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Applications of Meta-Models in Finite Element Based Reliability Analysis of
Engineering Structures

S S Panda1 and C S Manohar1,2

Abstract: The problem of reliability analysis
of randomly parametered, linear (or) nonlinear,
structures subjected to static and (or) dynamic
loads is considered. A deterministic finite ele-
ment model for the structure to analyze sample
realization of the structure is assumed to be avail-
able. The reliability analysis is carried out within
the framework of response surface methods which
involves the construction of surrogate models for
performance functions to be employed in reliabil-
ity calculations. This construction, in the present
study, has involved combining space filling op-
timal Latin hypercube sampling, kriging models
and methods from data-based asymptotic extreme
value modeling of sequence of random variables.
Illustrative examples on numerical prediction of
reliability of a ten-bay truss, a W-seal in an air-
craft structure, and a nonlinear randomly param-
etered dynamical system are presented. Limited
Monte Carlo simulations are used to validate the
approximate procedures developed.

1 Introduction

The problem of predicting structural reliabil-
ity using computational models is a challeng-
ing problem. Comprehensive overviews of the
progress achieved so far in this area of research
have been documented in the works of Rack-
witz (2001), Sudret and Der Kiureghian (2002),
Manohar and Ibrahim (1998), Manohar and Gupta
(2006), Schueller (1997), Sundararajan (1995),
Melchers (1999), Haldar and Mahadevan (2000),
and Schueller and Pradlwarter (2007). The prob-
lem of evaluation of reliability of an engineering
structure, with respect to a specified performance
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criterion, can be formulated as follows. Let the
source of uncertainties in the given problem be
represented by a l ×1 vector of random variables
X with a joint probability density function (pdf)
pX (x). Here we use the lower case x to denote
the states realized by the random vector X . The
vector X collectively and exhaustively models all
the sources of uncertainties in the problem that in-
cludes aleatory and epistemic uncertainties asso-
ciated with specification of loads, structural prop-
erties and models for structural behavior. This
prescription results in an ensemble of realization
of nominally identical structures and any mem-
ber of this ensemble can be viewed as a point in
a l-dimensional space of these random variables.
We define a performance function g(X), such that,
any point x∗ in the l-dimensional space can be
classified as belonging to a safe or an unsafe re-
gion depending on whether g(x∗) > 0 or g(x∗) <
0respectively. The surface g(x) = 0 is called the
limit surface or the failure surface associated with
the performance function g(X). The problem of
reliability estimation consists of determining the
probability measure P [g(X) > 0]. Alternatively,
the complement of reliability, namely, the prob-
ability of failure, given by Pf = 1−P[g(X) > 0]
needs to be determined. Also of interest is the de-
termination of a design point at which the proba-
bility of failure reaches its maximum value. The
evaluation of Pf clearly involves a l-dimensional
quadrature of pX (x) over a hyper-volume defined
by g(x) < 0. The implementation of this quadra-
ture scheme in practice is seldom possible be-
cause of a wide variety of reasons the impor-
tant ones being the difficulties arising out of large
value of l, lack of adequate knowledge of pX (x),
and highly nonlinear nature of g(X).

While dealing with large scale structures there
would be further difficulties in obtaining an ex-
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plicit expression for the function g(X). The limit
surface g(x) = 0 in this case would be defined im-
plicitly through a long running computer code that
often is a finite element code. This type of prob-
lems could be tackled, at least in principle, by us-
ing Monte Carlo simulations and its variants in-
volving various variance reduction schemes. The
Monte Carlo simulation procedures have found
wide applicability in solving problems structural
mechanics (see, for instance, the recent papers
by Xu et al, 2008, Liou and Fang 2000, Lee et
al, 2006). However, such methods could become
computationally infeasible, especially, while ana-
lyzing large scale structures, wherein a single run
of the finite element code typically could take tens
of minutes of CPU even on fast computers. One
of the alternative approaches employs response
surface models to replace the long running com-
puter codes by functional representations that of-
fer acceptable fits to the failure surface near the
design points. Such models, which serve as mod-
els for models, are called meta-models. Here the
performance function g(X) is approximated by
a response surface, that is typically of the form
g̃(X) = A+BXt +XtCX , where A is a scalar con-
stant, B is a l × 1 array and C is a l × lsquare
symmetric matrix. The problem of determina-
tion of g̃(X)consists of two steps: (a) design of
an appropriate experiment that helps to locate the
points in X-space at which g(X) needs to be eval-
uated, and (b) estimation of undetermined param-
eters A, B and C in g̃(X) using known values of
g(X) at the chosen points. Once a satisfactory
procedure is evolved to determine g̃(X), the anal-
ysis of reliability could be subsequently carried
out using standard reliability index based methods
or by using Monte Carlo simulation possibly aug-
mented with variance reduction techniques. The
success of the method essentially hinges on how
efficiently quantities A, B and C are computed and
how well the response surface represents the fail-
ure surface in regions that make notable contri-
butions to the failure probability. Also, for the
response surface method to be a meaningful sub-
stitute for Monte Carlo simulations, clearly, the
computational effort expended in finding the con-
stants A, B and C must be notably smaller than
what an acceptable Monte Carlo simulation study

would demand.

