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Exact Large Deflection of Beams with Nonlinear Boundary Conditions

Sen Yung Lee1, Sheei Muh Lin2, Chien Shien Lee3, Shin Yi Lu3 and Yen Tse Liu3

Abstract: An analytic solution method, namely
the shifting function method, is developed to find
the exact large static deflection of a beam with
nonlinear elastic springs supports at ends for the
first time. The associated mathematic system is
a fourth order ordinary differential equation with
nonlinear boundary conditions. It is shifted and
decomposed into five linear differential equations
and at most four algebra equations. After find-
ing the roots of the algebra equations, the exact
solution of the nonlinear beam system can be re-
constructed. It is shown that the proposed method
is valid for the problem with strong nonlinearity.
Finally, examples and limiting studies are given to
illustrate the analysis.
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1 Introduction

The applications of beam structures can be widely
found in all the engineering fields. Based on the
linear theory, the studies on the static and dynamic
response of beam structures are tremendous [Tim-
oshenko (1955); Meirovitch (1967); Lee and
Hsu (2007); Lin, Lee and Lin (2008); Vinod,
Gopalakrishnan and Ganguli (2006); Lee and Kuo
(1992); Lee and Lin (1996); Huang and Shih
(2007); Andreaus, Batra and Porfiri (2005); Beda
(2003)]. When the physical properties of a beam
structure are uniform, the associated governing
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differential equation is a linear fourth-order dif-
ferential equation with constant coefficients. The
exact solution can be found in many standard text
books [Timoshenko (1955); Meirovitch (1967)].
For rotating beams [Lee and Hsu (2007); Lin,
Lee and Lin (2008); Vinod Gopalakrishnan and
Ganguli (2006)] or beams with non-uniform phys-
ical properties [Lee and Kuo (1992); Lee and
Lin (1996)], the associated governing differential
equation is a linear fourth-order differential equa-
tion with variable coefficients. Some of the exact
solutions for the beams can be found in the works
done by Lee and Hsu (2007), Lin, Lee and Lin
(2008), Lee and Kuo (1992), Lee and Lin (1996).
In addition, various kinds of numerical methods
were employed to study the problems.

In the non-linear analysis, Emam and Nayfeh
(2004), and Saffari, Rahgozar and Tabatabaei
(2007) studied the beam problems with geome-
try nonlinearity. Monasa and Lewis (1983) stud-
ied the beam problems with material nonlinear-
ity. The problems for a beam resting on nonlinear
elastic foundation were examined by Kuo and Lee
(1994) and Coskun (2000). Ma and Silva (2004),
Turner (2004), Wolf and Gottlieb (2001), Fung
and Huang (2001) and Kuang and Chen (2005)
investigated the response of a beam with nonlin-
ear elastic boundary conditions.

It is well known that, in general, the exact so-
lutions for the nonlinear beam problems are not
available. The problems were mainly solved by
approximated methods such as: the perturbation
method [Monasa and Lewis (1983); Kuo and Lee
(1994); Wolf and Gottlieb (2001)], the iterative
method [Ma and Silva (2004)], the Galerkin’s
method [Emam and Nayfeh (2004); Cao and
Zhang (2005); Lee and Soh (1994)], the finite ele-
ment method [Saffari, Rahgozar and Tabatabaei
(2007); Fung and Huang (2001)] and the Ado-
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mian decomposition method [Kuang and Chen
(2005)]. One exact static deflection solution for a
beam with particularly designed nonlinear bound-
ary conditions was found in the paper by Ma and
Silva (2004).

From the existing literature, it can be found that a
systematic analytical method to find the exact so-
lutions for the deflection of a beam with various
types nonlinear elastic boundary conditions still
is not available. In this paper, a systematic ana-
lytical method which is an extension of the shift-
ing function method developed by Lee and Lin
(1996) is developed to find the exact large deflec-
tion solutions for beams with nonlinear elastically
restrained end supports. The associated nonlinear
mathematic system is changed and decomposed
into five linear differential equations and four al-
gebra equations. After finding the roots of the al-
gebra equations, the exact solution of the nonlin-
ear beam system can be reconstructed. The pro-
posed method is valid for the problem with strong
nonlinearity. Finally, examples and limiting stud-
ies are given to illustrate the method.

