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Numerical Results for a Colocated Finite-Volume Scheme on Voronoi
Meshes for Navier-Stokes Equations

V.C. Mariani1, E.E.M. Alonso2 and S. Peters3

Abstract: An application of Newton’s method
for linearization of advective terms given by the
discretization on unstructured Voronoi meshes
for the incompressible Navier-Stokes equations is
proposed and evaluated in this article. One of the
major advantages of the unstructured approach is
its application to very complex geometrical do-
mains and the mesh is adaptable to features of
the flow. Moreover, in this work comparisons
with the literature results in bi-dimensional lid-
driven cavities for different Reynolds numbers al-
low us to assess the numerical properties of the
new proposed finite-volume scheme. Results for
the components of the velocity, and the pressure
collocated at the centers of the control volumes
are presented and discussed. On the basis of the
numerical experiments reported in this article is
seems that the method under investigation has no
difficulty at capturing the formation of primary
and secondary vortices as Reynolds number in-
creases.

Keyword: Newton method, Voronoi Diagram,
Navier-Stokes equations, cavity.

1 Introduction

Approximate solutions for the Navier-Stokes
equations have been extensively studied and var-
ious methods have already been presented in
the literature. Traditionally, the finite difference
methods have employed structured meshes, while
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finite element methods have utilized unstructured
meshes, already finite volume method has utilized
both meshes. The relative advantages and dis-
advantages, from the viewpoint of computational
fluid dynamics have been discussed in Weatherill
(1992), Mishev (1998), and Li et al. (2000).

In engineering applications, various finite-volume
method schemes have been used on Cartesian
grids or orthogonal meshes, and the use of un-
structured meshes have been developed mainly
for compressible flows, while the developments
for incompressible flows have been performed on
structured meshes using marker-and-cell scheme
(MAC) proposed originally by Harlow and Welch
(1965), while MAC scheme to unstructured
meshes was proposed by Nicolaides (1993).

Recently, there seems to be increasing interest
in action research about different Cartesian grid
approaches. Those approaches have competitive
advantages over the conventional body-fitted ap-
proach in simulating flows with moving bound-
aries, complicated shapes, or topological changes.
Details about Cartesian grid approaches see Shyy
et al. (1996), Udaykumar et al. (1996), Ye et al.
(1999), and Mariani and Prata (2008).

Some recent works in engineering applications
used meshless methods. One popular method
is the meshless local Petrov-Galerkin (MLPG)
successfully used by Lin and Atluri (2001), and
Ahrem et al. (2006). Arefmanesh et al. (2008)
applied a MLPG for the solution of the Navier-
Stokes equations for the non-isothermal lid-driven
cavity flow and other problems. Tsai et al. (2002)
developed a meshless boundary elements method
to solve 3D Stokes flows. The iterative process
used in that study is similar to the process em-
ployed in Nicolás and Bermúdez (2007), the only
difference is that these use a truly fixed point one,
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with a different discretization time, while Nicolás
and Bermúdez (2004) studied 2D flows.

Another method is Multiquadric Collocation
Method (MCM) using radial basis function that
has been used in a variety of works. For exem-
ple, Ding et al. (2006) used MCM to solve the
three-dimensional lid-driven cavity flow problem.
Young et al. (2004) solved the Stokes flow prob-
lem in cavity by MCM. Chantasiriwan (2006) re-
ports driven cavity results for the low Reynolds
numbers Re = 0, which turns out to be a Stokes
flow because of its infinity viscosity, and Re = 100
using a MCM. Mai-Duy and Tran-Cong (2004)
with the primitive variables formulation, report
also the lid-driven cavity flow for Re = 100 and Re
= 0. Grimaldi et al. (2006) using a parallel multi-
block method reported results for 2D and 3D lid-
driven cavity problem. In Orsini et al. (2008)
was presented a modified control volume method
using a radial basis function interpolation to im-
prove the prediction of the flux accuracy at the
faces of the control volumes. The proposed ap-
proach validated a series de 1D and 3D test cases.

Some efforts have been devoted recently in the de-
velopment of works about finite-volume approach
for unstructured meshes. See, for example, Ey-
mard and Herbin (2003) and Blanc et al. (2005)
for the solution the Stokes problem, Eymard and
Herbin (2005) and Gallouët et al. (2000) for
Navier-Stokes equations using staggered meshes,
and Serrano et al. (2005) for the solution of Eu-
ler’s equations. Meanwhile, Mathur and Murthy
(1997a, 1997b) proposed a collocated SIMPLE-
based solver avoiding spurious oscillations on
pressure modes. Chénier et al. (2006) presented
an original collocated finite-volume scheme to
solve the Navier-Stokes equations in incompress-
ible flows on structured or unstructured grids.

Among the unstructured meshes can be cited the
meshes generated by Voronoi Diagrams (VD),
which are independent of any global property,
where elements and points can be added and
deleted locally according to the flow features
(Taniguchi and Kobayashi, 1991; Taniguchi et al.,
1991).

