∈ Ωa

s

0 at x /∈ Ωa
s

the local weak form (15) is transformed into the
following simple local boundary integral equation

∫
∂Ωa

s

q(x, s)dΓ−
∫
Ωa

s

ρ(x)c(x)sθ(x, s)dΩ

= −
∫

Ωa
s

F(x, s)dΩ. (16)

Equation (16) is recognized as the balance of ther-
mal energy on the subdomain Ωa

s . In the station-
ary case, the domain integral on the left hand side
of this local boundary integral equation vanishes.
Finally, assuming vanishing heat sources and ini-
tial condition, we arrive at a pure boundary inte-
gral formulation.

The MLS approximation of the heat flux q(x, s) is
assumed as

qh(x, s) = λi jni

n

∑
a=1

φ a
, j(x)θ̂ a(s).

Substituting the MLS-approximations into the lo-
cal integral equation (16), the system of algebraic

equations is obtained

n

∑
a=1

⎛
⎝ ∫

Ls+Γsp

nT ΛPa(x)dΓ−
∫
Ωs

ρcsφ a(x)dΓ

⎞
⎠ θ̂ a(s)

= −
∫

Γsq

q̃(x, s)dΓ−
∫
Ωs

F(x, s)dΩ (17)

at interior nodes as well as at the boundary nodes
on ∂ΩN , where ∂ΩN is the part of the global
boundary surface ∂Ω on which the heat flux is
prescribed and Γsq = ∂Ωs ∩ ∂ΩN . In equation
(17), we have used the notations

Λ =

⎡
⎣λ11 λ12 λ13

λ12 λ22 λ23

λ13 λ23 λ33

⎤
⎦ , Pa(x) =

⎡
⎣φ a

,1
φ a

,2
φ a

,3

⎤
⎦ ,

nT = (n1,n2,n3),

Ls ∪Γsp = ∂Ωs, Γsp = ∂Ωs ∩∂ΩD,

∂Ω = ∂ΩD ∪∂ΩN .
(18)

The time dependent values of the transformed
quantities can be obtained by an inverse Laplace-
transformation. In the present analysis, the Ste-
hfest’s inversion algorithm [Stehfest (1970)] is
used.

4 Analyses of orthotropic FGM shallow
shells under a thermal load

Consider a linear elastic orthotropic shallow shell
of constant thickness h and with its mid-surface
being described by x3 = f (x1,x2) in a domain S
with the boundary contour Γ in the base plane
x1 − x2. The Reissner-Mindlin bending theory
[Reissner (1946)] is used to describe the shell de-
formation. The total displacements of the shell are
given by the superposition of the bending defor-
mations and the membrane deformations. Then,
the spatial displacement field u′i and strains ε ′

i j
caused by bending are the same as for a plate and
they are given by [Reddy (1997)]

u′1(x, t) = x3w1(x, t),

u′2(x, t) = x3w2(x, t),

u′3(x, t) = w3(x, t), (19)
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where wα and w3 represent the rotations around
the xα -direction and the out-of-plane deflection,
respectively (see Fig. 2). The corresponding lin-
ear strains are given by

ε ′
11(x, t) = x3w1,1(x, t),

ε ′
22(x, t) = x3w2,2(x, t),

ε ′
12(x, t) = x3(w1,2(x, t)+w2,1(x, t))/2,

ε ′
13(x, t) = (w1(x, t)+w3,1(x, t))/2,

ε ′
23(x, t) = (w2(x, t)+w3,2(x, t))/2. (20)

Since ε ′
33 = 0, we have on the mid-surface σ ′

33 =
0. Assuming σ ′

33 = 0 throughout the shell thick-
ness, one can write the constitutive equations for
orthotropic materials as⎡
⎢⎢⎢⎢⎣

σ ′
11

σ ′
22

σ ′
12

σ ′
13

σ ′
23

⎤
⎥⎥⎥⎥⎦ = D′(x)

⎡
⎢⎢⎢⎢⎣

ε ′
11

ε ′
22

2ε ′
12

2ε ′
13

2ε ′
23

⎤
⎥⎥⎥⎥⎦ , (21)

where

D′(x) =

⎡
⎢⎢⎢⎢⎣

E1/e E2ν12/e 0 0 0
E2ν12/e E2/e 0 0 0

0 0 G12 0 0
0 0 0 G13 0
0 0 0 0 G23

⎤
⎥⎥⎥⎥⎦

with e = 1−ν12ν21.