2 Mathematical Modeling of the Beam Sys-
tem

Consider the static deflection of a uniform
Bernoulli-Euler beam resting on linear elastic
foundation with nonlinear elastic boundary con-
ditions, as shown in Figure 1.

Figure 1: Geometry and coordinate system of a
uniform beam with non-linear elastic boundary
conditions

In terms of the following non-dimensional quan-
tities,

ξ =
x
L

, W (ξ ) =
y(x)

L
, Q(x) =

q(x)L3

EI
,

β1 =
KθLL

EI
, β2 =

KTLL3

EI
, β3 =

KθRL
EI

,

β4 =
KT RL3

EI
, K =

kL4

EI
, γ1 =

KNθLL
EI

,

(1)

γ2 =
KNT LL5

EI
, γ3 =

KNθRL
EI

, γ4 =
KNT RL5

EI
,

the governing differential equation of the system
is

d4W(ξ )
dξ 4 +KW(ξ ) = Q(ξ ) , ξ ∈ (0,1) , (2)

and the associated boundary conditions are at ξ =
0:

d2W
dξ 2 −β1

dW
dξ

− γ1

(
dW
dξ

)3

= 0, (3)

d3W
dξ 3 +β2W + γ2W 3 = 0, (4)

at ξ = 1:

d2W
dξ 2 +β3

dW
dξ

+ γ3

(
dW
dξ

)3

= 0, (5)

d3W
dξ 3 −β4W − γ4W 3 = 0. (6)

Here, y(x) is the flexural displacement, x is the
space variable along the beam, EI is the flexu-
ral rigidity, k is the elastic foundation modulus,
and q(x) is the applied transverse force per unit
length. KT L, KθL, KT R and KθR are the linear
translational spring constants and the linear rota-
tional spring constants at the left end and the right
end of the beam, respectively. KNT L, KNθL, KNT R

and KNθR are the nonlinear translational spring
constants and the nonlinear rotational spring con-
stants at the left end and the right end of the beam,
respectively.
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3 The Shifting Function Method

3.1 Change of variable

To find the solution for the fourth order differen-
tial equation with nonlinear elastic boundary con-
ditions, one employs the shifting variable method
developed by Lee and Lin (1996) by taking

W(ξ ) = V(ξ )+
4

∑
i=1

f igi(ξ ), (7)

where

f 1 = −γ1

(
dW (0)

dξ

)3

, (8)

f 2 = −γ2 (W(0))3 , (9)

f 3 = −γ3

(
dW (1)

dξ

)3

, (10)

f 4 = −γ4 (W(1))3 , (11)

and gi(ξ ), i =1, 2, 3, 4 are the shifting functions
to be specified, V (ξ ) is the transformed function.

Substituting equations (7-11) into equations (2-6),
one has the differential equation for V (ξ )

d4V(ξ )
dξ 4

+KV(ξ ) = Q(ξ )

−
4

∑
i=1

f i

{
d4gi (ξ )

dξ 4 +Kgi(ξ )
}

, ξ ∈ (0, 1)

(12)

and the associated boundary conditions at ξ = 0:

(
d2V
dξ 2 −β1

dV
dξ

)
=

− f 1 −
4

∑
i=1

f i

[(
d2gi

dξ 2 −β1
dgi

dξ

)]
, (13)

(
d3V
dξ 3 +β2V

)
=

f 2 −
4

∑
i=1

f i

[(
d3gi

dξ 3 +β2gi

)]
, (14)

at ξ = 1:

(
d2V
dξ 2

+β3
dV
dξ

)
=

f 3 −
4

∑
i=1

f i

[(
d2gi

dξ 2 +β3
dgi

dξ

)]
, (15)

