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Stabilized Meshless Local Petrov-Galerkin (MLPG) Method for
Incompressible Viscous Fluid Flows

M. Haji Mohammadi1

Abstract: In this paper, the truly Meshless Lo-
cal Petrov-Galerkin (MLPG) method is extended
for computation of steady incompressible flows,
governed by the Navier–Stokes equations (NSE),
in vorticity-stream function formulation. The
present method is a truly meshless method based
on only a number of randomly located nodes. The
formulation is based on two equations including
stream function Poisson equation and vorticity
advection-dispersion-reaction equation (ADRE).
The meshless method is based on a local weighted
residual method with the Heaviside step func-
tion and quartic spline as the test functions re-
spectively over a local subdomain. Radial ba-
sis functions (RBF) interpolation is employed
in shape function and its derivatives construc-
tion for evaluating the local weak form integrals.
Due to satisfaction of kronecker delta property in
RBF interpolation, no special technique is em-
ployed to enforce the essential boundary condi-
tions. In order to overcome instability and nu-
merical errors (numerical dispersion) encounter-
ing in convection dominant flows, a new up-
winding scheme is introduced and used to sta-
bilize the convection operator in the streamline
direction (as is done in SUPG). In this upwind-
ing technique, instead of moving subdomains,
the weight function is shifted in the direction of
flow. Efficiency and accuracy of the new sta-
bilization technique are investigated by a prob-
lem and compared with other stabilization tech-
niques. In order to obtain the optimum parame-
ters, Shape parameters of Multiquadric-RBF for
both poisson and convection-diffusion equations
are tuned and studied. Effects of subdomain (in-
tegration domain) and support domain sizes are
also studied. The efficiency, accuracy and robust-
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ness of the modified MLPG are demonstrated by
a well-known benchmark test problem including
the standard lid driven cavity flow.

Keyword: Meshless local Petrov-Galerkin, Ra-
dial basis function, Multiquadrics, Upwind
scheme, Vorticity-stream function

1 Introduction

The mostly used numerical methods consisting
FEM, FDM, FVM and BEM have been utilized
in two recent decades in computational mechan-
ics. Among them, the finite element method
(FEM) has been established as a very powerful
numerical technique for the analysis of bound-
ary value problems having arbitrary shapes. But
it also has some drawbacks. It is an element-
based method. In problems with need of remesh-
ing, including time dependent problems, prob-
lems with moving boundaries and high gradi-
ents, it has been observed that mesh generation
is a far more time-consuming and computation-
ally expensive task than the assembly and solu-
tion of the system equations. Moreover, there
are certain classes of problems, like problems
with discontinuities and large deformations, for
which FEM is difficult or even impossible to ap-
ply. These drawbacks made the researchers to
introduce and develop a class of new methods,
known as meshless methods. They may have dif-
ferent theory and background but they all have
one property in common: They are node-based
methods. This important feature is making these
methods more popular. Domain and its bound-
aries are represented by some randomly scattered
nodes (or particles). Unlike FEM, no connectiv-
ity among nodes is required which leads to flex-
ibility in removing or adding nodes. Meshless
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methods are usually categorized in two groups:
strong form based and weak form based meth-
ods. In the strong form methods the equilibrium
equations are satisfied on each node (or particle)
like smooth particle hydrodynamics (SPH), which
were first applied for astrophysics problems by
Gingold and Monaghan (1977), and finite point
method (FPM), applied for fluid flow by Onate,
Idelsohn, Zienkowicz and Taylor (1996). In the
weak form methods the equations are satisfied
on the global domain in an integral sense. Var-
ious meshless methods belonging to this family
are diffuse element method (DEM), first intro-
duced by Nayroles, Touzot, and Villon (1992),
reproducing kernel particle method [see Liu, Jun
and Zhang (1995)], element-free Galerkin (EFG)
method by Belytschko, Lu and Gu (1994) which
is considered as extension of DEM method, the
partition of unity method (POU) by Babuska and
Melenk (1997), extended finite element method
(XFEM) by Daux, Mose, Dolbow, Sukumar and
Belytschko (2000), and natural element method
and so on. Global weak form (GWF) meth-
ods are not "truly meshless" methods as long as
they require a virtual mesh called background cell
for computation of integrals over the global do-
main in the system stiffness matrix. Recently a
group of meshless methods based on local weak
form (LWF) of equations are introduced and de-
veloped. These methods include meshless local
Petrov-Galerkin (MLPG), which were first intro-
duced and utilized by Atluri and his colleagues
[see Atluri and Zhu (1998), Atluri and Zhu (2000)
and Atluri and Shen (2002)], local boundary inte-
gral equation (LBIE) by Zhu, Zhang and Atluri
(1998) [also see Vavourakis, Sellountos and Poly-
zos (2006)] and method of finite spheres by De
and Bathe (2000).