Here, Ek are Young’s moduli referred to the axes
xk (k=1, 2), G12, G13and G23 are the shear moduli,
and νi j are Poisson’s ratios.

The membrane strains have the form
[Lukasiewicz (1979)]

εαβ =
1
2
(uα ,β +uβ ,α )+δαβ kαβ w3, (22)

where kαβ are the principal curvatures of the shell
in x1- and x2-directions with the assumption k12 =
k21 = 0, and uα are the in-plane displacements.
The summation convention is not assumed in Eq.
(22).

Then, the membrane stresses are given as⎡
⎣σ11

σ22

σ12

⎤
⎦ = D(x)

⎡
⎣ ε11

ε22

2ε12

⎤
⎦−

⎡
⎣γ11

γ22

0

⎤
⎦θ (x1,x2,0, t),

(23)

where

D(x) =

⎡
⎣ E1/e E1ν21/e 0

E2ν12/e E2/e 0
0 0 G12

⎤
⎦ .

Next, we assume that the material properties are
graded along the shell thickness, and the profile
of the volume fraction variation is described by

P(x3) = Pb +(Pt −Pb)Vf with Vf =
(

x3

h
+

1
2

)n

,

(24)

where P denotes a generic property like Young’s
or shear modulus, Pt and Pb denote the property
of the top and the bottom faces of the shell, re-
spectively, and n is a parameter that controls the
material variation profile (see Fig. 3). Poisson’s
ratios are assumed to be constant.
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x3/h

V
f

 n = 1
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Figure 3: Variation of the volume fraction over the
shell thickness for linear and quadratic power-law
index

The bending moments Mαβ , the shear forces Qα
and the normal forces Nαβ are defined as⎡
⎣M11

M22

M12

⎤
⎦ =

∫ h/2

−h/2

⎡
⎣σ ′

11
σ ′

22
σ ′

12

⎤
⎦x3dx3,

[
Q1

Q2

]
= κ

∫ h/2

−h/2

[
σ ′

13
σ ′

23

]
dx3,
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⎡
⎣N11

N22

N12

⎤
⎦ =

∫ h/2

−h/2

⎡
⎣σ11

σ22

σ12

⎤
⎦dx3, (25)

where κ = 5/6 in the Reissner plate theory.

Substituting equations (20) and (21) into moment
and force resultants (25) allows the expression of
the bending moments Mαβ and shear forces Qα
for α , β =1,2, in terms of rotations, lateral dis-
placements of the orthotropic plate and temper-
ature. In the case of considered continuous grada-
tion of material properties through the plate thick-
ness, one obtains

Mαβ = Dαβ
(
wα ,β +wβ ,α

)
+Cαβ wγ ,γ −Hαβ

Qα = Cα (wα +w3,α) , (26)

where

Hαβ =
∫ h/2

−h/2
x3γαβθ (x,x3, t)dx3.

In eq. (26), repeated indices α , β do not imply
summation, and the material parameters Dαβ and
Cαβ are given as

D11 =
D1

2
(1−ν21) , D22 =

D2

2
(1−ν12) ,

D12 = D21 =
G12h3

12
,

C11 = D1ν21, C22 = D2ν12, C12 = C21 = 0,

Dα =
Eα h3

12e
, D1ν21 = D2ν12, Cα = κhGα3,

(27)

where

Eα ≡

⎧⎪⎨
⎪⎩

Eαt = Eαb,n = 0

(Eαb +Eαt)/2,n = 1

(3Eαb +2Eαt)/5,n = 2

G12 ≡

⎧⎪⎨
⎪⎩

G12t = G12b,n = 0

(G12b +G12t)/2,n = 1

(3G12b +2G12t)/5,n = 2

,

Gα3 ≡

⎧⎪⎨
⎪⎩

Gα3t = Gα3b,n = 0

(Gα3b +Gα3t)/2,n = 1

(2Gα3b +Gα3t)/3,n = 2

,

with the same meaning of subscripts b and t as in
Eq. (24).