(
d3V
dξ 3 −β4V

)
=

− f 4 −
4

∑
i=1

f i

[(
d3gi

dξ 3 −β4gi

)]
. (16)

3.2 Shifting Functions

If the shifting functions gi(ξ ), i =1, 2, 3, 4 in equa-
tion (7) are chosen to satisfy the differential equa-
tion

d4gi(ξ )
dξ 4 +kgi(ξ ) = 0, (17)

and the following boundary conditions

−
(

d2gi

dξ 2 −β1
dgi

dξ

)∣∣∣∣
ξ=0

= δi j, j = 1, (18)

(
d3gi

dξ 3 +β2gi

)∣∣∣∣
ξ=0

= δi j, j = 2, (19)

(
d2gi

dξ 2 +β3
dgi

dξ

)∣∣∣∣
ξ=1

= δi j, j = 3, (20)

−
(

d3gi

dξ 3 −β4gi

)∣∣∣∣
ξ=1

= δi j, j = 4, (21)

where δi j is a Kronecker symbol, then the differ-
ential equation (12) and the associated boundary
conditions (13 -16) can be reduced to

d4V(ξ )
dξ 4 +KV(ξ ) = Q(ξ ) , (22)

at ξ = 0:

(
d2V
dξ 2 −β1

dV
dξ

)
= 0,

1
1+β2

(
∂ 3V
∂ξ 3 +n

∂V
∂ξ

+β2V

)
=

f 2 − f i

[
1

1+β2

(
∂ 3g
∂ξ 3 +n

∂g
∂ξ

+β2g

)]
(23)
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(
d3V
dξ 3

+β2V

)
= 0, (24)

at ξ = 1:
(

d2V
dξ 2 +β3

dV
dξ

)
= 0, (25)

(
d3V
dξ 3 −β4V

)
= 0. (26)

Hence, the associated mathematic system is
changed and decomposed into five linear differ-
ential equations and the associated linear bound-
ary conditions. The exact solution form for the
transformed function V(ξ ) can be found the paper
by Lee and Kuo (1992) and the shifting functions
gi(ξ ), i =1, 2, 3, 4 are given in the Appendix A.

Once the transformed function V(ξ ) and the shift-
ing functions gi(ξ ), i = 1, 2, 3, 4 are determined,
one substitutes these functions into equation (7).
It leads to

W(ξ ) = V(ξ )− γ1

(
dW(0)

dξ

)3

g1(ξ )

− γ2 (W(0))3 g2(ξ )

− γ3

(
dW (1)

dξ

)3

g3(ξ )− γ4 (W(1))3 g4(ξ ),

(27)

where dW(0)
dξ , W(0), dW (1)

dξ , W(1) are four con-
stants to be determined.

Differentiating equation (27) once and letting ξ =
0 and ξ = 1, respectively, one has the following
algebra equations

dW(0)
dξ

=
dV(0)

dξ
− γ1S3 dg1(0)

dξ
− γ2Y 3 dg2(0)

dξ

− γ3Z3 dg3(0)
dξ

− γ4U3 dg4(0)
dξ

,

(28)

W(0) = V(0)− γ1S3g1(0)− γ2Y
3g2(0)

− γ3Z3g3(0)− γ4U
3g4(0),

(29)

dW(1)
dξ

=
dV(1)

dξ
− γ1S3 dg1(1)

dξ
− γ2Y 3 dg2(1)

dξ

− γ3Z3 dg3(1)
dξ

− γ4U3 dg4(1)
dξ

,

(30)

W(1) = V(1)− γ1S3g1(1)− γ2Y 3g2(1)

− γ3Z3g3(1)− γ4U
3g4(1).

(31)

After finding the roots of the four algebra equa-
tions (28 - 31), the exact solution of the nonlinear
beam system can be reconstructed from equation
(27).

From equations (7-11, 22-26, 27), it can be ob-
served that total solution is the superposition of
the linear and the nonlinear parts of the solution.
The transformed function V(ξ ) is corresponding
to the solution of the associated linear system.
The rest of terms in equation (7) are contributed
from the nonlinear parts of the boundary condi-
tions.