From the study of literature on response surface
modeling for reliability calculations, the present
authors perceive that there exist two broad cat-
egories of approaches. The first, as represented
by works of Wong (1984, 1985), Faravelli (1989,
1992) and Breitung and Faravelli (1996), adheres
to response surface modeling that is rooted in sta-
tistical sampling techniques as described in the
mathematical statistics literature (see, for exam-
ple, the books by Khuri and Cornell 1997 and My-
ers and Montgomery 1995). On the other hand, in
the studies conducted by Bucher and Bourgund
(1990), Rajashekhar and Ellingwood (1993), Liu
and Moses (1994) and Kim and Na (1997), the
response surface modeling combines concepts of
structural reliability analysis (such as the first or-
der reliability method) with statistical sampling
methods. Huh and Haldar (2002) have developed
response surface models for reliability analysis of
randomly parametered nonlinear frames subject
to recorded earthquake ground motions. The re-
cent studies by Kaymaz (2005) and Kaymaz and
McMahon (2005) combine concepts from kriging
with techniques developed by Bucher and Bour-
gund. Gupta and Manohar (2004 a,b) outlined
methods for treating multiple design points and
functions with multiple regions of comparable im-
portance in the parameter space. These authors
have also studied the application of response sur-
face techniques for analyzing time variant relia-
bility problems associated with nonlinear struc-
tural system subjected to nonstationary random
excitations.

In the present study, we explore the application
of techniques developed in the field of design
and analysis of computer experiments (DACE) for
structural reliability analysis. A comprehensive
treatment of DACE, along with a review of the
class of research goals that can be realized using
these methods, can be found in the work of Sant-
ner et al., (2003). The review paper by Sacks et
al., (1989) contains information on early work in
this area of research. The report by Lophaven et
al., (2002), and the accompanying suite of soft-
ware, provides a computational toolkit for im-
plementing the relevant techniques. In these ap-
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proaches the essential idea is to represent the out-
put of a computer code as a non-stationary Gaus-
sian random field with a postulated functional
form for the non-stationary mean term and a ho-
mogeneous random term having a covariance with
an assumed functional form and with unknown
parameters. The output of the computer program
is next computed at a set of input points, and,
based on this data, the unknown parameters of the
model are estimated using method of maximum
likelihood estimation (or other statistical meth-
ods). Subsequently, the output of the computer
program at any input point, at which the output is
unknown, is estimated using the criterion of min-
imization of the mean square error of the predic-
tion. In the context of the present study we take
the estimate so obtained to be the response sur-
face for the performance function that surrogates
for the given computer program. The computa-
tion of the probability of failure subsequently is
based on either first order reliability methods or
Monte Carlo simulations. The present study also
investigates the use of space-filling optimal Latin
hypercube sampling (LHS) techniques to obtain
global fits to the performance function. This, in
turn, is shown to lead to acceptable estimates of
failure probability, with fewer samples, for perfor-
mance functions with multiple design points and
(or) performance functions with multiple regions
of comparable importance. The study also pro-
poses the application of the above method for an-
alyzing time variant reliability of randomly driven
oscillators with uncertain parameters. This has
involved a two step procedure: the first step in-
volves an objective selection of the form of the
extreme value distribution, and the second, con-
sists of fitting kriging models for the parameters
of this distribution. A set of illustrative examples
on reliability analysis of linear/nonlinear static/
dynamic problems are presented to bring out the
scope of the proposed procedure. Limited Monte
Carlo simulation studies are performed to evalu-
ate the acceptability of these results.

2 Meta-models based on computer experi-
ments

We begin by considering a computational code
(typically based on finite element analysis) that
models the behavior of a given structural system.
This code itself could represent linear or nonlin-
ear system behavior and it could model static or
dynamic system response. Let g(x) be the perfor-
mance function (as specified in the previous sec-
tion) defined with respect to the l-dimensional in-
put vector x. It may be noted that, at this stage,
we do not consider the input vector to be ran-
dom in nature. Let

{
x1 x2 . . . xn

}t
be such

that xi ∈ Rl (i = 1,2, . . .,n) denote the n× l ma-
trix of input points at which the output g(xi),
i = 1,2, . . .,n are computed using the computer
code. We model the computer output using the
meta-model

g(xi) =
p

∑
j=1

f j(xi)β j +Z(xi) = f t(xi)β +Z(xi);

i = 1,2, . . .n (1)

Here the superscript t denotes matrix transposi-
tion,

{
f j (xi)

}p
j=1 is a set of known functions,{

β j
}p

j=1 a set of unknown constants to be de-
termined and Z(x) is a homogenous, zero mean,
Gaussian random field evolving in x with an un-
known covariance function. Thus, for example,
with l=3 and quadratic basis functions, at the ith

sampling point we get

g
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]
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so that, in this approximation, p = 1+ l + l(l+1)
2 =

10. The covariance function is taken to be of the
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form

Cov [Z (xr)Z (xs)] = σ2R(xr −xs,θ) (3)

Here σ2 is the unknown variance of the random
field Z (xi) and R(xr −xs,θ) is the (r, s)th ele-
ment of the n × n matrix of correlation coeffi-
cients with θ being a q × 1 vector of unknown
parameters in the covariance model. The func-
tional form of the correlation matrix R(xr −xs,θ)
is taken to be known but the function itself is con-
sidered to be dependent on the unknown param-
eters θ . Some of the choices for the functional
form of R(xr −xs,θ) employed in the existing lit-
erature include the following (Sacks, et al., 1989,
Lophaven et al., 2003)

R(θrs,xr −xs) = exp [−θrs|xr −xs|]
R(θrs,xr −xs) = exp

[
−θrs|xr −xs|θn+1

]
;

0 < θn+1 < 2

R(θrs,xr −xs) = exp
[
−θrs (xr −xs)

2
]

R(θrs,xr −xs) = max{0,1−θrs|xr −xs|}
R(θrs,xr −xs) = 1−1.5ξrs +0.5ξ 3

rs;

ξrs = min(1,θrs|xr −xs|)
R(θrs,xr −xs) = 1−3ξ 2

rs +2ξ 3
rs;

ξrs = min(1,θrs|xr −xs|)
R(θrs,xr −xs) = ς (ξrs) ;