For a general variation of material properties
through the shell thickness:

D11 =
∫ h/2

−h/2
x2

3E1(x3)
1−ν21

e
dx3,

D22 =
∫ h/2

−h/2
x2

3E2(x3)
1−ν12

e
dx3,

D12 =
∫ h/2

−h/2
x2

3G12(x3)dx3,

C11 =
∫ h/2

−h/2
x2

3E1(x3)
ν21

e
dx3,

C22 =
∫ h/2

−h/2
x2

3E2(x3)
ν12

e
dx3,

Cα = κ
∫ h/2

−h/2
Gα3(x3)dx3.

Similarly substituting Eqs. (22) and (23) into the
force resultants (25) one obtains the expression of
the normal forces Nαβ (α , β =1, 2) in terms of
the deflection and the lateral displacements of the
orthotropic shell

⎡
⎣N11

N22

N12

⎤
⎦ = P

⎡
⎣ u1,1

u2,2

u1,2 +u2,1

⎤
⎦+

⎡
⎣Q11

Q22

0

⎤
⎦w3 −

⎡
⎣θ11

θ22

0

⎤
⎦ ,

(28)

where

θαβ =
∫ h/2

−h/2
γαβ θ (x,x3, t)dx3,

P =

⎡
⎣ E∗

1/e E∗
1 ν12/e 0

E∗
2ν12/e E∗

2/e 0
0 0 G∗

12

⎤
⎦ ,

⎡
⎣Q11

Q22

0

⎤
⎦ =

⎡
⎣(k11 +k22ν12)E∗

1/e
(k11ν12 +k22)E∗

2/e
0

⎤
⎦ ,

(29)

E∗
α ≡

∫ h
2

− h
2

Eα(x3)dx3 =

⎧⎪⎨
⎪⎩

Eαt = Eαb, n = 0
Eαb+Eαt

2 , n = 1
2Eαb+Eαt

3 , n = 2

,
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G∗
12 ≡

∫ h
2

− h
2

G12(x3)dx3 =

⎧⎪⎨
⎪⎩

G12t = G12b, n = 0
G12b+G12t

2 , n = 1
2G12b+G12t

3 , n = 2

.

Using the Reissner’s linear theory of shallow
shells [Reissner (1946)], the quasi-static form of
the equations of motion may be written as

Mαβ ,β (x, t)−Qα(x, t) = 0,

Qα ,α(x, t)−kαβNαβ (x, t) = 0,

Nαβ ,β (x, t) = 0, x ∈ S. (30)

Thermal changes in solids are relatively slow with
respect to elastic wave velocity. Therefore, iner-
tial terms are not considered in governing equa-
tions. Moreover, mechanical loads are considered
to be vanishing too. The problem of a shell under
a mechanical load has been analyzed recently by
authors [Sladek et al. (2008a)].

The MLPG method constructs the weak-form
over local subdomains Ss∫
Ωi

s

[
Mαβ ,β (x, t)−Qα(x, t)

]
w∗

αγ (x)dΩ = 0, (31)

∫
Ωi

s

[
Qα ,α(x, t)−kαβ Nαβ (x, t)

]
w∗

3(x)dΩ = 0,

(32)∫
Ωi

s

[
Nαβ ,β (x, t)

]
u∗αγ(x)dΩ = 0. (33)

Applying the Gauss divergence theorem to local
weak forms and choosing the test functions as a
unit step function with support in the current sub-
domain

w∗
αγ (x) =

{
δαγ , at x ∈ (Ss ∪∂Ss)
0, at x /∈ (Ss ∪∂Ss)

,

w∗(x) =

{
1, at x ∈ (Ss ∪∂Ss)
0, at x /∈ (Ss ∪∂Ss)

one obtains local boundary-domain integral equa-
tions∫

∂Si
s

Mα(x, t)dΓ−
∫
Si

s

Qα(x, t)dΩ = 0 (34)

∫
∂Si

s

Qα(x, t)nα(x)dΓ−
∫
Si

s

kαβ (x)Nαβ(x, t)dΩ = 0

(35)∫
∂Si

s

Tα(x, t)dΓ = 0. (36)

where

Tα(x, t) = Nαβ (x, t)nβ(x). (37)