These methods are "truly meshless" because they
don’t need any "element" or "mesh" for ei-
ther field interpolation or background integration.
Equilibrium in these methods is satisfied in a lo-
cal sense on subdomains or integration domains.
These local domains can be as simple as circles
or rectangles in two-dimension and ellipsoid or
sphere in 3-D domains and can also have differ-
ent sizes which lead to flexibility in dealing with

non-linear problems.

In the MLPG method some form of Petrov-
Galerkin formulation of equations is utilized
which means that functions from different spaces
for trial and test function are deliberately adopted.
Trial function approximation is usually performed
by moving least squares (MLS), partition of unity
and radial basis functions (RBF). Unlike MLS,
employing RBF needs no special effort to enforce
essential boundary conditions. The test functions
are employed in a manner to most simplify the
stiffness matrix components.

Remarkable success in MLPG method and its ap-
plication in computational mechanics have been
reported. Considerable efforts have been made
to use the MLPG method to solve problems in
the solid mechanics field [see Long and Atluri
(2002), Xiao (2004), Atluri, Liu and Han (2006)
and Jarak, Sori’c and Hoster (2007)] while few
articles are involved in computational fluid dy-
namics (CFD). The first paper on MLPG in CFD
was written by Lin and Atluri (2001) in which
stokes flow and cavity problem were studied by
MLPG with moving least squares approxima-
tion. In their work, two upwinding schemes
(USI, USII) were introduced and applied into
the MLPG method. The governing equations
were based on the primitive variables formula-
tion and to satisfy the Babuska-Brezzi conditions,
they added a perturbation term to continuity equa-
tion and found that determining stability parame-
ter β is difficult. They considered the problem
to Re=400. In addition, their computations val-
idated the MLPG method only with uniformly
distributed nodes. Due to dissatisfaction of kro-
necker property in MLS, the boundary condi-
tions of Dirichlet type were imposed by trans-
formation method. The other work was done by
Wu, Liu and Gu (2005). They employed MLPG
method with MLS approximation to solve flow in
concentric annulus but no stabilization technique
was used. Arefmanesh, Najafi and Abdi (2008)
solved the N-S equations with energy equation for
non-isothermal fluid flow. They considered the
lid driven cavity flow and flow over an obstacle
as their problem with standard upwinding tech-
nique. Sladek, J.; Sladek, V. and Atluri (2004)
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applied MLPG method to solve the heat conduc-
tion problem in an anisotropic medium. In their
work, Heaviside step function together with mov-
ing least squares (MLS) method has been em-
ployed to obtain the discretized form of equations.

In a recent work by Wu, Shen and Tao (2007),
MLPG was applied to two dimensional heat con-
duction problems. They utilized the Dirac’s Delta
function as the test function in their formulation
and compare their results with that of a commer-
cial CFD package.

Ma (2005a) extended the MLPG method to simu-
lating nonlinear water waves and produced some
encouraging results. In that paper, the simple
Heaviside step function was adopted as the test
function to formulate the weak form over lo-
cal sub-domains, resulting in equations in terms
of pressure gradient. The formulation is based
on general fluid governing equations and a time
marching procedure. At each time step, the
boundary value problem for the pressure is solved
using the MLPG method and the velocity and po-
sition of nodes are updated by numerical integra-
tion.

Ma (2005b) employed the MLPG method based
on Rankine source solution for simulating tran-
sient nonlinear water waves generated by wave
makers. In that paper, the solution for Rankine
sources rather than the Heaviside step function
was adopted as the test function to formulate the
weak form over local subdomains, resulting in a
weak form of governing equations which did not
contain the gradients of unknown functions. In
another work by Ma (2008), the so called sim-
plified finite difference interpolation (SFDI) was
devised and successfully applied to MLPG based
on Rankine source solution (MLPG-R).

In this paper some modifications into the MLPG
method is introduced, involving a new stabiliza-
tion technique in convection dominated flows, and
applied it to fluid flow problems to verify the new
upwinding scheme. Radial basis function of mul-
tiquadric type is adopted as meshless interpola-
tion method. Then modified MLPG formulation
is applied to simulation of flow in cavity with
Reynolds number of as high as Re=10000 and
compared with certified data of U. Ghia, K.N.

Ghia and Shin (1982). The results demonstrate
very clearly that the RBF-MLPG method with
the new stabilization technique, as a mesh-free
method, can treat problems with high accuracy
and without any difficulty.