In this work we develop a new finite-volume
scheme to solve the Navier-Stokes equations for

the incompressible flows on collocated Voronoi
meshes. For validation of this approach the square
lid-driven cavity flow (Ghia et al., 1982; Vanka,
1986; Botella and Peyret, 1998; Bruneau and
Saad, 2006; Grimaldi et al., 2006; Chantasiriwan,
2006; Nicolás and Bermúdez, 2007) is consid-
ered, because is a classical benchmark problem
for the assessment of numerical methods and the
validation of Navier-Stokes codes as can be seen
in other research works.

The discretization of the Navier-Stokes and con-
tinuity equations is made using a linearization of
first order, analogous to Newton’s method. So, the
main contribution of the present investigation is to
report an accurate and efficient approach for solv-
ing Navier-Stokes equations using unstructured
Voronoi meshes. In this regard, the present con-
tribution adds to the effort that has been devoted
in developing methods for unstructured meshes
as the presented in Eymard and Erbin (2003) and
Chénier et al. (2006). Such method employs un-
structured grids and affords simplicity, yielding
economic solvers of flow fields in complex ge-
ometries. Results for the lid-driven cavities em-
ploying the proposed approach are explored for
different Reynolds numbers with emphasis be-
ing placed on the streamlines of the flow field,
the centerline velocities profiles and pressure con-
tours.

The rest of this article is organized as follows. In
Section 2 is presented the main characteristics of
the unstructured Voronoi mesh used in this work.
In Section 3 and 4 is detailed the numerical ap-
proach proposed here. The results presented in
this article in Section 5 refer essentially to the
lid-driven cavity flow at Reynolds numbers in the
range between 100 and 5,000 for comparison and
validation with results in literature.

2 Voronoi Diagram

Dirichlet (1850) and Voronoi (1908) proposed a
method whereby a given domain could be sys-
tematically decomposed into a set of packed con-
vex polygons. A more formal definition can be
stated. If a set of points is denoted by {pi} then
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the Voronoi region {Vi} can be defined as,

Vi = {p ∈ ℜ2; d(p, pi) < d(p, p j), ∀ j �= i}, (1)

i.e., the Voronoi region {Vi} is the set of all points
of p that are closer to pi than to any other point,
where d(p, pi) is the Euclidean distance between
p and pi. The sum of all points p forms a Voronoi
polygon that is given in Fig. 1. In two dimen-
sions, the territorial boundary which forms a side
of a Voronoi polygon must be midway between
the two points which it separates, an is thus a seg-
ment of the perpendicular bisector of the line join-
ing these two points. If the points, which have
some segment of boundary in common, are joined
by straight lines, the result is a Delaunay triangu-
lation within the convex hull of the set of points
{pi}.

x

y
ip

jp

Figure 1: Voronoi polygon.

A common boundary between two Voronoi re-
gions, Vi and Vj, is called Voronoi edge. Any
Voronoi edge is a connected subset of a bisector
Bi j of two points, pi and p j ∈ S, where S is a set
of n points in the Euclidean plane. The follow-
ing properties are consequence of the Voronoi Di-
agram shown in Fig. 2.

(i) The straight line that joins point i to its
neighbor j is always orthogonal the com-
mon edge to these points, for example, i j is
perpendicular to ae for j = 5.

(ii) The common edge to point i and its neigh-
bor j, or its prolongation, is on the perpen-
dicular bisector of the straight line that joins
these points. For example, the straight line

de passes in the average point of the straight
line di4, i.e., each point in the face is equidis-
tant of exactly two points.

(iii) Any Voronoi point v is the circumcenter of
three points pi, p j , and pk ∈ S. For example,
the vertex d is the center of the circle that
passes for points i, j = 3 and j = 4, each
vertex is equidistant of at least three points.

(iv) Any Voronoi polygon is convex and espe-
cially connected, thus, the Voronoi diagram
partitions the plane into a two-dimensional
convex net.

(v) The Voronoi polygons form a complete and
disjoint partition of the Euclidean plane ℜ2.

j =3 

j =4 

j =5 

j =2 

j =1
i di
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Figure 2: Voronoi Diagram formed by six convex
polygons.

3 Numerical Method

The conservation equations, governing the trans-
port of mass and momentum (Navier-Stokes
equations) can be written in its vectorial two-
dimensional laminar and unsteady form as,

∂ (ρφ)
∂ t

+�∇.�J = Sφ (2)

where φ is any quantity vectorial or scalar (for ex-
ample, velocity or pressure), ρ is the fluid density,
�J = ρ�Vφ −Γφ�∇φ is the total flux of generic vari-
able φ ,�V = uî+v ĵ is velocity vector where u and
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v are the velocity components in x and y direc-
tions, respectively, Γ is the diffusion coefficient, S
is the source term, and �∇ = î∂/∂x+ ĵ∂/∂y is the
operator gradient.