According to Sect.2, one can write the approxi-
mation formula for the generalized displacements
(two rotations and deflection) as

wh(x, t) = ΦT (x) · ŵ(t) =
n

∑
a=1

φ a(x)ŵa(t), (38)

Substituting the approximation (38) into the defi-
nition of the normal bending (26), one obtains for
M(x, t) = [M1(x, t), M2(x, t)]T

M(x, t) = N1

n

∑
a=1

Ba
1(x)w∗a(t)+N2

n

∑
a=1

Ba
2(x)w∗a(t)

−H(x, t)

= Nα(x)
n

∑
a=1

Ba
α (x)w∗a(t)−H(x, t),

(39)

where the vector w∗a(t) is defined as a col-
umn vector w∗a(t) = [ŵa

1(t), ŵa
2(t)]

T , the vector
H(x, t) = [H11n1,H22n2]T , the matrices Nα(x) are
related to the normal vector n(x) on ∂Ss by

N1(x) =
[

n1 0 n2

0 n2 n1

]

and

N2(x) =
[
C11 0
0 C22

][
n1 n1

n2 n2

]

and the matrices Ba
α are represented by the gradi-

ents of the shape functions as

Ba
1(x) =

⎡
⎣
⎡
⎣2D11φ a

,1
0

D12φ a
,2

⎤
⎦

⎡
⎣ 0

2D22φ a
,2

D12φ a
,1

⎤
⎦
⎤
⎦ ,

Ba
2(x) =

[
φ a

,1 0
0 φ a

,2

]
.
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The influence on the material gradation is incor-
porated in Cαβ and Dαβ defined in equation (27).

Similarly one can obtain the approximation for
the shear forces

Q(x, t) = C(x)
n

∑
a=1

[φ a(x)w∗a(t)+Fa(x)ŵa
3(t)],

(40)

where Q(x, t) = [Q1(x, t),Q2(x, t)]T and

C(x) =
[
C1(x) 0

0 C2(x)

]
, Fa(x) =

[
φ a

,1
φ a

,2

]
.

Then,

nα(x)Qα(x, t)

= Cn(x)
n

∑
a=1

[φ a(x)w∗a(t)+Fa(x)ŵa
3(t)]

with

Cn(x) =
[
n1(x)C1(x), n2(x)C2(x)

]
.

The in-plane displacements are approximated by

uh(x, t) = ΦT (x) · û(t) =
n

∑
a=1

φ a(x)ûa(t). (41)

Then, the traction vector can be expressed as

T (x, t) = N1(x)P(x)
n

∑
a=1

Ba(x)u∗a(t)

+J(x)
n

∑
a=1

φ a(x)ŵa
3(t)−Θ(x, t), (42)

where the vector u∗a(t) is defined as a col-
umn vector u∗a(t) = [ûa

1(t), ûa
2(t)]

T, Θ(x, t) =
[θ11n1, θ22n2]T , J(x) = [Q11n1, Q22n2]T ,

Ba(x) =

⎡
⎣
⎡
⎣φ a

,1
0

φ a
,2

⎤
⎦

⎡
⎣ 0

φ a
,2

φ a
,1

⎤
⎦

⎤
⎦ .

We need to approximate also

kαβ (x)Nαβ (x, t) = K(x)TP(x)
n

∑
a=1

Ba(x)u∗a(t)

+O(x)
n

∑
a=1

φ a(x)ŵa
3(t)−θ11(x)k11(x)

+ θ22(x)k22(x), (43)

where

K(x) =

⎡
⎣ k11

k22

2k12

⎤
⎦ ,

O(x) = Q11(x)k11(x)+Q22(x)k22(x).

Furthermore, in view of the MLS approximations
(39), (40) and (42) for the unknown fields in the
local boundary-domain integral equations (34) -
(36), we obtain their discretized forms as

n

∑
a=1

⎡
⎢⎣ ∫

Li
s+Γi

sw

Nα(x)Ba
α (x)dΓ−

∫
Si

s

C(x)φ a(x)dΩ

⎤
⎥⎦

w∗a(t)−
n

∑
a=1

⎡
⎢⎣∫

Si
s

C(x)Fa(x)dΩ

⎤
⎥⎦ ŵa

3(t)