2 Radial basis function (RBF) interpolation

Like other meshless methods, the MLPG method
requires a local node-based interpolation or ap-
proximation to represent the trial function. The
local approximation schemes like MLS, PUM,
and RKPM use fictitious values at scattered
nodes, and the local interpolation schemes like
PIM and RBFs enable trial functions that pass
through the actual values of the unknown vari-
ables at scattered nodes, i.e. shape functions con-
structed satisfy kronecker delta property. A major
drawback of PIM method is the possibility of mo-
ment matrix to be singular or ill-conditioned. It
has been proved that RBFs do not face the men-
tioned problem as long as specific values of shape
parameters are not applied. Also use of RBFs
leads to symmetric moment matrix, convergent
and more stable interpolation. Radial basis func-
tions were introduced by Hardy in 1971 for the
first time and employed to solution of PDE in
strong form. Then it was developed for meshless
methods [see Sarler (2005), Zhang, Song, Lu, and
Liu (2000) and Chantasiriwan (2006)]. A com-
prehensive study of RBFs is accomplished by Hoo
(2004). In his report, he performed studies on the
various RBFs to find out their properties and the
best shape parameters through the surface fitting
and solution of a 2-D Solid Mechanics problem.

A continuous function u(x) defined in a domain Ω
discretized by a set of nodes can be interpolated
from the neighboring nodes of a point xQ using
radial basis functions as

uh(x, xQ) =
n

∑
i=1

gi(x)ai(xQ) = GT (x)a(xQ) (1)

where gi(x) is the radial basis function in the
space coordinates xT = [x, y], n is the number
of nodes in the neighborhood (refers to support
domain) of xQ, and ai(xQ) are the coefficients
for gi(x), respectively, corresponding to the given
point xQ. It should be noted that the number (n) of
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the neighboring nodes of xQ is less than or equal
to the total number of nodes in the global prob-
lem domain (nt ) depending on the size of support
domain specified. The vectors are defined as:

a = [a1,a2,a3, . . . ,an]
T (2)

GT = [g1(x),g2(x),g3(x), . . . ,gn(x)]T (3)

The radial distance function in a two dimensional
domain is a function of Euclidean distance r de-
fined as:

ri =
[
(x−xi)2 +(y−yi)2] 1

2 (4)

Here another important advantage of RBFs
emerges: the radial distance function transforms
a multiple dimensional problem into one dimen-
sion. Enforcing the interpolation to pass through
all n scattered nodes within the point xQ support
domain leads to the following set of equations for
the coefficients ai(xQ):

uk = u(yk, zk) =
n

∑
i=1

ai(xQ)gi(yk, zk),

k = 1, 2, 3, ...,n (5)

This can be expressed in matrix form as follows

Aa = Us (6)

where Us = [u1, u2, u3, ..., un] and A is the sym-
metric interpolation matrix of rank (n×n) as fol-
lows

A = AT =

⎡
⎢⎢⎢⎣

g1(r1) g2(r1) . . . gn(r1)
g2(r2) g2(r2) . . . gn(r2)

...
...

. . .
...

g1(rn) g2(rn) . . . gn(rn)

⎤
⎥⎥⎥⎦ (7)

The coefficients can be obtained as

a = A−1Us (8)

where A−1 is the inverse matrix of A.

Finally, the interpolation can be expressed as

uh(x) = GT (x)A−1 Us = ΦΦΦ(x)Us (9)

ΦΦΦ(x) is the vector of shape functions defined as

ΦΦΦ(x) = [φ1(x), φ2(x), φ3(x), ...,φk(x), ..., φn(x)]
(10)

in which

φk(x) =
n

∑
i=1

gi(x)Ai,k (11)

and Ai,k is the (i,k) component of the matrix A−1.
The derivatives of φk(x) can be obtained as fol-
lows:

∂φk

∂x
=

n

∑
i=1

∂gi

∂x
Ai,k (12a)

∂φk

∂y
=

n

∑
i=1

∂gi

∂y
Ai,k (12b)

RBFs are classified into two categories: classic
RBFs (globally supported RBFs) and compactly
supported RBFs (CSRBF). For through investi-
gation on CSRBF, the reader may refer to Wu
(1995), Wendland (1995) and Hoo (2004). The
most important three classical RBFs are consisted
of Multiquadrics (MQ), Gaussian (EXP) and thin
plate splines (TPS) as follows:

gi(y, z) = (r2
i +C2)β (MQ)

gi(y, z) = (ri)η logri (TPS)

gi(y, z) = e−c2r2
i (EXP)

(13)

where β , C and η are shape parameters that are
used for fine tuning. Among them, MQ is utilized
more frequently and proved to have exponential
convergence. The partial derivatives of MQ-RBF
are as follows:

∂gi

∂x
= 2β (r2

i +C2)β−1(x−xi)

∂gi

∂y
= 2β (r2

i +C2)β−1(y−yi)
(14)

Fig. 1 shows typical shape functions for two-
dimensional problem using MQ basis within a do-
main containing 7×7 nodes only in a [-1, 1]×[-1,
1] x− y space. According to G.R. Liu’s recom-
mend, the shape parameters are chosen αc = 1.42
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Figure 1: MQ-RBF shape functions for two-
dimensional domain (49 nodes). a) Shape func-
tion of central node; b, c) shape function x, y-
derivative of central node;d, e) Shape function for
an edge and corner node

and β = 1.03. For better compatibility, the dimen-
sionless size of support domain is αs = 3.7.