In Tab. 1 are showed the correspondent terms for
the different equations represented by Eq. (2).

Table 1: Terms in the transport equations.

Equations φ Sφ Γφ

Continuity 1 0 0
x – momentum u -∂ p/∂x μ
y – momentum v -∂ p/∂y μ

The system of equations, represented by continu-
ity and Navier-Stokes equations, is discretized in
space and time using the basic concepts of the fi-
nite volume method proposed in Patankar (1980).
The discrete values of the pressure and velocities
are located at the center of each cell as shown in
Fig. 2 for a typical control volume.

The differential equations are then integrated over
each volume yielding a set of algebraic equations
for each variable. Thus the integration of the Eq.
(2) for the generic variable φ in each control vol-
ume is given by

∫∫∫
t,V

∂ (ρφ)
∂ t

dtdV +
∫∫∫
V,t

(
�∇.�J
)

dVdt

=
∫∫∫
V,t

Sφ dVdt. (3)

We now proceed to discretize each of the terms in
Eq. (3) for the control volume shown in Fig. 2,
for example, thus the first term can be expressed
as,∫∫∫
t,V

∂ (ρφ)
∂ t

dtdV = Ap0
i

(
φi −φ 0

i

)
(4)

where Ap0
i = ρiΔVi/Δt is the coefficient in the

nodal point i, Δt is the time step size, ΔVi is
the volume of the irregular control volume, i.e.,
the volume of the convex polygon generated by
Voronoi Diagram, φ 0

i is the generic variable φ val-
ued in the previous time, and φi is the generic vari-
able φ valued in the actual time.

The second term, the liquid flow �J normal through
each cell face of the control volume, is evaluated
using the divergence theorem as,

∫∫∫
V,t

(
�∇.�J
)

dVdt =
∫∫

Sn

(
�J.n̂
)

dS =
N(i)

∑
j=1

Ji jSi j (5)

where Sn is the control-surface, n̂ is a unit vec-
tor normal to the control-surface, Ji j is the normal
component of flux �J in each cell face of the con-
trol volume, as shown in Fig. 2, Si j is the cell face
between the points i and j, where j is the index of
neighbor of i, N(i) is the number of neighbors of
the nodal point i, and Ji jSi j is the liquid flow that
cross the face i j.

Considering Wi j as the normal component of ve-
locity evaluated on the face i j, that is responsible
by advection of φ through of the face i j, and n
as the normal direction in each face i j (auxiliary
co-ordinate) then Ji j (see Eq. (5)) is calculated as,

Ji j =
[

ρWφ −Γφ ∂φ
∂n

]
i j

= ρi jWi jφi j−Γφ
i j

(
∂φ
∂n

)
i j

(6)

where the variables with index i j are evaluated
on the face i j through adequate averages to each
case as presented in Patankar (1980), for exam-
ple, the density, ρi j , is obtained through of the
arithmetic mean as, ρi j = (ρi + ρ j)/2, while the
diffusion coefficient, Γφ

i j , is evaluated through of

the harmonic mean as, Γφ
i j = 2Γφ

i Γφ
j /(Γφ

i + Γφ
j ),

and ∂φ
∂n

∣∣∣
i j

= (φi − φ j)/Li j is approached by cen-

tral difference of first order, where Li j is the Eu-
clidean distance between the points i and j. The
evaluation of Wi j, in the present work, is made
through of the simple arithmetic mean between
the projected normal components in the direction
i j given by

Wi j =
(wi)i j +(wj)i j

2
(7)

where (wi)i j = uiexi j + vieyi j and (wj)i j =
u jexi j + v jeyi j are the normal components to face
i j evaluated on the nodal points i and j, as shown
in Fig. 3.
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Figure 3: Normal components to the face i j on
nodal points i and j.

The Eq. (7) can be rewritten as,

Wi j = ui jexi j +vi jeyi j (8)

where ui j and vi j are, respectively, the horizontal
and vertical components of velocity �V evaluated
on the face i j of control volume.

Lastly, to the third term we proceed to discretize
using the mean as,∫∫∫
V,t

Sφ dV dt = S
φ
i ΔVi, (9)

where S
φ
i is the mean value of Sφ in the control

volume i.

The Eq. (3) can be rewritten as an algebraic equa-
tion of the form,

Ap0
i (φi−φ 0

i )+
N(i)

∑
j=1

[
ρWφ −Γφ ∂φ

∂ z

]
i j

Si j = S
φ
i ΔVi.

(10)

To solve the Eq. (10) appears a coupled system
of nonlinear equations which requires the solution
of a sparse and not banded matrix, especially if
the mesh was randomly generated. The main dif-
ficulties related to the numerical solution of Eq.