=
∫

Li
s+Γi

sM

H(x, t)dΓ−
∫

Γi
sM

M̃(x, t)dΓ (44)

n

∑
a=1

⎡
⎢⎣∫

∂Si
s

Cn(x)φ a(x)dΓ

⎤
⎥⎦w∗a(t)

−K(x)TP(x)
n

∑
a=1

⎡
⎢⎣∫

Si
s

Ba(x)dΩ

⎤
⎥⎦u∗a(t)+

n

∑
a=1

⎡
⎢⎣∫

∂Si
s

Cn(x)Fa(x)dΓ−
∫
Si

s

O(x)φ a(x)dΩ

⎤
⎥⎦ ŵa

3(t)

=
∫
Si

s

[θ11(x, t)k11 +θ22(x, t)k22]dΩ (45)

n

∑
a=1

⎡
⎢⎣ ∫

Li
s+Γi

su

N1(x)P(x)Ba(x)dΓ

⎤
⎥⎦u∗a(t)

+
n

∑
a=1

⎡
⎢⎣∫

Si
s

J(x)φ a(x)dΩ

⎤
⎥⎦ ŵa

3(t)

=
∫

Li
s+Γi

sM

Θ(x, t)dΓ−
∫

Γi
sP

T̃(x, t)dΓ. (46)
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Recall that the discretized local boundary-domain
integral equations (44)-(46) are considered on the
sub-domains adjacent to the interior nodes xi as
well as to the boundary nodes on Γi

sM and Γi
sP. For

the source point xi located on the global boundary
Γ the boundary of the subdomain ∂Si

s is composed
of the interior and the boundary portions Li

s and
Γi

sM, respectively, or alternatively of Li
s and Γi

sP,
with the portions Γi

sM and Γi
sP lying on the global

boundary with prescribed bending moments or
stress vector, respectively. Equations (44) and
(46) are vector equations for the two components
of rotations and in-plane displacements, respec-
tively. Then, the set of Eqs. (44)–(46) represents
5 equations at each node for five unknown com-
ponents, namely, two rotations, one out-of-plane
deflection and two in-plane displacements.

It should be noted here that there are neither
Lagrange-multipliers nor penalty parameters in-
troduced into the local weak-forms (31) - (33) be-
cause the essential boundary conditions on Γi

sw or
Γi

su can be imposed directly by using the MLS ap-
proximations (38) and (41)

n

∑
a=1

φ a(x)ŵa(t) = w̃(xi, t) for xi ∈ Γi
sw

= Γw ∩ (Si
s ∪∂Si

s), (47)

n

∑
a=1

φ a(x)ûa(t) = ũ(xi, t) for xi ∈ Γi
su

= Γu ∩ (Si
s ∪∂Si

s), (48)

where w̃(xi, t) =
[
w̃1(xi, t), w̃2(xi, t), w̃3(xi, t)

]T

are the prescribed values of two rotations and
the deflection at the nodal point xi on the por-
tion of the global boundary, Γw, while ũ(xi, t) =[
ũ1(xi, t), ũ2(xi, t)

]T
are the prescribed values of

in-plane displacements at the nodal point xi on
the portion of the global boundary Γu. The MLS
approximation does not possess Kronecker-delta
property in the present form. If a singular weight
function were introduced into the MLS approx-
imation, the Kronecker-delta property would be
recovered [Chen and Wang (2000)]. In such a
case instead of fictitious nodal values one would
use the nodal values of the generalized displace-
ments in the approximations (38) and (41) with

assuming such nodal values being prescribed on
Γi

sw and Γi
su, respectively. For essential bound-

ary conditions only one column in the matrix form
of Eq. (47) or (48) has prescribed quantities and
other ones are zero. For a clamped shell all three
vector components (two rotations and one deflec-
tion) and two components of the in-plane dis-
placements are vanishing at the fixed edge and
only Eqs. (47) and (48) are used at the bound-
ary nodes in such a case. On the other hand, for a
simply supported shell only the third component
of the generalized displacement vector (i.e., the
deflection) is prescribed and the rotations are un-
known. Then, equations (44) and (46) together
with Eq. (47) for the third vector component are
applied for a point on the global boundary. If no
geometrical boundary conditions are prescribed
on the part of the boundary, all three local inte-
gral equations (44) - (46) are applied.