ς (ξrs) =

⎧⎪⎨
⎪⎩

1−15ξ 2
rs +30ξ 3

rs for 0 ≤ ξrs ≤ 0.2

1.25(1−ξrs)
3 for 0.2 ≤ ξrs < 1

0 for ξrs ≥ 1

(4)

The work of Santner et al., (2003) discusses the
issues related to smoothness of the functional rep-
resentation in equation (1) vis-à-vis the choice of
the form of R(xr −xs,θ ) and values of parame-
ters θ . In the present study we employ the third
of the above correlation coefficient model. It may
be noted that the function g(•), as in equation 1,
constitutes a non-homogeneous Gaussian random
field with mean E [g(x)] = f t(x)β and covari-
ance E [{g(xr)− f t (xr)β}{g(xs)− f t (xs)β}] =
σ2R(xr −xs,θ). The non-homogeneity of the
random field here arises due to the dependence

of mean value of g(x) on the parameter x. Thus,
the set of unknowns to be determined in equa-
tion (1) are

{
β j

}p
j=1, σ2 and {θi}q

i=1. Corre-
sponding to the choice of the training points x ={

x1 x2 . . . xn
}t

, we can re-write equation (1)
as

g(x) = F(x)β +Z(x) (5)

Here g(x) is a n × 1vector of random variables,
F(x) is a n× p matrix of deterministic functions
with (i, j)th element given by Fi j(x) = f j(xi) and
Z(x) is a n×1 vector of zero mean Gaussian ran-
dom variables. Thus the probability distribution
function (PDF) of g(x) is given by

g(x) = N
[
F(x)β ,σ2R(xr −xs,θ )

]
(6)

where N denotes the normal PDF with mean vec-
tor F(x)β and covariance matrix σ2R(xr −xs,θ ).
In order to determine the unknown model param-
eters

{
β j

}p
j=1, σ2 and θ , we invoke the method

of maximum likelihood estimation. Accordingly,
we construct the negative log-likelihood function

L
(
β ,σ2,θ

)
=

1
2

{
n lnσ2 + ln |R|

+(g−F(x)β)t 1
σ2 R−1 (g−F(x)β)+n ln2π

}
(7)

and minimize this function with respect to the pa-
rameters

{
β j

}p
j=1, σ2 and {θi}q

i=1. The minimiza-

tion with respect to
{

β j
}p

j=1 can be shown to lead
to the condition

β̂ =
(
FT R−1F

)−1
FT R−1g (8)

Similarly, the minimization with respect to σ2

leads to

σ̂2 =
1
n

(g−Fβ )t R−1 (g−Fβ ) (9)

Now by substituting 8 and 9 into equation 7, we
get the objective function only in terms of param-
eter vector θ as

L
(

β̂ , σ̂2,θ
)

=

1
2

{
n ln σ̂2 (θ )+ ln |R(θ ) |+n ln2π

}
(10)
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The minimization of this function, with respect to
the remaining variables {θi}q

i=1, can now be car-
ried out using numerical optimization methods.
The conditions θi > 0; i = 1,2, . . .,q are imposed
as constraints in this optimization problem. These
constraints are needed given that the correlation
function that we are using is as given by the third
of the models listed in equation 4. In the present
study we use the genetic algorithm to solve this
constrained nonlinear optimization problem. For
this purpose we utilize the ga solver that is avail-
able on the Matlab computational platform. A
penalty function to artificially enforce very high
value of the given function is used to avoid nega-
tive values of θ . The resulting predictor g(x) with
β = β̂

(
θ̂
)
, σ2 = σ̂2

(
θ̂
)

and θ = θ̂ is called the
maximum likelihood empirical best linear unbi-
ased predictor. At this stage we have determined
the values of all the unknowns in the model in
equation 6. Now we consider the question of pre-
dicting the output at a point x0 at which the com-
puter program has not been run.

3 Response prediction at an unmeasured
point

Let x0 be a point in the input space at which we
now aim to estimate g(x0) and from equation 1,
we get g(x0) = f t(x0)β + Z(x0). It is clear that
g(x0) is a Gaussian random variable and the vec-
tor

{
g(x0) g(x)

}t
forms a (n+1)×1 vector of

Gaussian random variables with PDF given by
{

g(x0)
g(x)

}
=

N

({
f t(x0)
F(x)

}
β̂ (θ̂), σ̂2(θ̂)

[
1 rt

0(θ̂ )
r0(θ̂ ) Rr0(θ̂)

])

(11)

Here r0 =
[
R(x0 −x1) . . . R(x0 −xn)

]t
. The

estimate ĝ(x0) of g(x0) that minimizes the mean

square error E
{
[g(x0)− ĝ(x0)]

2
}

is well known

to be given by (Papoulis and Pillai 2001)

ĝ(x0) = E [g(x0) |g(x)]

= f t (x0) β̂
(
θ̂
)
+rt

0

(
θ̂
)

R−1 (
θ̂
)[

g(x)−F β̂
(
θ̂
)]
(12)

This expression constitutes the kriging model and
this forms the response surface model that we
use as the surrogate in the subsequent reliabil-
ity calculation. In implementing this model we
still need to choose the functions

{
f j(x)

}p
j=1 and,

in the present study, we take quadratic functions
(as illustrated in equation 2 for l=3) so that p =
1+ l + l(l+1)

2 . If cross terms are ignored, one gets
p = 2l + 1. Figure 2 summarizes the steps in-
volved in the construction of the response surface
based on the procedure outlined in this and the
preceding section.

4 Selection of sampling points

A step that precedes the modeling described in the
previous sections consists of selecting the n × l
matrix of inputs

{
x1 x2 . . . xn

}t
and this step

is called the experimental design. We employ in
our study a version of Latin hypercube sampling
that has the potential for filling up the input space
in a uniform fashion. A Latin square is a square
grid containing sample positions in which each
row and column has one (and only one) sample.
A Latin hypercube is a generalization of a Latin
square in multiple dimensions. If there are n sam-
ples to be chosen from p random variables, then,
it can be represented by n× p matrix L, in which
each column consists of a permutation of the real
numbers from n equally divided intervals from 0
to 1. We refer to each row of L as a sample point
in p dimensions and use the notation (Liefvendahl
and Stocki, 2006)

L =

⎡
⎢⎢⎢⎢⎣

x1

x2

.