From equations (17-21), one can find that the
shifting functions gi(ξ ), i = 1, 2, 3, 4 takes the
physical meanings as the non-dimensional static
deflection of a general elastically restrained beam
subjected to a unit non-dimensional moment and
a unit non-dimensional slope of the base at the
left end, a unit non-dimensional shear force and a
unit non-dimensional displacement of the base at
the left end, a unit non-dimensional moment and a
unit non-dimensional slope of the base at the right
end, a unit non-dimensional shear force and a unit
non-dimensional displacement of the base at the
right end, respectively.

4 Verification and Examples

To verify the previous analysis, the following ex-
amples and limiting studies are illustrated.

Example 1: Consider the beam problem dis-
cussed by Ma and Silva (2004). The governing
differential equation is

d4W(ξ )
dξ 4 = 72ξ 2 − 2784

61
ξ − 48

61
, (32)

and the boundary conditions are at ξ = 0:

dW
dξ

= 0, W = 0, (33)

at ξ = 1:

d2W
dξ 2 = 0,

d3W
dξ 3 =

24sinW

61sin
(

48
61

) . (34)
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It can be found that one of the boundary condition
at ξ = 1 is nonlinear and specially designed.

To find the solution, one lets

W(ξ ) = V(ξ )+ f 4g4 (ξ ) , (35)

where

f 4 = −24sinW(1)
61sin

(
48
61

) . (36)

Here g4(ξ ) is the shifting function to be specified
and V (ξ ) is the transformed function which satis-
fies the differential equation

d4V(ξ )
dξ 4 = 72ξ 2 − 2784

61
ξ − 48

61
, (37)

and the homogeneous boundary conditions at ξ =
0:

dV
dξ

= 0, V = 0,

1
1+β2

(
∂ 3V
∂ξ 3 +n

∂V
∂ξ

+β2V

)
=

f 2 − f i

[
1

1+β2

(
∂ 3g
∂ξ 3 +n

∂g
∂ξ

+β2g

)]
(38)

at ξ = 1:

d2V
dξ 2 = 0,

d3V
dξ 3 = 0. (39)

The transformed function V(ξ ) is determined as

V(ξ ) =
73
61

ξ 2 − 4
61

ξ 3 − 2
61

ξ 4 − 116
305

ξ 5 +
1
5

ξ 6.

(40)

The shifting function g4(ξ ) satisfies the follow-
ing differential equation and the homogeneous
boundary conditions:

d4g4(ξ )
dξ 4 = 0, (41)

at ξ = 0:

dg4

dξ
= 0, g4 = 0, (42)

at ξ = 1:

d2g4

dξ 2 = 0,
d3g4

dξ 3 = 1. (43)

It can be found that this shifting function g4(ξ ) is

g4(ξ ) =
1
2

ξ 2 − 1
6

ξ 3. (44)

Substituting the transformed functionV (ξ ), equa-
tion (40), and the shifting function g4(ξ ), equa-
tion (44), back into equation (35), one has

W(ξ ) =
73
61

ξ 2 − 4
61

ξ 3 − 2
61

ξ 4 − 116
306

ξ 5 +
1
5

ξ 6

− 24sinW(1)
61sin

(
48
61

)
(

1
2

ξ 2 − 1
6

ξ 3
)

, (45)

Setting ξ = 1 in equation (45) and solving the al-
gebra equation, one obtains W (1) = 48/61. As a
result,

W(ξ ) =
1
5

ξ 6 − 116
306

ξ 5 − 2
61

ξ 4 +ξ 2. (46)

The solution is exactly the same as the one given
by Ma and Silva (2004).

Example 2: Consider the deflection of a beam
subjected to uniform distributed load C. The beam
is clamped at the left end and is nonlinear transla-
tional spring supported at the other end.