All the shape functions satisfy the kronecker delta
function property which makes imposition of es-
sential boundary conditions as easy as FEM. As
is obvious, both shape function and the deriva-
tives are smooth functions and unlike FEM need
not any smoothing technique. Due to a local in-
terpolation, the shape functions have zero value
immediately outside the local support domain.

3 Governing equations

The dimensionless non conservative two-
dimensional Navier–Stokes equations in form of
the vorticity–stream function formulation within
closed domains in Cartesian coordinate system
are as follows:

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 = −ω (15)

∂ω
∂ t

+u
∂ω
∂x

+v
∂ω
∂y

=
1

Re

[
∂ 2ω
∂x2 +

∂ 2ω
∂y2

]
(16)

where ω , ψ and Re are the vorticity, stream func-
tion and Reynolds number. u, v are the compo-
nents of velocity in the x and y directions, which
can be calculated using

u =
∂ψ
∂y

; v = −∂ψ
∂x

(17)

One of the advantages of using Vorticity–Stream
function formulation lies in removing pressure
gradient terms from the solution process, result-
ing in a higher numerical stability of the compu-
tational scheme. The pressure does not appear in
the solution procedure and has no influence on the
velocity field, a fact that is of course valid only for
incompressible fluid approximation. The pressure
can be computed, after obtaining velocity field, by
the Poisson pressure equation:

∂ 2 p
∂x2 +

∂ 2 p
∂y2 = 2

[(
∂ 2ψ
∂x2

)(
∂ 2ψ
∂y2

)
−

(
∂ 2ψ
∂x∂y

)2
]

(18)

In MLPG, the error of dissatisfaction of equa-
tions on subdomains are made zero. This is the
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most distinctive feature of the MLPG. Also, it
will lead to a natural way to construct the global
stiffness matrix. This is because of satisfaction
of equations only over subdomains, not on whole
domain. Consequently the assembly process is
much less costly than other GWF methods like
FEM or EFG whereas the assembly process is
analogous to FDM.

In the following sections the formulation of Eqs.
15 and 16 are presented separately.

3.1 Poisson equation

The 2-D Poisson equation of streamline is con-
sidered where ω is treated as a given source term.
The domain Ω is enclosed by Γ = Γu ∪Γq, with
boundary conditions

ψi = ψ i on Γu (19a)

∂ψ
∂n

∣∣∣∣
i
= qi on Γq (19b)

where Γu is the essential boundary and Γq is the
boundary with predefined flux.

A general weak form of Eq. 15 by applying the
weighted residual method locally over the quadra-
ture domain and employing divergence theorem
leads to

−
∫

ΩQ

(W,xψ,x +W,yψ,y)dΩ+
∫

ΓQ

W
∂ψ
∂n

dΓ

= −
∫

ΩQ

Wω dΩ (20)

where ψ is the trial function, ΓQ is the boundary
of the quadrature domain ΩQ, n is the outward
unit normal to the boundary ΓQ and W is the test
function.

Imposing the natural boundary condition, Eq.
19b, one obtains

−
∫

ΩQ

(W,xψ,x +W,yψ,y)dΩ+
∫

ΓQu

W
∂ψ
∂n

dΓ

+
∫

ΓQi

W
∂ψ
∂n

dΓ = −
∫

ΓQq

WqdΓ−
∫

ΩQ

W ωdΩ

(21)

in which ΓQq is a part of ΓQ, over which the nat-
ural boundary condition is specified; ΓQu is the

intersection of ΓQ and the essential boundary Γu;
ΓQi is the internal part of ΓQ on which no bound-
ary condition is specified, as shown in Fig. 2. For
a quadrature domain located entirely within the
global domain, there is no intersection between
ΓQ and Γ, and the integrals over ΓQu and ΓQq van-
ish.