(10) are the unknown pressure and the advection
term. The nonlinear advective term ρWφ needs
a linearization process, thus the system of nonlin-
ear equations can be transformed in a system of
linear equations and solved through an iterative
method. Among the many available versions for
linearization process we choose a simple which is
of first-order accurate. The low-order accuracy is
compensated by easy implementation, less cost in
computational time, good stability, and robustness
properties.

The present work has for objective to evaluate
the linearization proposed that use the Newton’s
method. This kind of linearization was chosen
because it produces quadratic convergent approx-
imations in conformity with Burden and Faires
(1985). In this method, a system of nonlinear
equations is solved through of a sequence of linear
systems. To follow it is presented the discretiza-
tion for generic variable φ using the linearization
proposed.

4 Linearization by Newton’s Method

Let us modify the advective term presented in the
Eq. (10) substituting φi j = ui j, such as,

G(ui j,vi j) = ρi jWi jui j. (11)

Substituting the Eq. (8) in Eq. (11) the advective
term follows,

G(ui j,vi j) = ρi j(ui jexi j +vi jeyi j)ui j. (12)

The term G(ui j,vi j) can be linearized by New-
ton’s method as,

G(ui j,vi j)∼= G(u∗i j,v∗i j)+
∂G
∂ui j

∣∣∣∣
u∗i j,v

∗
i j

(ui j −u∗i j)

+
∂G
∂vi j

∣∣∣∣
u∗i j,v

∗
i j

(vi j −v∗i j)+ ... (13)

Differencing the Eq. (12) with respect to ui j and
vi j , after replacing (ui j , vi j) by (u∗i j,v∗i j), such pro-
cedure follows,

∂G
∂ui j

∣∣∣∣
u∗i j,v

∗
i j

= ρi j(u∗i jexi j +v∗i jeyi j)+ρi jexi ju
∗
i j

= ρi jW
∗
i j + ρi jexi ju

∗
i j (14)
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∂G
∂vi j

∣∣∣∣
u∗i j,v

∗
i j

= ρi jeyi ju
∗
i j (15)

where * denote the estimated values in the previ-
ous iteration.

Substituting Eqs. (12), (14) and (15) in Eq. (13)
after of some algebraic manipulations such equa-
tion can be written in the following form,

G(ui j,vi j) =
ρi jW ∗

i ju
∗
i j +

(
ρi jW ∗

i j +ρi jexi ju∗i j

)(
ui j −u∗i j

)
+
(
ρi jeyi ju

∗
i j

)(
vi j −v∗i j

)
(16)

Then, the complete equation of the diffusive and
convective fluxes, the Eq. (6), for φi j = ui j, for
example, has the form,

Ji j =

(
ρi jWi jui j −μi j

∂u
∂n

∣∣∣∣
i j

)

=

(
G(ui j,vi j)−μi j

∂u
∂n

∣∣∣∣
i j

) (17)

Substituting the Eqs. (8) and (16) in Eq. (17), we
obtain

Ji j = ρi j

{
u∗i j

[
exi j
(
ui j −u∗i j

)
+eyi j

(
vi j −v∗i j

)]
+v∗i j eyi jui j

}
−μi j

(
u j −ui

Li j

)
. (18)

A similar development is adopted for the lin-
earization of the equation for v velocity, which
will be omitted in this manuscript, such lineariza-
tion results in

Ji j = ρi j

{
v∗i j

[
exi j
(
ui j −u∗i j

)
+eyi j

(
2vi j −v∗i j

)]
+u∗i jexi jvi j

}
−μi j

(
v j −vi

Li j

)
. (19)

In Eqs. (18) and (19) to evaluate the veloci-
ties, u and v, in the interface i j, is used the fol-
lowing well known first-order interpolation, Up-
wind Differencing Scheme (UDS), where ui j =
uiδ+

i j + u jδ−
i j and vi j = viδ+

i j + v jδ−
i j with δ+

i j =
max(0,Fi j)/

∣∣Fi j

∣∣ and δ−
i j = max(0,−Fi j)/

∣∣Fi j

∣∣,
where Fi j = ρi jWi jSi j is convective flux that cross
each interface i j.

Figure 4: Neighbors i and j and its respective
neighborhoods r(k) and s(k).

The subscript j used until here as the neighbors
of the control volume i will be substituted by k or
r(k) when concerns to control volume i and by k
or s(k)if refers to control volume j,as shown in
Fig. 4.

Lastly, substituting the Eq. (18) in Eq. (10) for
φ = u, and subtracting the discretized continu-

ity equation,
NV (i)

∑
k=1

Fik = 0, multiplied by ui on left

equation we obtain,

Apu
i ui =

N(i)

∑
k=1

Au
ikur(k) +bu

i (20)

where

bu
i = Ωu

ik(i)+Ap0
i u0

i ,

Ωu
ik(i) = −(∇P)x

i ΔVi +
N(i)

∑
k=1

αu
iku∗ik,

Apu
i = Ap0

i +
N(i)

∑
k=1

Au
ik −αu

ik, (21)

Du
ik = μik

(
Sik

Lik

)
,

Fik = ρikW
∗
ikSik,

Au
ik = −(αu

ik +Fik)δik −+Dik,
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where bi is the source term of control volume i,
u0

i is the velocity in the previous time, u∗ik, v∗ik
and W ∗

ik are evaluated in the interface ik, αu
ik =

ρiku∗ikexikSik, Api is the central coefficient of the
control volume i, and Aik are neighbors coeffi-
cients of the control volume i. The discretized
equation for velocity v can be obtained adopting a
development similar to velocity u.