5 Numerical examples

A shallow spherical shell with a square contour
is investigated in the first example here (see Fig.
4). We consider simply supported boundary con-
ditions of the shell with a side-length a = 0.254m
and the thicknesses h/a = 0.05. On the top sur-
face of the shell a uniformly distributed temper-
ature θ = 10 is considered. The bottom sur-
face is kept at vanishing temperature. Station-
ary thermal conditions are assumed. In the first
case homogeneous and isotropic medium is con-
sidered: Young’s moduli E1 = E2 = 0.6895 ·
1010N / m2, Poisson’s ratios ν21 = ν12 = 0.3, and
the thermal expansion coefficients α11 = α22 =
1 ·10−5 deg−1. The used shear moduli correspond
to Young’s modulus E2, namely, G12 = G13 =
G23 = E2/2(1+ν12).

The convergence study of the method is not pre-
sented here, since it was done for a similar plate
problem [Sladek et al. (2008b)]. For the MLS ap-
proximation a regular node distribution with total
441 nodes is used here. The circular subdomain is
chosen as rloc = 0.4s and the radius of the support
domain for node a isra = 4rloc, where s is a dis-
tance of two neighbouring nodes. Smaller values
of the support domain lead to lower approxima-
tion accuracy, and larger values of the support do-
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Figure 4: Geometry and boundary conditions of
the square shallow spherical shell

main prolong the computational time for the eval-
uation of the shape functions. The value of the
radius of the support domain has been optimized
on numerical experiments. Nie et al (2006) de-
veloped an efficient approach to find the optimal
radius of support of radial weight functions used
in MLS approximation.

The variation of the deflection with the x1-
coordinate at x2= a/2 of the shell is presented in
Fig. 5. The deflection is normalized to the shell
thickness. The shell deflection with curvature
R/a = 10 is compared with the deflection of the
corresponding plate (i.e., curvature radius R = ∞)
. The finite curvature of the shell reduces the de-
flection as compared with the plate case. One can
observe a very good agreement of the present and
analytical results. The FEM-ANSYS results have
been obtained by using 400 quadrilateral eight-
node elements.

The variation of the bending moment M11is
shown in Fig. 6. The bending moment is nor-
malized by the central value for an isotropic plate,
Mplate

11 (a/2) = 0.4634Nm. The curvature of the
shell has an opposite tendency on the bending mo-
ments as on deflections.

The thermal forces for the shell and correspond-
ing plate are the same. However, the flexural
rigidity of the shell is higher than for the corre-
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Figure 5: Variation of the deflection with thex1-
coordinate for a simply supported isotropic square
shallow spherical shell with R/a = 10
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Figure 6: Variation of the bending moment with
the x1-coordinate for a simply supported isotropic
square shallow spherical shell with R/a = 10

sponding plate. Then, the bending moment at the
center of the shell has to be larger than the bend-
ing moment for the corresponding plate Again a
very good agreement of the present and FEM re-
sults is observed.

Next, orthotropic mechanical properties of the
shell are considered with Young’s moduli E2 =
0.6895 · 1010N / m2, E1 = 2E2, Poisson’s ratios
ν21 = 0.15, ν12 = 0.3. The variation of the de-
flection with the x1-coordinate at x2 = a/2 of the
shell is presented in Fig. 7 with the assumption of
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isotropic thermal expansion coefficients. Two dif-
ferent shell curvatures are considered here. Oppo-
site to mechanical load case [Sladek et al. 2007b]
the deflection is not reduced in the orthotropic
plate as compared with the isotropic shell. It is
due to increasing equivalent load for orthotropic
plate at the same temperature distributions in both
cases. The shell curvature has a strong influence
on the shell deflection. The increasing curvature
reduces the deflection. Numerical results obtained
by the proposed method and FEM are compared
for the shell curvature R/a = 10. It is observed
again a very good agreement.
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Figure 7: Influence of orthotropic material prop-
erties on the shell deflection

The variations of the bending moments M11 for
orthotropic shells are presented in Fig. 8. We
consider orthotropic properties for Young‘s mod-
uli, while for the thermal expansion coefficients
we assume isotropic behaviour. The bending mo-
ments are normalized by the central value for an
isotropic plate, Mplate

11 (a/2) = 0.4634Nm. One
can observe that orthotropic material properties of
mechanical coefficients have a strong influence on
the bending moment values.