Different test function W with the constraint to
be at least C1 can be chosen. Atluri and Shen
(2002) tested different test functions and showed
that Heaviside step function is the best for poten-
tial problems which leads to symmetric stiffness
matrix. Using this weight function, Eq. 21 is
rewritten as

∫
ΓQu

∂ψ
∂n

dΓ+
∫

ΓQi

∂ψ
∂n

dΓ

= −
∫

ΓQq

qdΓ−
∫

ΩQ

ωdΩ (22)

It can be seen that the domain integral is avoided
and only the regular boundary integral along the
boundaries of subdomains is involved.
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Figure 2: The support domain and quadrature do-
main in constructing the discretized equation for
node I

The LSWF, Eq. 22, gives one algebraic equation
relating all ψ̂i. Thus, one should obtain as many
equations as the number of nodes. Therefore, we
need as many local domains ΩQ as the number of
nodes in the global domain.

To obtain the discrete equations from the LSWF
(22), the radial basis function interpolation is
adopted to approximate the trial function ψ . Sub-
stitution of Eq. 9 into Eq. 22 for all nodes leads
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to the following discretized system of linear equa-
tions:

[K]{ψψψ} = {f} (23)

where [K] and {f} are "stiffness” matrix and the
"load” vector, respectively, defined as

KIJ =
∫

ΓQi

(φJ,xnx +φJ,yny)dΩ

+
∫

ΓQu

(φJ,xnx +φJ,yny)dΩ (24a)

fI = −
∫

ΩQ

ω(x,y)dΩ−
∫

ΓQq

qdΩ (24b)

Gauss quadrature is employed in each local sub-
domain centered at node xi. For each Gauss
quadrature point xQ, RBF is performed to obtain
the integrand. Therefore, for a node xi, there are
two local domains: the test function domain Ωte

(same as the local sub-domain ΩQ) for Wi �=0
(size rQ), and the interpolation domain Ωs for xQ

(size rs).

Fig. 2 shows the quadrature domain ΩQ of a node
xi and the support domain Ωs for a gauss point
xQ. These two domains are independent and de-
fined as rs = αsdc and rQ = αQdc, respectively,
where αs and αQ are dimensionless coefficients
and dc known as characteristic length is the short-
est spacing between node i and its neighbor nodes
or the global boundary whichever is smaller. Pa-
rameters including shape parameters of RBFs and
parameters related to MLPG (support and sub-
domain size) should be tuned. In a paper by
Haji Mohammadi and Shamsai (2006) these op-
timum values were obtained for the poisson equa-
tion which were defined as follows
MQ-RBF: αc=5.54, β =1.03, 0.98; MLPG:
αQ=0.82, αs=3.5

3.2 Vorticity transport equation

The convection operator in Eq. 16 makes the
equation non self adjoint i.e. the weak form can
not be written symmetrically with respect to test
and trial functions. Due to existence of this term,
in all numerical methods, one encounters a nu-
merical error nominated as numerical dispersion

which leads to oscillatory solutions for vortic-
ity. Therefore some techniques were introduced
in literature for FEM like FIC (finite increment
calculus) and SUPG (streamline upwind Petrov-
Galerkin). The last one is the mostly used tech-
nique rather than others. In this section the for-
mulation of Eq. 16 is presented and a novel up-
winding technique is introduced in advance.

The boundary conditions are assumed to be:

ωi = ω i on Γω (Dirichlet B.C.) (25a)

1
Re

∂ω
∂n

∣∣∣∣
i
= t i on Γt (Neumann B.C.) (25b)

where, ω and t are given, n is the outward unit
normal vector to Γ, Γω and Γt are part of boundary
Γ satisfying Γω ∩Γt = 0 and Γω ∪Γt = Γ.

A general local weak form of Eq. 16, by applying
the weighted residual method over the quadrature
domain, can be written as

∫
ΩQ

W

(
∂ω
∂ t

+u
∂ω
∂x

+v
∂ω
∂y

− 1
Re

∇2ω
)

dΩ = 0

(26)

By using the divergence theorem and directly im-
posing the Neumann boundary condition, the fol-
lowing local symmetric weak form is obtained

∫
ΩQ

W

(
u

∂ω
∂x

+v
∂ω
∂y

)
dΩ

+
1

Re

∫
ΩQ

(
∂W
∂x

∂ω
∂x

+
∂W
∂y

∂ω
∂y

)
dΩ

− 1
Re

∫
ΓQt

Wt dΓ− 1
Re

∫
ΓQi

W
∂ω
∂n

dΓ

− 1
Re

∫
ΓQω

W
∂ω
∂n

dΓ+
∫

ΩQ

W ω̇ dΩ = 0 (27)

temporal discretization is implemented by the Eu-
ler scheme

ω̇ =
∂ω
∂ t

=
ωn −ωn−1

Δt
(28)

Consequently, the system stiffness matrix and
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Figure 3: Test function and its derivatives in USI

load vector are obtained as below

[K]i j = Re
∫

ΩQ

[uφ j,x +vφ j,y]WdΩ

+
∫

ΩQ

(W,xφ,x +W,yφ,y) dΩ

−
∫

ΓQu

W
∂φ j

∂n
dΓ−

∫
ΓQi

W
∂φ j

∂n
dΓ

+
Re
Δt

∫
ΩQ

φ jW dΩ (29a)