Until here the governing equations for the veloc-
ities were obtained, however is to need evaluated
the pressure used in those equations. For the cou-
pling between pressure and velocities, the SIM-
PLE algorithm (Semi Implicit Method for Pres-
sure Linked Equations) was employed (Patankar,
1980). The pressure gradient in Eq. (20) is evalu-
ated as,

∇Px =

NV
∑
j=1

(
�∇pi j.î

)
gi j

NV
∑
j=1

gi j|exi j|
(22)

where gi j = Si j/Li j and �∇pi j =
(

p j−pi
Li j

)
.(exi j î +

eyi j ĵ).

5 Results and Discussion

In this section, we compare the previous scheme
on steady solutions in two-dimensional lid driven
cavity flow for which a vast specialized literature
is available. The first results were given by Ghia
et al. (1982) and Schreiber and Keller (1983) who
reported accurate solutions to the steady flow so-
lution over a range of Reynolds numbers, Re =
UL/ν , where U is the constant lid velocity, L is
the cavity dimension, and ν is the kinematic vis-
cosity of the fluid, and since then, many authors
(Vanka, 1986; Botella and Peyret, 1998; Bruneau
and Saad, 2006; Grimaldi et al., 2006; Chantasiri-
wan, 2006; Nicolás and Bermúdez, 2007) com-
pared their results to those works.

A cavity, similar to studied by Ghia et al. (1982),
is shown in Fig. 5a. In the same figure are shown
two kinds of Voronoi meshes used in this work,
the first kind is the mesh formed by 530 random
control volumes while the second kind is the mesh
formed by 6,400 (80×80) hexagonal control vol-

(a)

(b) (c)

L

y

x

U

L

Figure 5: (a) Lid driven cavity and computational
mesh formed by (b) 530 and (c) 80×80 control
volumes.
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Figure 6: Profiles of (a) u-velocity along vertical
centerline and (b) v-velocity along horizontal cen-
terline cavity for Re = 100.
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Figure 7: Profiles of (a) u-velocity along vertical
centerline and (b) v-velocity along horizontal cen-
terline cavity at Re = 1,000.

umes, as showed in the Fig. 5b, meanwhile, were
used other Voronoi meshes.

The boundary conditions for the two-dimensional
lid-driven cavity presented in Fig. 5 are given as
follows,

u = U, v = 0 at y = L and 0 ≤ x ≤ L,

u = 0, v = 0 at y = 0 and 0 ≤ x ≤ L,

u = 0, v = 0 at x = 0 and 0 < y < L,

u = 0, v = 0 at x = L and 0 < y < L.

(23)

The solution to the system of linear equations gen-
erated from discretization was obtained through

-0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

40x40             
80x80             
160x160           
Ghia et al. (1982)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x

v

40x40             
80x80             
160x160           
Ghia et al. (1982)

(b) 

Figure 8: Profiles of (a) u-velocity along vertical
centerline and (b) v-velocity along horizontal cen-
terline cavity at Re = 3,200.

of a stabilized conjugate gradient squared method
with incomplete Cholesky preconditioning, see
details in Ferziger and Peric (1997). Com-
putations have been performed on a computer
IBM 9076 SP/2 because the software was previ-
ously developed in IBM AIX system. An under-
relaxation parameter of 0.5 was used in order to
obtain a stable convergence for the solution of
momentum equation while 0.5 was used in the so-
lution of pressure equation.

We use the solver for the two kinds of unstruc-
tured meshes. The hexagonal meshes formed by
40×40, 80×80 and 160×160 control volumes,
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Figure 9: Profiles of (a) u-velocity along vertical
centerline and (b) v-velocity along horizontal cen-
terline cavity at Re = 5,000.

and also random meshes with 260, 530 and 1060
control volumes. Simulation results were col-
lected with Reynolds numbers from 100 until
5,000. As convergence criterion the desired pre-

cision,
N(i)
∑
j=1

∣∣∣Fk
i j

∣∣∣<= 10−8, was used.

Figure 6 shows u and v velocities profiles for
Reynolds number equals 100 along the vertical
centerline (x = L/2) and horizontal centerline (y =
L/2) for the velocities in directions x and y, respec-
tively, using the random meshes with 260, 530
and 1060 control volumes. Note that the results
obtained with the mesh formed by 1060 control
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Figure 10: Solution at Re = 1,000 computed with
present scheme on grid 160×160, (a) stream-
function and (b) pressure fields.

volumes are in agreement with Ghia et al. (1982)
and Chantasiriwan (2006).