The governing differential equation and the
boundary conditions are:

d4W(ξ )
dξ 4 = C, (47)

at ξ = 0:

dW
dξ

= 0, W = 0,

1
1+β2

(
∂ 3V
∂ξ 3 +n

∂V
∂ξ

+β2V

)
=

f 2 − f i

[
1

1+β2

(
∂ 3g
∂ξ 3 +n

∂g
∂ξ

+β2g

)]
(48)

at ξ = 1:

d2W(ξ )
dξ 2 = 0,

d3W (ξ )
dξ 3 −k1W(ξ )−k2W 3(ξ ) = 0.
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(49)

One lets

W(ξ ) = V(ξ )+ f 4g4 (ξ ) , (50)

where

f 4 = k2W 3(1). (51)

Following the procedures revealed in the last sec-
tion, one has

V(ξ ) =
(

k1 +12
16k1 +48

)
Cξ 2 −

(
5k1 +24

48k1 +144

)
Cξ 3

+
1
24

Cξ 4, (52)

and

g4(ξ ) = − 3
2k1 +6

ξ 2 +
1

2k1 +6
ξ 3. (53)

After substituting the two functions above back to
equation (50), one has

W(ξ ) =
(

k1 +12
16k1 +48

)
Cξ 2 −

(
5k1 +24

48k1 +144

)
Cξ 3

+
1
24

Cξ 4

+k2W 3(1)
(
− 3

2k1 +6
ξ 2 +

1
2k1 +6

ξ 3
)

.

(54)

Setting ξ = 1 in the equation (54), one has

48k2W
3(1)+(48k1 +144)W(1) = 18C. (55)

Using the Cardano formula, one obtains

W(1) =
q

(3)1/3
(

81Cp2 +
√

3
√

2187C2p4 + p3q3
)1/3

+

(
81Cp2 +

√
3
√

2187C2p4 + p3q3
)1/3

(3)2/3 p

,

(56)

where p = 48k2, q = 48k1 + 144, k2 �= 0. After
substituting it back to equation (54), one obtains
the exact solution of the problem.

When k1 = 0, equation (54) is reduced to

W(ξ ) =
1
4

Cξ 2 − 1
6

Cξ 3 +
1

24
Cξ 4

+k2W 3(1)
(
−1

2
ξ 2 +

1
6

ξ 3
)

, (57)

where

W(1) =
2(2)1/3

(
−3Ck2

2 +
√

256k3
2 +9C2k4

2

)1/3

−

(
−3Ck2

2 +
√

256k3
2 +9C2k4

2

)1/3

2(2)1/3 k2

.

(58)

When k2 = 0, the system turns to be a linear prob-
lem. Equation (54) is reduced to

W(ξ ) =
(

k1 +12
16k1 +48

)
Cξ 2 −

(
5k1 +24

48k1 +144

)
Cξ 3

+
1
24

Cξ 4. (59)

When k1 = 0 and k2 = 0, equation (58) is further
reduced to

W(ξ ) =
1
4

Cξ 2 − 1
6

Cξ 3 +
1

24
Cξ 4. (60)

It is the exact static deflection of a cantilevered
beam subjected to uniformly distributed load C.

Example 3: Consider the deflection of a beam
subjected to uniformly distributed load C with
clamped one end and nonlinear rotational spring
support at the other end. The governing differen-
tial equation is

d4W(ξ )
dξ 4 = C, (61)

and the boundary conditions are: at ξ = 0:

dW
dξ

= 0, W = 0,

1
1+β2

(
∂ 3V
∂ξ 3 +n

∂V
∂ξ

+β2V

)
=
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f 2 − f i

[
1

1+β2

(
∂ 3g
∂ξ 3

+n
∂g
∂ξ

+β2g

)]
(62)

at ξ = 1:

d2W(ξ )
dξ 2 −k1

dW (ξ )
dξ

−k2

(
dW(ξ )

dξ

)3

= 0, (63)

d3W(ξ )
dξ 3 = 0,

One lets

W(ξ ) = V(ξ )+ f 3g3 (ξ ) , (64)

where

f 3 = k2

(
dW(1)

dξ

)3

. (65)