{f}i =
∫

ΓQt

Wt dΓ+
Re
Δt

∫
ΩQ

Wωn−1dΩ (29b)

In order to simplify the above equation, we delib-
erately select a test function W such that it van-
ishes over ΓQi. This can be easily accomplished

by using the quartic spline as the weight function

Ŵ(xQ −xi) =

{
1−6d

2
+8d

3 −3d
4

0 ≤ d ≤ 1

0 d ≥ 1

(30)

4 Upwinding technique

In convection dominated flows, the presence of
the convection term causes serious numerical dif-
ficulties, appearing in the form of oscillatory so-
lutions. Several attempts have been made to re-
move or at least alleviate this problem. The so-
lutions proposed were based on upwinding con-
cepts. Upwind effect was needed only in the
direction of flow that led to SU (streamline up-
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wind) scheme. For consistency purposes, upwind
weighting of all terms in the equation was needed,
i.e., some kind of Petrov-Galerkin method is
needed. Therefore another version of stabiliza-
tion scheme called Streamline Upwind Petrov-
Galerkin method (SUPG) was introduced which
consistently utilized an additional stability term in
the upwind direction. This method has better sta-
bility and accuracy properties than the standard
Galerkin formulation for convection-dominated
flows.

For meshless methods, the same kind of consid-
eration should be taken to deal with convection-
dominated flows. As mentioned by Atluri, the
very general nature of truly meshless methods,
such as the MLPG method, makes it easier to in-
troduce the upwind concept more clearly and ef-
fectively.

The pioneering work on upwinding in MLPG be-
longs to work of Lin and Atluri (2000). They sug-
gested two techniques of which the second one
(USII) gained better results. In the following their
method is described and the new modified tech-
nique is also introduced.

In USI, test function and quadrature domain
spaces do not change but the test function is
skewed opposite to the streamline direction. The
process is shown in Fig. 3.

In the method suggested by Lin and Atluri as
USII, shown in Fig. 4, the upwinding was applied
to subdomains where

γ = coth(Pe/2)−2/Pe (31)

Pe = 2
∥∥∥�V∥∥∥r(Re) (32)

The technique is somewhat not suitable for
MLPG because for nodes near the boundary the
upwinded subdomains may intersect with the
global boundary. Furthermore it is not fully con-
sistent with MLPG programming.

In our proposed scheme, it is suggested that in-
stead of moving the subdomains, the weight func-
tion is shifted which is easier to implement in
MLPG. The new scheme is named as upwinding
scheme III (USIII). Fig. 5 illustrates this process

QΩ

Q
'Ω

test function

r
xi rγ

Figure 4: MLPG upwind (USII) suggested by Lin
& Atluri

in which

γ = (1/2)coth(Pe/2)−1/Pe (33)

In MLPG, the equations are satisfied locally node
by node on the quadrature domains. Therefore in
the new technique parts of weight functions that
are out of the quadrature domain are not consid-
ered in the computation which leads to a more ef-
ficient method.

QΩ

r
xi

rγ

teΩ
te

'Ω

Figure 5: The new proposed MLPG upwinding
(USIII)

5 Numerical examples

MLPG method with radial basis functions has
some parameters. These parameters should be
tuned and their behaviors to be studied. Therefore
a problem with body term

f (x,y) = uexp(x)+3vy2 −K (exp(x)+6y) ,

0 ≤ x, y ≤ 2

is considered. Circular quadrature and support
domains are utilized. Domain, subdomains and
the nodes distribution are illustrated in Fig. 6.
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Figure 6: Domain and nodes distribution

In order to study multiquadric shape parameters
we limit the parameter β to [-0.5, 5] and αc to
[0.3, 6]. Variation of L2 error norm versus β is
demonstrated in Fig. 7.
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Figure 7: Effect of shape parameter β on ‖L2‖

According to the figure, β = 2.98, 3.03 are opti-
mum values for convection-diffusion equation. It
is worth noting that β can’t be an integer other-
wise moment matrix will be singular. Effect of αc

parameter versus L2 norm is demonstrated in Fig.
8.

As shown, up to αc = 5.2, the accuracy increases
continuously as αc increases and above that accu-
racy decreases for two values of β = 2.98, 3.03.