Figures 7 to 9 present u and v velocities profiles
for Reynolds Re = 1,000, Re = 3,200 and Re =
5,000 along the vertical centerline (x = L/2) and
horizontal centerline (y = L/2) for the velocities
in directions x and y, respectively. Included in
those figures are the available results of Ghia et
al. (1982). For Re = 1,000, all results agree well
with Ghia et al. (1982), Botella and Peyret (1998),
and Grimaldi et al. (2006), meanwhile the re-
sults of the last author are not presented in Fig.
7 because are equal to of other authors. The re-
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Figure 11: Solution at Re = 3,200 computed with
present scheme on grid 160×160, (a) stream-
function and (b) pressure fields.

sults indicate that for Re = 1,000 the mesh formed
by 160×160 control volumes employed was ade-
quate. As Reynolds increases, however, the inad-
equacy of coarse meshes gradually becomes ap-
parent, as already observed by Ghia et al. (1982),
see Figs. 8 and 9.

We compare our results at Re = 1,000 to those
of the literature (Ghia et al., 1982; Vanka, 1986;
Botella and Peyret, 1998; Bruneau and Saad,
2006) and the data are presented in Tab. 2. We can
see that the present results, with the grid formed
by 160×160 control volumes, are in agreement
with the literature.
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Figure 12: Solution at Re = 5,000 computed with
present scheme on grid 160×160, (a) stream-
function and (b) pressure fields.

For Reynolds number Re = 5,000 there are some
comparisons available in the literature meanwhile
there is no very accurate results as in the previous
studied case. We choose our results obtained with
the same grid 160×160 control volumes. The
comparison for Re = 5000 with the results of the
literature is shown in Table 3. Nevertheless our re-
sults are consistent with results found by Ghia et
al. (1982), Vanka (1986), and Bruneau and Saad
(2006).

Other solution computed with our method is plot-
ted in Figs. 10 to 12, where are showed stream
functions and pressure fields. Figure 10a shows
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Table 2: Comparison of various works on the primary and secondary vortex at Re = 1,000.

Authors Grid ψmax ω X Y
Present 1602 0.1175 2.0475 0.47 0.56
Ghia et al. 1282 0.1179 2.0497 0.47 0.56
Schreiber 1402 0.1160 2.0497 0.47 0.56
Botella & Peyret 160 0.1189 2.0678 0.47 0.57
Bruneau & Saad 1282 0.1179 2.0508 0.47 0.56

ψmin

Present 1602 -1.75×10−3 -1.135 0.14 0.11
Ghia et al. 1282 -1.75×10−3 -1.155 0.14 0.11
Schreiber 1402 -1.70×10−3 -0.999 0.14 0.11
Botella & Peyret 160 -1.73×10−3 -1.112 0.14 0.11
Bruneau & Saad 1282 -1.70×10−3 -1.130 0.14 0.11

Table 3: Comparison of various works on the primary and secondary vortex at Re = 5,000.

Authors Grid ψmax ω X Y
Present 1602 0.1174 1.831 0.48 0.53
Ghia et al. 2562 0.1190 1.860 0.49 0.54
Vanka 1602 0.0920 _ 0.49 0.53
Bruneau & Saad 2562 0.1206 1.913 0.48 0.54

ψmin

Present 1602 -2.95×10−3 -2.560 0.19 0.06
Ghia et al. 2562 -3.08×10−3 -2.664 0.19 0.07
Vanka 1602 -5.49×10−3 _ 0.15 0.08
Bruneau & Saad 2562 -3.04×10−3 -2.633 0.19 0.07

a large primary vortex with two secondary vor-
tices in the two bottom corners at Re = 1,000.
The value 0.1175 of the stream function is chosen
to represent the primary vortex core. The con-
tours of pressure are plotted in Fig. 10b and are
in agreement with results of Bruneau and Saad
(2006).

Using Reynolds number Re = 3,200 and Re =
5,000 the solutions are plotted in Figs. 11 and
12. Those figures exhibit two secondary vortices
in the bottom corners and a third vortex in the up-
per left corner and much stronger gradients than
the solution at Re = 1000 as observed by Ghia et
al. (1982), Bruneau and Saad (2006), and Nicolás
and Bermúdez (2007).

6 Conclusions

The present work proposed a scheme for lin-
earization of advective terms found in the Navier-

Stokes equations. Those equations were solved
in unstructured meshes formed by Voronoi Dia-
grams using finite volume method. Thus, based
on the obtained simulation results, it was possible
to conclude that the scheme proposed has good
performance when compared with results of liter-
ature. The main advantage of the current method-
ology is that flows with extremely complex in-
ternal boundaries can be simulated with relative
ease on unstructured meshes formed by Voronoi
Diagram, some tests are being developed in this
direction. The obtained results with the scheme
proposed in this work were mainly compared with
the results obtained by Ghia et al. (1982) showing
a good agreement.