.
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x11 . . x1p

x21 . . x2p

. . . .

. . . .
xn1 . . xnp

⎤
⎥⎥⎥⎥⎦

where xi, 1 ≤ i ≤ n, is the i-th sample point.

Figure 1(a) illustrates 20 samples chosen as per
the Latin hypercube design. It is clear that Latin
hypercube sampling can lead to several admissi-
ble sampling scenarios. The origins of this sam-
pling method lie in the work of Mackay et al.,
(1979) who discussed the variance of estimators
of mean and empirical PDF based on three sam-
pling strategies that included random sampling,
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Figure 1: Latin hypercube designs for 20 samples of two random variables; (a) a typical random Latin
hypercube sample; (b) the optimized Latin hypercube samples.
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Figure 2: Flow chart for the construction of kriging based response surface (sections 2 and 3).

stratified sampling and Latin hypercube sampling.
The study investigated the condition under which
the Latin hypercube sampling reduces the vari-
ance in comparison to the simple random sam-
pling. Subsequently, there have been several pa-
pers that have developed this method further and
the study by Helton et al., (2006) provides a con-
temporary perspective in the area of experimen-
tal design. In our work, we follow the Audze-
Eglais uniform Latin hypercube design (Bates et
al., 2003). This method introduces the notion of
potential energy of points in a design of experi-
ments. The analogy is based on a physical model
in which the sample points are perceived as unit
point masses that repel each other with forces that
are inversely proportional to the distance between

the masses. A quantity termed as potential energy
is defined as

U =
P

∑
p=1

P

∑
q=p+1

1
Lpq

(13)

where Lpq is the distance between the points p
and q (note: clearly p �= q). According to the
method due to Audze-Eglais, we select the Latin
hypercube sample that minimizes the quantity U
as given above. This is expected to distribute the
experiment points as uniformly distributed as pos-
sible within the design variable domain. Figures
1 (a) and (b) illustrate a typical Latin hypercube
design along with the optimized Latin hypercube
design. A flowchart for drawing samples based on
the optimal Latin hypercube sampling technique
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Figure 3: Flow chart for the generation of optimal Latin hypercube samples using genetic algorithm (Section
4).
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is presented in Figure 3. The integration of this
procedure into the reliability calculation is illus-
trated in Figure 4.

5 Sampling design based on a variation of
Bucher-Bourgund method

Bucher and Bourgund (1990) have proposed an
adaptive interpolation scheme to arrive at the re-
sponse surface parameters. These authors assume
the response surface to be of the form g̃(X) = A+
BXt + XtCX and take C to be a diagonal matrix
so that the cross quadratic terms are not included.
The authors adopt a fully saturated experimental
design and evaluate g(X) at the sampling points
given by 2l + 1 combinations μl ± hσi where μi

and σi are, respectively, the mean and standard de-
viation of Xi. Using this information, an estimate
of the undetermined response surface parameters
is obtained. Corresponding to the surface g̃(X) so
obtained, the Hasofer-Lind reliability index and
the associated design point xD are determined. In
doing so, it is assumed that the random variables
{X}l

i=1 are uncorrelated and Gaussian distributed.
An update on the location of the experimental de-
sign point is now obtained as

xm = xD +[xD −μ ]
g(μ)

g(μ)−g(xD)
(14)

This helps to locate the center point closer to the
limit surface g(X) = 0. A new surface using xmas
the center point is obtained and this is used as the
final estimate of the response surface. Thus, this
procedure requires 4l + 3 number of evaluations
of the performance function g(X). Rajashekhar
and Ellingwood (1994, 1995) examined issues re-
lated to the choice of experimental points and
suggested modifications to the approach used by
Bucher and Bourgund (1990). They questioned
if a single cycle of updating, as was proposed by
Bucher and Bourgund, is always adequate. In an-
swer to this question, these authors detailed how
subsequent updating could be satisfactorily car-
ried out. Other issues examined by these authors
include a discussion on selecting design points
near tails of probability distributions of the ba-
sic random variables and also on including cross

terms in the response surface fit. One of the com-
mon features of the procedures suggested by both
Bucher & Bourgund and Rajashekhar & Elling-
wood, is that, at different stages of response sur-
face modeling, only a part of available informa-
tion on the functional evaluations of g(x) is di-
rectly used. Given that, computationally, the most
involved step in response surface modeling lies in
evaluation of g(X), it is desirable that the mod-
eling procedure should utilize all the information
available on g(X) at every stage of response sur-
face fitting. The idea of kriging modeling for re-
sponse surface, as being studied in the present
paper, can be combined with the earlier proce-
dures of Bucher and Bourgund and Rajashekhar
and Ellingwood. Thus, at any stage of response
surface construction, the kriging model is made
utilize at least a part (if not all) of the information
available on evaluation of g(x). In the numerical
work it was found that, after the first iteration of
finding the design point using 2l+1 sample points
(that is, using the points μl ± hσi; i = 1,2, . . ., l),
in the subsequent fitting of kriging surfaces, only
the newly found centre point be included in re-
sponse surface modeling along with the earlier
2l + 1 points. This was found to give solutions
whose accuracy compared well with the results
from refinements proposed by Rajashekhar and
Ellingwood. Figure 5 summarizes the steps in-
volved in the proposed calculation steps.

6 Numerical examples

For the purpose of discussion, we adopt the fol-
lowing nomenclature for alternative methods of
reliability assessment:

Method I Direct Monte Carlo simulation with a
large number of samples.