Next, functionally graded material properties
through the shell thickness are considered. Both
the isotropic and orthotropic properties are as-
sumed as E1t = E2t = 0.6895 · 1010N / m2, Pois-
son’s ratios ν12 = ν21 = 0.3 in the isotropic case,
while E2t = 0.6895 · 1010N / m2, E1 = 2E2, Pois-
son’s ratios ν21 = 0.15, ν12 = 0.3 in the or-
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Figure 8: Variation of the bending moment with
the x1-coordinate for a simply supported or-
thotropic square shallow shell

thotropic case on top side of the shell. A quadratic
variation of volume fraction V defined in equation
(24) is considered here, and the Young’s mod-
uli on the bottom side are: E1b = E2b = E2t/2
in the isotropic case, and E1b/2 = E2b = E2t/2
in the orthotropic case. The variations of deflec-
tions with the x1-coordinate are given in Fig. 9a
and Fig. 9b for isotropic and orthotropic shell, re-
spectively. Since Young’s modulus on the bottom
side is considered to be smaller than on the top
one, the deflection for the FGM shell is larger than
for the homogenenous shell with material proper-
ties corresponding to the top side, E2t = 0.6895 ·
1010N / m2 Comparing Fig. 9a and Fig. 9b, one
can see that the deflection variations for isotropic
and orthotropic non-homogeneous shells are sim-
ilar. A similar phenomenon has been observed in
Fig. 7 for isotropic and orthotropic homogeneous
shells.

The variations of the bending moment M11 are
presented in Fig. 10a and Fig. 10b for isotropic
and orthotropic shells, respectively. Here, the
bending moments are normalized by the central
bending moment value corresponding to a homo-
geneous isotropic plate Mplate

11 (a/2)= 0.4634Nm.
The bending moments in homogeneous and FGM
shells are almost the same for both isotropic and
orthotropic cases. Minimal differences between
them are caused by numerical inaccuracies. How-
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Figure 9: Variation of the deflections with thex1-
coordinate for a simply supported square shal-
low shell with FGM properties a) isotropic b) or-
thotropic

ever, the bending moments are larger for an or-
thotropic shell than for isotropic one.

In the next example a thermal shock θ = H(t−0)
with Heaviside time variation is applied on the
top surface of the shallow shell. If the lateral
ends of the shell are thermally insulated, a uni-
form temperature distribution on shell surfaces is
given. The bottom surface is thermally insulated
too. The problem can be considered as 1-D in the
direction perpendicular to the basic plane of the
shell. In such a case the temperature distribution
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Figure 10: Variation of the bending moments with
the x1-coordinate for a simply supported square
shallow shell with FGM properties a) isotropic b)
orthotropic

is given by [Carslaw and Jaeger, 1959]

θ (x3, t)=1− 4
π

∞

∑
n=0

(−1)n

2n+1
exp

[
−(2n+1)2π2κt

4h2

]

cos
(2n+1)πx3

2h
, (49)

where the diffusivity coefficient κ = λ/ρc, with
thermal conductivity λ = 100W/mdeg, mass
density ρ = 7500kg/m3 and specific heat c =
400Ws/kgdeg. Isotropic material parameters and
the thermal expansion coefficients are considered.

The numerical results for the central shell de-
flection are presented in Fig. 11. Two different
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Figure 11: Time variation of the central deflection
in the shell

shell curvatures are considered here. The deflec-
tions are normalized by the central deflection cor-
responding to the stationary thermal distribution
with θ = 1deg on the top plate surface and van-
ishing temperature on the bottom surface. For ho-
mogeneous material properties the corresponding
stationary deflection is wplstat

3 = 0.4829 · 10−5m.
One can observe that in the whole time interval
deflections for both shells are lower than in a sta-
tionary case. The stiffness of the shell is higher
than for a corresponding plate. The deflection is
approaching to zero for a large time since thermal
forces are vanishing. The temperature distribution
is going to be uniform in the whole shell with in-
creasing time.

The bending moment at the center of the plate
Mplstat

11 = 0.4634Nm is used as a normalized pa-
rameter in Fig. 12. The time variations of bend-
ing moments for the shells of both curvatures are
similar. The peak value of the bending moment is
larger for larger curvature of the shell. The same
phenomenon is observed for a stationary thermal
load presented in Fig. 10.