To study the effect of quadrature domain size, we
limit its non dimensional size to be larger than
zero and less than one. Limiting the size less than
unity makes the subdomains not to intersect with
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Figure 8: Effect of shape parameter αc on ‖L2‖

global boundary and hence the integrals (29) are
computed more easily for internal nodes. Quadra-
ture domains with different sizes are examined
and the L2 errors are plotted in Fig. 9.
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Figure 9: Effect of quadrature domain size αQ on
‖L2‖

It can be seen that stable results are obtained when
αQ varies from 0.35 to 0.85. However best accu-
racy and stability was gained by αQ = 0.75.

The size of support domain αs is an important
parameter in all meshless methods because it re-
lates to both accuracy and efficiency. A too large
support domain leads to inefficient computations
while too small one results in inaccurate and erro-
neous solutions. The L2 norms for αs = 1.5–7 are
obtained and plotted in Fig. 10.

For small values of αs there is not enough nodes
to perform interpolation. Upto a certain magni-
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tude of αs, the results improve as αs increases.
Enlarging more does not necessarily improve the
solution but makes the bandwidth of moment ma-
trix larger. According to the above figure, αs in
the range [5, 5.5] is considered optimum.

In order to view and compare different upwinding
schemes, a problem in a unit square, which were
considered by Lin and Atluri (2000), is solved by
MLPG-RBF with different schemes. The param-
eters are utilized as below

αs = 5.3; αQ = 0.75; αc = 5.15;

β = 3.03; ncθ = ncr = 4

Body force term is considered zero and velocity
components are assumed to be u = cos(π/4); v =
sin(π/4). Domain and its corresponding bound-
ary conditions are depicted in Fig. 11, where φ is
the field variable.

This problem was considered for different values
of Peclet number. The field variable contours for
Pe = 1, 100, 106 are presented in Figs. 12, 13 and
14, respectively.

As shown, for low Peclet numbers, all techniques
and Galerkin finite element method yield good so-
lutions. Numerical errors emerge as Peclet num-
ber increases. It can be seen that for high Peclet
numbers, MLPG with radial basis functions are
superior to FEM and MLPG with moving least
squares [see Lin and Atluri (2000)]. Also, among
three stabilization techniques, obviously USIII re-

X

Y

φ =1-x0
0

y−= 1φ

0=φ

0=φ
4/πθ=

Figure 11: Domain and its boundary conditions

sults in more accurate and less oscillatory solu-
tions.

6 Test problem

Fluid flow in a square cavity is one of the most
difficult benchmark problems in flows of incom-
pressible fluids, which is currently used for test-
ing different numerical schemes for solution of
Navier–Stokes equations. Numerous studies have
been accomplished for the so called lid driven
cavity problem. A comprehensive survey and lit-
erature review can be found in Erturk, Corke and
Gokcol (2005).

7 Boundary conditions

The type and imposition of boundary conditions
method is similar to the work done by Wu, Liu
and Gu (2005). The procedure is described below.

Suppose w is a node on boundary where the vor-
ticity is to be determined as boundary condition. i
is the nearest internal node to w in the direction of
-nw where nw is the unit normal vector to bound-
ary at w. Distance of w and i is considered as l.
According to Eq. 15, it is observed that obtaining
boundary condition of vorticity is equal to 2nd or-
der derivatives approximation of stream function
on the boundary (node w). As long as the walls
are vertical, one can write

Ω = −(
∂ 2ψ/∂n2)

w (34)
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Figure 12: Field variable contours for Pe = 1
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Figure 13: Field variable contours for Pe = 100
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Figure 14: Field variable contours for Pe = 106
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Figure 15: Boundary conditions for cavity flow

Employing the Taylor series for ψi:

ψi = ψw − l

(
∂ψ
∂n

)
w

+
1
2

l2
(

∂ 2ψ
∂n2

)
w

− 1
6

l3
(

∂ 3ψ
∂n3

)
w

+ O(l4) (35)

Ignoring the 4th order terms and higher and sub-
stituting Neumann B.C. for ψ on the wall as
(u=v=0) one obtains

∂ψ
∂n

=
∂ψ
∂x

nx +
∂ψ
∂y

ny = −unx +vny = 0 (36)

Considering Eqs. 34 and 36, Eq. 35 is written as
below(

∂ 3ψ
∂n3

)
w

=
6
l3

(
ψw −ψi − 1

2
l2Ω

)
+O(l) (37)

Applying the 1st order Euler scheme for the left
hand side(

∂ 3ψ
∂n3

)
w

=
(∂ 2ψ/∂n3)l − (∂ 2ψ/∂n2)w

l

=
Ωl −Ωw

l

(38)

leads to the following equation:

Ωw =
3
l2

(ψw −ψi)− 1
2

Ωi +O(l2) (39)

The above Equation is utilized for non moving
boundaries (left, right and bottom) and obviously
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Figure 16: Domain with three nodal densities

it is of Dirichlet type. Apparently, the approxima-
tion is of 2nd order accuracy. For the top bound-
ary, where U = ∂ψ/∂n, Eq. 35 is simplified to:

(
∂ 3ψ
∂n3

)
w

=
6
l3

(
ψw −ψi − 1

2
l2Ω− lU

)
+O(l)

(40)

And similar to Eq. 39, the vorticity boundary con-
dition for the moving boundary is finally obtained
as:

Ωw =
3
l2 (ψw −ψi)− 1

2
Ωi − 3

l
U +O(l2) (41)

Hence, the utilized boundary conditions are sum-
marized as

Ωw =
3
l2 (ψw −ψi)− 1

2
Ωi +O(l2)

(Left, Right, Bottom)

Ωw =
3
l2 (ψw −ψi)− 1

2
Ωi − 3

l
U +O(l2) (Top)

Obviously, all boundary conditions are of Dirich-
let type.

The boundary conditions associated with the
well-known cavity problem is depicted in Fig. 15.

The top wall is moving horizontally with a con-
stant velocity which drives a large recirculation
region inside the cavity. With increasing mov-
ing wall velocity and hence the Reynolds number
value, additional smaller recirculation zones ap-
pear in the corners of the cavity. In order to certify
the described modified MLPG with radial basis
functions, this case is studied for different values
of Reynolds number and compared with verified
data in this field. Domains with three nodal distri-
butions are illustrated in Fig. 16.

8 Results

Problem with Reynolds number of up to Re=1000
were performed on the 961 nodal density do-
main. This nodal density was chosen to obtain a
smooth solution in which circulations are evident,
although convergent solutions were obtained in
a 441-node domain. For Reynolds number of
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Figure 17: Stream function isolines
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Figure 18: Vorticity contours
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Figure 19: Comparison of horizontal velocity (u) on
x=0.5
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Figure 20: Comparison of vertical velocity (v) on
y=0.5
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Figure 21: Comparison of vorticity (ω) on the
moving wall

Re=2000, 3200, 5000 we obtained a convergent
solution in a 2601-node domain. To demonstrate

the nature of eddies, domain with 5041 nodes
where employed for Re=5000, 10000.

The vorticity contours and streamlines for differ-
ent values of Reynolds number are presented in
Figs. 17 and 18, respectively.

As shown, the circulating nature of flow is inten-
sified and more secondary eddies appear at cor-
ners as Reynolds number increases. To verify the
solutions, results from current MLPG-RBF are
compared to that of Ghia, U.; Ghia, K. N. and
Shin (1982). In that article they presented veloc-
ity components on centerlines and vorticity on the
top wall. Here, Multiquadric radial basis function
with support size of αs = 4.2 is employed to ob-
tain the values on centerlines. The comparisons
are shown in Figs. 19, 20 and 21.

Pressure field can be obtained by the pressure
poisson Eq. 18. Neumann boundary condition is
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Figure 22: Pressure contours for different Reynolds numbers

imposed all over the global boundary except at the
bottom left corner where pressure is considered to
be zero. Pressure contours obtained by MLPG in
2061-nodal domain are illustrated in Fig. 22.

Obviously, the obtained pressure fields are
smooth since MQ radial basis function is em-
ployed as interpolation technique. Consequently
body force term (second order derivatives) is eval-
uated more accurately and stable solution is ob-
tained while inaccurate values are obtained in
most methods.

In order to study the rate of convergence, criterion
(42) is adopted and calculated in each time step.

Π =

Ne

∑
j=1

(
k+1

{
ω j

}− k
{

ω j
})2

Ne

∑
j=1

(
k+1

{
ω j

})2
(42)

The convergence for Re=5000 is plotted in Fig.
23.

Obviously, the solution has a monotonic and high
convergence that it reaches to Π = 10−6 in only
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Figure 23: The convergence for Re=5000

109 iterations while other methods need a large
number of iterations to reach steady state condi-
tions. For instance, as noted in Zienkowicz and
Taylor (2000), about 48000 iterations are needed
in FEM for Re=5000.
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9 Conclusion

In this paper, meshless MLPG method with ra-
dial basis function is extended to fluid flow prob-
lems via a new stabilization technique. The tech-
nique was validated for a problem and compared
to other existing techniques. It showed better per-
formance and accuracy. The shape parameters of
Multiquadric RBF were tuned and optimal val-
ues of MLPG parameters were determined. The
benchmark problem of lid driven cavity flow was
considered and solved with the mentioned up-
winding scheme. Comparison of results for ve-
locity and vorticity with that of other verified re-
sults showed excellent coincidence. The pres-
sure fields were computed which showed satis-
factory and free of oscillatory solutions. Also in
the MLPG-RBF much less iterations were needed
and solution converges more rapidly comparing to
other methods.
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