Method II Response surface modeling based on
the Bucher-Bourgund approach (1990) pos-
sibly with refinements as proposed by Ra-
jashekhar and Ellingwood (1993).

Method III The approach developed in the
present study in sections 2-5. The steps are
summarized in Figure 4.
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Figure 4: Flowchart for method III for reliability estimation (sections 2-4).
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Figure 5: Flowchart for Method IV for reliability estimation (Section 5).
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Method IV The approach outlined in section 2-
4. The steps are as summarized in Figures
2-4.

It may be noted that in the present discussion we
take the results from Method I as the benchmark
against which other methods can be compared.
Although this result itself is subject to sampling
fluctuations, given the large size of samples used,
these fluctuations are considered to be negligible.

6.1 Preliminary examples

Here we begin by considering a set of prob-
lems in which performance function is explicitly
known and apply the response surface modeling
approach developed in this study to these prob-
lems. This enables the evaluation of proposed
methods with respect to problems that can be eas-
ily treated by alternative methods.

First, we consider the performance function
g(X1,X2) = 7−X2

1 −X2 with X1 and X2 being mu-
tually independent standard normal random vari-
ables (Gupta and Manohar 2004a). Figure 6(a)
shows the performance function. The probability
of failure estimated using 106 samples (Method
I) leads to an estimate of Pf =0.0097. From
Figure 6(a) it can be observed that the perfor-
mance function has two design points and they
can be shown to be given by (2.5500,0.4975) and
(-2.5500,0.4975). Based on the first order relia-
bility method (FORM), it can also be shown that
the associated Hasofer-Lind reliability index is
βHL=2.5981 and the associated nominal probabil-
ity of failure to be 0.0047. Clearly, the FORM
would perform poorly in this example since it can
take into account only one design point. In fact,
the estimated nominal failure probability 0.0047
compares poorly with the estimate of Pf =0.0097
(Method I). Methods II and IV provide estimates
of βHL, which compare well with the FORM solu-
tion and, consequently, have the same weakness.
The response surface model based on Method III
is shown in Figure 6(b) and the estimate of failure
probability (with 106 samples simulation) turns
out to be 0.0097 which agrees very well with re-
sults obtained using Method I.

Next, the performance function g(X1,X2) = a2 −

(
X2

1 +X2
2

)
with X1 and X2 being mutually inde-

pendent standard normal random variables and a
being a deterministic constant is considered. The
performance function here clearly constitutes a
circle and, consequently, there exist infinite num-
ber of design points with every point on the limit
surface being a design point. This function is
clearly the most difficult to treat using FORM.
The results from Method I (with 106 samples)
are obtained as 0.0110 for a=3 and the FORM
estimate for the nominal probability of failure is
0.0013. While methods II and IV provide compa-
rable estimates as FORM, method III provides an
answer that is very close to estimate from Method
I with less than 0.001% accuracy.

Here we investigate the static behavior of a
beam and take the performance function to be
given by g(Y,Z,M) = Y Z − M, where Y = yield
strength, Z=section modulus and M= applied
bending moment (Ang and Tang, 1984). It is
assumed that Y and Z are lognormal distributed
and M is type I asymptotic extreme value ran-
dom variable. The mean values of these quanti-
ties are taken to be μY = 2.7579×102 N/mm2,μZ=
8.1935×105 mm3and μM= 1.1298×108Nmm re-
spectively with the associated coefficient of varia-
tions being ΩY =0.125; ΩZ=0.050; ΩM=0.200 re-
spectively. Furthermore, the matrix of correlation
coefficients for these random variables is taken to
be given by

ρ =

⎡
⎣ 1 0.4 0

0.4 1 0
0 0 1

⎤
⎦

The FORM estimate of the nominal failure prob-
ability based on βHL=2.658 is 0.0039 (Ang
and Tang, 1984). The failure probability esti-
mated using 106 samples Monte Carlo simula-
tions (Method I) is 0.0038. The results obtained
using Method II, III and IV are 0.0039, 0.0039
and 0.0038 respectively. In this example it can be
concluded that all the alternative methods (meth-
ods II, III, IV) lead to acceptable results. This
points towards the possible existence of only one
design point and essentially one region that con-
tributes significantly to the failure probability. It
is of interest to note that Method II converged in



Applications of Meta-Models in Finite Element Based Reliability Analysis 173

(-2.5500, 
0.4975)

(2.5500, 
0.4975)

-2

-1

0

1

2

3

4

5

6

7

8

-3 -2 -1 0 1 2 3
x1

x2

(a)

(b) 

Figure 6: Example 6.1a; Performance function with two design points; (a) the performance function and
the design points; (b) kriging response surface approximation to the performance function and the failure
surface.

two iterations, requiring a total of 16 limit state
evaluations; a total of 24 samples were used in
Method III. Method IV converged in three steps
requiring totally 12 limit state evaluations. Table
1 shows the results on estimation of probability of
failure as a function of μZ obtained using methods
I-IV. The response surface based methods (II-IV)
are observed to perform very well in this exam-

ple with the number performance function evalu-
ations being the smallest for Method IV.

Here we consider a nonlinear single degree of
freedom (sdof) system subjected to a box-input
as shown in Figure 7. The governing equation of
motion for the given system can be given by

mü+Keqvu = F1(t); u(0) = 0; u̇(0) = 0
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Table 1: Example 6.1c; reliability of a beam in terms of moment carrying capacity.