Following the procedures revealed in the last sec-
tion, one has

V(ξ ) =
(

2k1 −3
12k1−12

)
Cξ 2 − 1

6
Cξ 3 +

1
24

Cξ 4,

(66)

and

g3(ξ ) =
1

2−2k1
ξ 2. (67)

After substituting the two functions above back to
equation (64), one has

W(ξ ) =
(

2k1 −3
12k1−12

)
Cξ 2 − 1

6
Cξ 3 +

1
24

Cξ 4

+k2

(
dW(1)

dξ

)3 (
1

2−2k1
ξ 2

)
.

(68)

Differentiating equation (68) once and setting ξ =
1 in the equation, one has

k2

(
dW (1)

dξ

)3

+(k1 −1)
dW(1)

dξ
= −1

6
C. (69)

Using the Cardano formula, one obtains

dW(1)
dξ

= −
[
21/36(−1+k1)

]/[(
−972Pk2

2+

√
5038848(−1+k1)

3 k3
2 +944784P2k4

2

)1/3]

+
[(

−972Pk2
2+

√
5038848(−1+k1)

3 k3
2 +944784P2k4

2

)1/3]
/[

21/318k2

]
, (70)

where k2 �= 0. After substituting it back to equa-
tion (68), one obtains the exact solution of the
problem.

When k2 = 0, the system turns to be a linear prob-
lem. Equation (68) is reduced to

W(ξ ) =
(

2k1 −3
12k1−12

)
Cξ 2 − 1

6
Cξ 3 +

1
24

Cξ 4.

(71)

Following the same procedures, one can easily
develop the deflection of a nonlinear spring sup-
ported beam subjected to various kinds of loads.
The nonlinear deflection of a beam subjected to
two concentrated loads with clamped one end and
nonlinear translational spring support at the other
end is given in the Appendix B.

5 Conclusions

In this paper, an analytic solution method, namely
the shifting function method, is developed to find
the exact large deflection of a beam structure with
nonlinear elastic springs supports at ends for the
first time. It is shown that the method can be
applied to a wide class of problems with nonlin-
ear boundary conditions. The proposed method is
also valid for the problem with strong nonlinear-
ity. It will be interesting to extend the proposed
solution method to study the large deflection of
a nonlinear Timoshenko beam, the dynamic re-
sponse of nonlinear beams and the nonlinear re-
sponse of non-homogeneous beams.
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Appendix A: The shifting functions gi(ξ )

The four shifting functions are

gi(ξ ) = Ci,1G1(ξ )+Ci,2G2 (ξ )+Ci,3G3(ξ )
+Ci,4G4 (ξ ) , i = 1,2,3,4 (A1)

where Ci,1, Ci,2, Ci,3 and Ci,4 are constants to be
determined and the four fundamental solutions of
differential equation (17), G j(ξ ), j= 1,2 3, 4 are

G1 =
1
2

[coshαx+cosαx] , (A2)

G2 =
1

2α
[sinhαx+ sinαx] , (A3)

G3 =
1

2α2 [coshαx−cosαx] , (A4)

G4 =
1

2α3 [sinhαx− sinαx] . (A5)

Here, α is a complex number and is any one of
the four roots of

α4 = − K
EI

. (A6)

These four fundamental solutions satisfy the fol-
lowing normalization condition at the origin of
the coordinate system

⎡
⎢⎢⎣

G1(0) G2(0) G3(0) G4(0)
G′

1(0) G′
2(0) G′

3(0) G′
4(0)

G′′
1(0) G′′

2(0) G′′
3(0) G′′

4(0)
G′′′

1 (0) G′′′
2 (0) G′′′

3 (0) G′′′
4 (0)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (A7)

where primes indicate differentiation with respect
to ξ ., When K = 0, the four fundamental solutions
are reduced to

G1 = 1, (A8)

G2 = x, (A9)

G3 =
x2

2
, (A10)