References

Ahrem, R.; Beckert, A.; Wendland, H. (2006):
A meshless spatial coupling scheme for large-
scale fluid-structure interation problems, CMES:



26 Copyright c© 2008 Tech Science Press CMES, vol.29, no.1, pp.15-27, 2008

Computer Modeling in Engineering & Sciences,
Vol 12, No. 2, pp. 121-136.

Arefmanesh, A.; Najafi, M.; Abdi, H. (2008):
Meshless local Petrov-Galerkin method with
unity test function for non-isothermal fluid flow,
CMES: Computer Modeling in Engineering &
Sciences, Vol. 25, No. 1, pp. 9-22.

Blanc, P.; Eymard, R.; Herbin, R. (2005):
A staggered finite volume scheme on general
meshes for the generalized Stokes problem in
two space dimensions, Int. J. Finite Vol-
umes, http://averoes.math.univparis13.
fr/JOURNAL/IJFV.

Botella, O.; Peyret, R. (1998): Benchmark spec-
tral results on the lid–driven cavity vlow, Comput-
ers & Fluids, Vol. 27, No. 4, pp. 421–433.

Bruneau, C.-H.; Saad, M. (2006): The 2D lid-
driven cavity problem revisited. Computers &
Fluids, Vol. 35, No. 3, pp. 326-348.

Burden, R. L.; Faires, J. D. (1985): Numerical
analysis, PWS, Boston, USA.

Chantasiriwan, S. (2006): Performance of mul-
tiquadric collocation method in solving lid-driven
cavity flow problem with low Reynolds number,
CMES: Computer Modeling in Engineering &
Sciences Vol. 15, No. 3, pp. 137-146.

Chénier, E.; Eymard, R.; Touazi, Q. (2006):
Numerical results using a colocated finite-volume
scheme on unstructured grids for incompressible
fluid flows, Numer. Heat Transfer Part B, Vol. 49,
No. 3, pp. 259-276.

Ding, H.; Shu, C.; Yeo, K. S.; Xu, D. (2006):
Numerical computation of three-dimensional in-
compressible viscous flows in the primitive vari-
able form by local multiquadratic differential
quadrature method, Comp. Methods in Appl.
Mech. Engr., Vol. 195, No. 7-8, pp. 516-533.

Dirichlet, G. L. (1850): Uber die reduction der
positiven quadratschen formen mit drei undes-
timmten ganzen zahlen, Z. Reine Angew, Math.,
Vol. 40, pp. 209-227.

Eymard, R.; Herbin, R. (2003): A cell-centered
finite volume scheme on general meshes for
the Stokes equations in two space dimensions,
Comptes Rendus Mathematique, Vol. 337, No. 2,

pp. 125-128.

Eymard, R.; Herbin, R. (2005): A staggered
finite volume scheme on general meshes for the
Navier-Stokes equations in two space dimensions,
Int. J. Finite Volumes, http://averoes.math.
univparis13.fr/JOURNAL/IJFV.

Ferziger, J. H.; Peric, M. (1997): Computa-
tional methods for fluid dynamics. Springer Ver-
lag, Berlin, Heidelberg, Germany.

Gallouët, T.; Herbin, R.; Vignal, M. H. (2000):
Error estimates on the approximate finite volume
solution of convection diffusion equations with
general boundary conditions, SIAM Journal on
Numerical Analysis, Vol. 37, No. 6, pp. 1935-
1972.

Ghia, U.; Ghia, K. N.; Shin, C. T. (1982): High-
re solutions for incompressible flow using the
Navier-Stokes equations and multigrid method, J.
Comp. Phys., Vol. 48, pp. 387-411.

Grimaldi, A.; Pascazio, G.; Napolitano, M.
(2006): A parallel multi-block method for the un-
steady vorticity-velocity equations, CMES: Com-
puter Modeling in Engineering & Sciences, Vol
14, No. 1, pp. 45-56.

Harlow, F.; Welch, J. (1965): Numerical calcu-
lation of time-dependent viscous incompressible
flow of fluid with a free surface, Phys. Fluids,
Vol. 8, No. 12, pp. 2182-2189.

Li, R.; Chen, Z.; Wu, W. (2000): Generalized
difference methods for differential equations: Nu-
merical analysis of finite volume methods, Marcel
Dekker, New York, USA.

Lin, H.; Atluri, S. N. (2001): The meshless lo-
cal Petrov-Galerkin (MLPG) method for solving
incompressible Navier-Stokes equations, CMES:
Computer Modeling in Engineering & Sciences,
Vol. 2, No. 2, pp. 117-142.

Mai-Duy, N.; Tran-Cong, T. (2004): Boundary
integral-based domain decomposition technique
of Navier-Stokes equations. CMES: Computer
Modeling in Engineering & Sciences, Vol. 6, No.
1, pp. 59-75.