μZ (in mm3)
Probability of failure

Method I Method II Method III Method IV
4.9161E+05 0.2248 0.2178 0.2261 0.2176
5.7355E+05 0.0890 0.0857 0.0891 0.0855
6.5548E+05 0.0325 0.0312 0.0323 0.0310
7.3742E+05 0.0112 0.0110 0.0114 0.0109
8.1935E+05 0.0038 0.0039 0.0039 0.0038
9.0129E+05 0.0014 0.0014 0.0015 0.0013
9.8322E+05 0.0005 0.0005 0.0005 0.0005

Table 2: Example 6.1d; reliability of a sdof system (figure 7).

Sl. No. Random Variables Distribution Type Mean Std. Deviation Units
1 m Log-Normal 1.0 0.05 kg
2 K1 Log-Normal 1.0 0.10 N/mm
3 K2 Log-Normal 0.1 0.01 N/mm
4 r Log-Normal 0.5 0.05 mm
5 F1 Log-Normal 1.0 0.20 N
6 t1 Log-Normal 1.0 0.20 s

Keqv =⎧⎪⎨
⎪⎩

(K1 +K2) ∀{(u(t) < r)&(u(t) < u(t +Δt))}
(K1) ∀{(u(t) > r)&(u(t) < u(t +Δt)}
(K1 +K2) ∀(u(t) > u(t +Δt))

(15)

The simulation was carried out for a duration of
10 s. The parameters m, K1, K2, r, F1 and t1 are
considered to be independent lognormal random
variables with their properties as summarized in
Table 2. The limit state function is defined as
g = 3r−|Zmax|, where Zmax is the maximum dis-
placement response of the system. The failure
probability estimated using Method I is 0.0323
using 106 samples. The estimate obtained using
methods II, III and IV are 0.0334, 0.0322 and
0.0329 respectively. A total of 42 samples, i.e.,
6 samples per random variable, were used for the
estimation in method III. Methods II and IV con-
verged in 3 and 2 iterations respectively requiring
a total of 42 and 16 evaluations respectively.

6.2 Reliability of a ten-bar truss

Here we consider the reliability of a pin jointed
truss loaded as shown in Figure 8a. Table 3 lists
the details of the probabilistic models adopted for

the truss parameters. This problem has been an-
alyzed using Methods I- IV. The structural be-
havior has been modeled using the finite element
method with one 2-noded truss element per mem-
ber and under the assumption that the joints are
perfect pins. The performance of the structure
has been defined with respect to mid-span deflec-
tion with an allowable limit of 110 mm, leading to
the performance function g(x) = 110−D(x), with
D(x) measured in mm. In implementing Method
I, a sample size of 106 has been used. The fail-
ure probability estimated is 0.0088 using Method
I, while results obtained using Methods II, III and
IV are 0.0050, 0.0079 and 0.0049 respectively. To
investigate the robustness of this conclusion, the
probability of failure is plotted as a function of
one of the system parameter, namely Em, in Figure
7b. Clearly, Method III is observed to outperform
Methods II and IV, in terms of comparison with
results from brute force Monte Carlo samples. Ta-
ble 4 lists the coefficients {βi}20

i=0 and the param-
eters {θi}10

i=1 that appear in the response surface
model (equation 12). In the computational work,
it was observed that the results from Method II
converged in 3 iterations with a 66 g−function
evaluations while Method IV converged in 2 it-
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Figure 7: Example 6.1d; (a) Nonlinear oscillator subjected to step input; (b) the restoring force displacement
characteristics.

erations requiring 26 g-function evaluations. The
accuracy of predictions using method III is ex-
pected to depend upon the number of divisions
used in constructing the optimal Latin hypercube
samples. Figure 8c shows the variation of the fail-
ure probability as a function of the number of divi-
sions and it is seen that with about 7 or 8 divisions,
one gets satisfactory results. Similar results were
obtained for some of the other examples studied
in this paper.

As a further extension of the same problem, we
now consider a set of 12 additional performance
functions, defined in terms of axial strains in the
diagonal members. The members are considered
to have failed, if, the axial strain exceeds a thresh-
old value of 0.014. Accordingly, the performance
function with respect to mid-span deflection and

the 12 performance functions with respect to ax-
ial strains are taken to constitute a series sys-
tem. The failure probability can be represented
as P

[{11.0−D(x) < 0} ∩ {.014−ε1 < 0} . . . ∩
{.014−ε12 < 0}]

where εii = 1,2, . . .,12 repre-
sents the strains in each of the 12 diagonal mem-
bers. We employ Method III to solve the prob-
lem on hand. A set of 13 response surfaces i.e.
ĝ(x1), ĝ(x2), . . ., ĝ(x13)are generated correspond-
ing each of the performance functions. In doing
so, the same set of samples from optimal Latin
hypercubes is used in fitting the distinct response
surfaces. Using a sample size of 106, the series
system failure probability is subsequently com-
puted using the 13 surrogate functions obtained
and this probability is obtained as 0.0084. This
number compares reasonably well with an esti-
mate of Pf =0.0096, obtained using brute force
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Figure 8: Example 6.2 A ten bar truss; the performance function is defined in terms of the admissible
mid-span deflection (a) the truss structure and the applied loads; (b) probability of failure as a function
of expected Young’s modulus of the truss members. (c) variation of the failure probability estimate with
number of samples.
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Table 3: Example 6.2; reliability analysis of a ten bar truss (figure 8); details of probabilistic models adopted
for the underlying random variables.

Sl. No. Random Variables Distribution Type Mean Std. Deviation Units
1 Young’s Modulus

(Main member) – Em

Log-Normal 2100.00 210.00 N/mm2

2 Cross-Sectional Area
(Main member) – Cm

Log-Normal 2000.00 200.00 mm2

3 Young’s Modulus (Di-
agonal member) – Ed

Log-Normal 2100.00 210.00 N/mm2

4 Cross-Sectional Area
(Diagonal member) –
Cd

Log-Normal 1000.00 100.00 mm2

5 P1 Type-1-Extreme 500.00 75.00 N
6 P2 Type-1-Extreme 500.00 75.00 N
7 P3 Type-1-Extreme 500.00 75.00 N
8 P4 Type-1-Extreme 500.00 75.00 N
9 P5 Type-1-Extreme 500.00 75.00 N
10 P6 Type-1-Extreme 500.00 75.00 N

Table 4: Example 6.2; reliability analysis of a ten bar truss (figure 7); the parameters of the response surface
model (equation 12).