In the last numerical example a clamped square
shallow shell is considered. The same geometrical
and material parameters as in the above analyzed
simply supported shell are considered. Also the
same nodal distribution is used in the numerical
analysis. We have considered following spatial
distribution of temperature on top surface of the
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Figure 12: Time variation of the bending moment

shell:

θ (x1,x2) = sin
πx1

a
sin

πx2

a
. (50)

The bottom side of the shell is kept at vanish-
ing temperature. A linear variation of temperature
through the shell thickness is assumed. Both vari-
ants of isotropic and orthotropic material proper-
ties are considered here.

The variations of the deflections with the x1-
coordinate are presented in Fig. 13a and Fig. 13b
for isotropic and orthotropic shells, respectively.
Both figures for isotropic and orthotropic material
properties are similar. Counterpart to a mechani-
cal load of an orthotropic shell the deflections are
independent on the ratio of Young‘s moduli in or-
thotropic material. Increasing Young‘s modulus
enlarges the thermal forces and flexural rigidity
of the shell. Both effects are mutually eliminated
in the deformation of shell.

Also functionally graded material properties
through the shell thickness are considered. The
variation of material properties for the FGM shell
is here the same as for a simply supported shell
analyzed in the previous example. Since Young’s
modulus on the bottom side is considered to be
smaller than on the top one, the deflection for the
FGM shell is larger than for the homogeneous
shell with material properties corresponding to
the top side.

The variations of the bending moments M11 are
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Figure 13: Variation of the deflection with the x1-
coordinate for a clamped square shallow shell a)
isotropic b) orthotropic

presented in Fig. 14a and Fig. 14b for isotropic
and orthotropic shells, respectively. Here, the
bending moments are normalized by the central
bending moment value corresponding to a homo-
geneous isotropic clamped plate Mplate

11 (a/2) =
0.4769Nm.

The bending moments in homogeneous and FGM
shells are almost the same for both isotropic
and orthotropic cases. Minimal differences be-
tween them are caused by numerical inaccura-
cies. Larger bending moments at the fixed part
of the orthotropic shell are caused by larger ther-
mal forces. Orthotropic mechanical properties en-
large the bending moments at both places (fixed
part and center of shell) for considered shell cur-
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Figure 14: Variation of the bending moment with
the x1-coordinate for a clamped square shallow
shell

vatures. The curvature has an opposite influence
on values of the bending moment for a clamped
than for a simply supported shell. With increasing
shell curvature the value of the bending moment
decreases for a clamped shell.

6 Conclusions

The following conclusions can be drawn from the
present study:

A meshless local Petrov-Galerkin method is ap-
plied to orthotropic shallow shells under a thermal
load. Material properties are continuously vary-
ing along the shell thickness. The behaviour of the
shell is described by the Reissner-Mindlin theory,
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which takes the shear deformation into account.

The temperature distribution in shells is deter-
mined by the heat conduction equation. The
Laplace-transform technique is applied to elim-
inate the time variable in the considered diffu-
sion equation. The MLPG method for 3-D prob-
lem is used to solve the governing equation in the
Laplace transform space.

Thermal changes in solids are relatively slow
with respect to elastic wave velocity. There-
fore, mechanical quantities are described by
quasi-static governing equation following from
Reissner-Mindlin theory with time playing the
role of monotonic parameter. The MLPG method
is applied to solve this problem. The ana-
lyzed domain is divided into small overlapping
circular subdomains. A unit step function is
used as the test function in the local weak-form.
The derived local boundary-domain integral equa-
tions are nonsingular. The Moving Least-Squares
(MLS) scheme is adopted for approximating the
physical quantities.

The main advantage of the present method is its
simplicity and generality. The use of constant test
function here is simplest choice, which makes the
formulation much simpler than the BEM formu-
lation utilizing the fundamental solution for or-
thotropic shells. Therefore, the method seems
to be promising for problems, which cannot be
solved by the conventional BEM due to unavail-
able fundamental solutions.

The proposed method can be further extended to
nonlinear problems, where meshless approxima-
tions may have certain advantages over the con-
ventional domain-type discretization approaches.
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