Mariani, V. C.; Prata, A. T. (2008): A Eulerian-
Lagrangian method applied to fluid flow in lid-
driven cavities with irregular bottom walls. Nu-



Numerical Results for a Colocated Finite-Volume Scheme 27

mer. Heat Transfer Part B, Vol. 53, No. 3, pp.
1-28.

Mathur, S. R.; Murthy, J. Y. (1997): A pressure-
based method for unstructured meshes, Numer.
Heat Transfer Part B, Vol. 31, pp. 195–215.

Mathur, S. R.; Murthy, J. Y. (1997): Pressure
boundary conditions for incompressible flow us-
ing unstructured meshes, Numer. Heat Transfer
Part B, Vol. 32, pp. 283–298.

Mishev, I. (1998): Finite volume methods on
Voronoi meshes, Numer. Methods Partial Differ-
ential Equations, Vol. 14, pp. 193–212.

Nicolaides, R. A. (1993): The covolume ap-
proach to computing incompressible flows, in
M. D. Gunzburger and R. A. Nicolaides (eds.),
Incompressible Computational Fluid Dynamics,
Cambridge University Press, Cambridge, UK, pp.
295-333.

Nicolás, A.; Bermúdez, B. (2004): 2D Incom-
pressible viscous flows at moderate and high
Reynolds numbers. CMES: Computer Modeling
in Engineering & Sciences, Vol. 6, No. 5, pp.
441-451.

Nicolás A.; Bermúdez, B. (2007): Viscous
incompressible flows by the velocity-vorticity
Navier-Stokes equations, CMES: Computer Mod-
eling in Engineering & Sciences, Vol 20, No. 2,
pp. 73-83.

Orsini, P.; Power, H.; Morvan, H. (2008): Im-
proving volume element methods by meshless ra-
dial basis function techniques, CMES: Computer
Modeling in Engineering & Sciences, Vol. 23,
No. 3, pp. 187-207.

Patankar, S. V. (1980): Numerical heat transfer
and fluid flow, Hemisphere Publishing Corpora-
tion, USA.

Schreiber, R.; Keller, H. B. (1983): Driven cav-
ity flows by efficient numerical techniques, J.
Comp. Phys., Vol. 49, No. 2, pp. 310-333.

Serrano, M.; Español, P.; Zúñiga1, I. (2005):
Voronoi fluid particle model for Euler equations,
J. of Statistical Physics, Vol. 121, No. 1-2, pp.
133-147.

Shyy, W.; Udaykumar, H. S.; Rao, M. M.;
Smith, R. W. (1996): Computational Fluid Dy-

namics with Moving Boundaries, Taylor & Fran-
cis, UK.

Taniguchi, N.; Arakawa, C.; Kobayashi, T.
(1991): Construction of a flow-simulating method
with finite volume based on a Voronoi Diagram,
JSME International Journal, Serie II, Vol. 34, No.
1, pp. 18-23.

Taniguchi, N.; Kobayashi, T. (1991): Finite
volume method on the unstructured grid system,
Computers & Fluids, Vol. 19, No. 3-4, pp. 287-
295.

Tsai, C., Young, D. L., Cheng A. H. (2002):
Meshless BEM for Three-Dimensional Stokes
Flows. CMES: Computer Modeling in Engineer-
ing & Sciences, Vol. 3, No. 1, 117-128.

Udaykumar, H. S.; Shyy, W.; Rao, M. M.
(1996): ELAFINT: A mixed Eulerian-Lagrangian
method for fluid flows with complex and moving
boundaries, Int. J. Numerical Methods in Fluids,
Vol. 22, No. 8, pp. 691-712.

Vanka, S. P. (1986): Block-implicit multigrid
solution of Navier-Stokes equations in primitive
variables. J. Comp. Phys., Vol. 65, No. 1, pp.
138-158.

Voronoi, G. (1908): Nouvelles applications des
parametrés continus à la théorie des formes
quadratiques. Deuxième memoie, recherches ser
les paralleloèdres primitifs, J. für die Reine und
Angewandte Mathematik, Vol. 134, pp. 198-287.

Weatherill, N. P. (1992): Delaunay Triangula-
tion in Computational Fluid Dynamics, Comput-
ers Math. Applic., Vol. 24, No. 5-6, pp. 129-150.

Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W.
(1999): An accurate Cartesian grid method for
viscous incompressible flows with complex im-
mersed boundaries. J. Comp. Phys., Vol. 156,
No. 2, pp. 209-240.

Young, D. L.; Lane, S. C.; Lin, C. Y.; Chiu, C.
L.; Chen, K. C. (2004): Solutions of 2D and 3D
Stokes laws using multiquadrics method. Engr.
Anal. With Bound. Elem., Vol. 28, No. 10, pp.
1233-1243.