0.9587 -5.7302E+01 -2.7456E-05

0.9550 1.5430E-01 2.7627E-05 

0.5261 -9.8300E-02 -4.4755E-06

0.7919 4.7800E-02 -1.5054E-06

0.1555 6.5000E-03 2.8095E-05 

0.8891 -2.5500E-02 1.4844E-05 

0.4855 -4.3400E-02 1.6814E-05 

0.3964 -6.9300E-02 4.3275E-05 

0.8790 -9.6000E-02 4.9629E-05 

-8.8800E-02
0.7246

2.5300E-02
-3.7224E-05

Table 5: Example 6.3; reliability analysis of a w-seal (figure 8); details of probabilistic models adopted for
the underlying random variables.

Sl. No. Random variables Distribution type Mean Std. Deviation Units
1 Temperature Log-Normal 4.0000E+02 6.0000E+01 deg C
2 Pressure (cavity I) Type-1-Extreme 6.2000E-01 1.3500E-01 N/mm2

3 Pressure (cavity II) Type-1-Extreme 5.0000E-01 1.2000E-01 N/mm2

4 Displacement Normal 2.0000E-01 4.0000E-02 mm
5 Thickness Normal 1.5000E-01 1.5000E-02 mm
6 Young’s Modulus Log-Normal 2.1000E+05 2.1000E+04 N/mm2

7 Yield Stress Normal 9.8000E+02 5.0000E+01 N/mm2
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(a)

(b) 
Figure 9: Example 6.3; reliability analysis of a W-seal; (a) geometry of the W-seal; (b) finite element model
used in the reliability study; gap elements at the interfaces are shown with thick lines.

Monte Carlo simulation on the full FE model with
106 runs of the finite element code.

6.3 Reliability of a W-seal

In this example, we consider the problem of relia-
bility analysis of a W-seal that is commonly used
in aircraft engines. Such seals serve to prevent
leakage between two pressure cavities within an
aircraft engine. Figure 9 shows a typical W-seal
that prevents leakage between two cavities I and
II. The seal deformation is governed by the rela-
tive displacements between the adjacent hardware

A and B, pressure fields from cavities I and II and
due to the body temperature of the seal. A to-
tal of 7 random variables are considered, leading
to X={body temperature of the seal, pressures in
cavities I and II, applied relative displacements
between the adjacent hardware, seal thickness,
Young’s modulus, and yield stress of the seal ma-
terial}. The statistical properties of these random
variables are provided in Table 5. The correlation
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coefficient matrix is taken to be

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.5 0.5 0.5 0.0 0.0 0.0
0.5 1.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 1.0 0.0 0.0 0.0 0.0
0.5 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.5
0.0 0.0 0.0 0.0 0.0 0.5 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, in this example, the random variables are
non-normal and mutually correlated. The seal is
considered to have failed if the maximum von
Mises’ stress anywhere in the seal exceeds the
yield stress during the operation. Hence, the limit
state can be defined as g(x) = max(σvonmises)−
σyield. The seal geometry and the associated di-
mensions are shown in Figure 9(a). Figure 9(b)
shows the finite element model of the W-seal, cre-
ated on the ANSYS version 8.1 platform. Taking
advantage of the symmetry of the structure and
the loads, only half of the seal is considered for
the finite element modeling. The model is meshed
with SOLID 42 elements with axi-symmetric op-
tion. The wall, modeled on either side, represents
adjacent hardware. The relative axial displace-
ment between adjacent hardware A and B is mod-
eled as applied displacements on the wall A, as
shown in Figure 9(b). Standard surface to surface
contact elements are used to model the interface
between the seal and the adjacent hardware and
between its own surfaces. A high contact stiff-
ness of 2.1×106 N/mm2 is used to reduce contact
penetration and a pinball radius of 0.5 mm is used
for contact identification. W-seals are made up of
sheet metal components and are highly flexible;
consequently, the analysis is taken to include the
effect of nonlinear strain-displacement relations.
There is an interference fit between the seal and
the adjacent hardware. To model this, the anal-
ysis is carried out in two steps. The first step is
to run for an interference of 0.15mm, modeled as
applied displacement from adjacent hardware A.
This analysis is performed at an ambient condi-
tion of 25 degC. The second step is to simulate the
operating condition of the hardware, under the ac-
tion of body temperature, relative displacements
between the hardware and pressure in cavities I
and II. Hence, the second step is carried out under

the action of the all the loads. Coefficient of ther-
mal expansion used is 6.5×10−6 per deg C. One
run of the FE calculation requires about 8 minutes
on a Pentium 2.66GHz 1GB RAM machine. For
such problems, it is practically infeasible to carry
out a large number of FE simulations (of the or-
der of 106 as has been done in previous examples)
and hence method I was not considered suitable in
this example. Instead, the failure probability was
estimated using methods II, III and IV. Results ob-
tained using methods II, III and IV predicted a
failure probability of 0.0020, 0.0020 and 0.0019
respectively. It required 7 iterations for the Raj
Shekhar & Ellingwood’s procedure to converge at
the design point requiring a total of 112 function
evaluations, while method IV converged in 6 it-
erations thus requiring a total of 26 evaluation of
the FE model to arrive at the design point. A total
of 56 samples were used in method III.