G4 =
x3

6
. (A11)

After substituting gi(ξ ) into the boundary condi-
tions (18-21), the constants Ci,1, Ci,2, Ci,3 and Ci,4

for the general case are given as:

C1,1 = [(R2T3−R3T2)]/Q,

C1,2 = [−β2 (R3T4−R4T3)− (R1T3 −R3T1)]/Q,

C1,3 = [β2 (R2T4 −R4T2)+(R1T2 −R2T1)]/Q,

C1,4 = [−β2 (R2T3−R3T2)]/Q,

C2,1 = − [β1 (R3T4−R4T3)+(R2T4 −R4T2)]/Q,

C2,2 = (R1T4 −R4T1)/Q,

C2,3 = β1 (R1T4 −R4T1)/Q,

C2,4 = − [β1 (R1T3−R3T1)+(R1T2 −R2T1)]/Q,

C3,1 = −T2/Q, C3,2 = −(β2T4 −T1)/Q,

C3,3 = −β1 (β2T4 −T1)/Q,

C3,4 = [β1β2T3 +β2T2]/Q,

C4,1 = [β1R3 +R2]/Q, C4,2 = (β2R4 −R1)/Q,

C4,3 = β1 (β2R4 −R1)/Q,

C4,4 = − [β1β2R3 +β2R2]/Q,

Q = β1 [−β2 (R3T4 −R4T3)− (R1T3 −R3T1)]
+[−β2 (R2T4 −R4T2)− (R1T2 −R2T1)] ,

Ri = β3G′
i(1)+G′′

i (1),

Ti = β4Gi(1)−G′′′
i (1), i = 1,2,3,4

Appendix B: Nonlinear deflection of a beam
subjected to two concentrated loads with
clamped one end and nonlinear translational
spring support at the other end

The governing differential equation for the static
deflection of a beam subjected to two concen-
trated loads with clamped one end and nonlinear
translational spring support at the other end is

d4W(ξ )
dξ 4 = −Raδ (ξ −a)−Rbδ (ξ −b) ,

0 < a < b < 1, (B1)

where δ (ξ ) is the delta function. The boundary
conditions are: at ξ = 0:

dW
dξ

= 0, W = 0,



36 Copyright c© 2008 Tech Science Press CMES, vol.30, no.1, pp.27-36, 2008

1
1+β2

(
∂ 3V
∂ξ 3

+n
∂V
∂ξ

+β2V

)
=

f 2 − f i

[
1

1+β2

(
∂ 3g
∂ξ 3 +n

∂g
∂ξ

+β2g

)]
(B2)

at ξ = 1:

d2W(ξ )
dξ 2 = 0,

d3W (ξ )
dξ 3 −k2W 3(ξ ) = 0. (B3)

Following the procedures as revealed in Example
2, the exact static deflection of the system is

W(ξ ) = −(aRa +bRb)
2

ξ 2 +
Ra +Rb

6
ξ 3

−Ra
(ξ −a)3

6
u(ξ −a)

−Rb
(ξ −b)3

6
u(ξ −b)

+k2W 3(1)
(
−1

2
ξ 2 +

1
6

ξ 3
)

,

(B4)

where u(ξ ) is the Heaviside function. Setting ξ
= 1 in the equation (B4), and solving the algebra
equation, one obtains

W(1) = −
(

2
3

)1/3

(
k2

2q+
√

4k3
2 +k4

2q2

)1/3

+

(
k2

2q+
√

4k3
2 +k4

2q2

)1/3

(2)1/3 k2

(k2 �= 0) . (B5)

Here,

q =
a2Ra

2
(a−3)+

b2Rb

2
(b−3) . (B6)

When k2 = 0, equation (B4) is reduced

W(ξ ) = −(aRa +bRb)
2

ξ 2 +
Ra +Rb

6
ξ 3

−Ra
(ξ −a)3

6
u(ξ −a)

−Rb
(ξ −b)3

6
u(ξ −b) .

(B7)

It is the exact solution of the linear problem.