6.4 Reliability of randomly parametered dy-
namical systems excited by random excita-
tions

The response surface method developed in sec-
tions 2 and 3 can be modified to tackle problems
of time variant reliability analysis of randomly
excited structural systems whose parameters are
also random in nature. We illustrate this possi-
bility by considering an example of a randomly
driven sdof Duffing’s oscillator governed by the
equation

mẍ+cẋ +kx+εx3 = f (t); x(0) = x0; ẋ(0) = ẋ0

(16)

Here f (t) is taken to be a stationary Gaussian ran-
dom process with a specified power spectral den-
sity function. In the present study we take

S f f (ω) =
λ0

λ 2
0 +(ω −β0)

2 +
λ0

λ 2
0 +(ω +β0)

2 ;

−∞ < ω < ∞ (17)

with λ0 =0.5 and β0 = 2. We also consider the
parameters m, c, k, and ε to constitute a vector of
random variables with prescribed joint probabil-
ity density function. For the purpose of reliability
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analysis, we consider performance functions de-
fined as functions of the state variables x(t) and
ẋ(t). Thus, for instance, if interest is focused on
reaction transferred to the support, we obtain the
reaction as R(t) = cẋ + kx + εx3 and define prob-
ability of failure through the relation

1−Pf = P [R(t) < R0∀t ∈ (t0, t0 +T )]

= P

[
max

t0<t<t0+T
R(t) < R0

]

= P

[
max

t0<t<t0+T
R(t)−R0 < 0

]

=
∫

r−r0<0

∫
pRmR0 (r, r0)drdr0

(18)

where Rm = max
t0<t<t0+T

R(t) is the extreme value of

R(t) and R0 is the threshold value of the permissi-
ble reaction. If Rm and R0 are taken to be mutually
independent one gets

1−Pf =
∫

r−r0<0

∫
pRm(r)pR0 (r0)drdr0 (19)

The problem of time variant reliability thus re-
duces to the problem of determination of extreme
value of the random process R(t) over the time
interval (t0, t0 +T ). The problem of determina-
tion of pdf of extremes of sequence of random
variables and extremes of random processes over
specified parameter intervals is a widely studied
topic (see, for example, Castillo 1988, Kotz and
Nadarajah 2000, and Coles 2001). One of the
main results of the extreme value theory of se-
quence of independent identical distributed (iid)
random variables is that the limiting form of
the extreme value distribution assumes one of
the three limiting forms, namely, the Gumbel,
Weibull or Frechet distributions. Consequently, it
is possible to envisage three basins of attractions
so that a given iid sequence of random variables
has extremes that belong to one of three extreme
value distribution types. Techniques for identi-
fying the basin of attraction, to which a given
iid sequence belongs to, are available so that the
basin could be identified even when the knowl-
edge of the underlying random variable is limited
to a sample (Castillo 1988). Recently, Radhika

et al., (2007) have proposed that this technique
could be extended to study reliability of randomly
excited dynamical systems. In the present sec-
tion, we extend this formulation to combine meth-
ods from extreme value analysis with response
surface models. We restrict our attention to sit-
uations in which the extremes of random pro-
cesses are modeled using Gumbel distributions.
Techniques for ascertaining whether or not Gum-
bel model could be used for modeling extremes
based on limited data are available in the book by
Castillo (1988) and are discussed in detail in the
works of Radhika et al., (2007) and these details
are not provided here. Also, we restrict our at-
tention here to study the extremes of the displace-
ment responseX(t) in the steady state. Accord-
ingly, the starting point in the present study is the
model for the PDF of Xm = max

t0<t<t0+T
X(t) condi-

tioned on the random variables m, c, k, and ε taken
to be of the form

PXm(x|ψ) = exp

[
−exp

{−(x−λ (ψ)))
δ (ψ)

}]
,

−∞ < x < ∞ (20)

where ψ =
(
m c k ε

)t
is the vector of ran-

dom variables denoting uncertainties in the sys-
tem characteristics. We propose in this study that
we model the quantities λ (ψ) and δ (ψ) using the
kriging based response surface models. Accord-
ingly, we develop surrogate models for λ (ψ) and
δ (ψ) using method III outlined in sections 2 and
3. Following this we determine the unconditional
PDF of Xm = max

t0<t<t0+T
X(t) using

PXm(x)

=
∫

exp

[
−exp

{−(x−λ (ψ)))
δ (ψ)

}]
pψ(ψ)dψ

≈ 1
N∗

N∗
∑
s=1

exp

[
−exp

{−(x−λ (ψi)))
δ (ψi)

}]

(21)

where {ψi}N∗
i=1 are samples drawn from the known

pdf pψ(ψ).

For the purpose of illustration, we consider the pa-
rameters m, c, k to be mutually independent and
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(a)                                                                  (b) 

(c)                                                                  (d) 
Figure 10: Example 6.4; reliability analysis of a randomly parametered Duffing’s oscillator subjected to
random excitations; (a) kriging surface for the parameter λ in equation (19); here k and ε are fixed at their
respective mean values; (b) kriging surface for the parameter δ in equation (19); here k and ε are fixed at
their respective mean values; (c) sample realization of the Gumbel PDF; (d) models for the PDF of extreme
displacement response.

log-normally distributed random variables and ε
to be a type 1 asymptotic random variable with
mean values of 1 kg, 0.500Ns/m, 4N/m, 10N/m3

and standard deviations 0.050kg, 0.025 Ns/m,
0.200 N/m, and 1 N/m3 respectively. The excita-
tion model parameters (equation 16) are selected
to be α0 = 0.5 and β0=2. Samples of excita-
tion time histories compatible with the psd func-
tion as in equation 16 are simulated by using a
Fourier representation with random variable coef-
ficients (Papoulis and Pillay 2001). For specific
realizations of the excitation f (t) and the model

parameters m, c, k, and ε the sample solution of
equation 15 is obtained using the 4th order Runge
Kutta fourth order algorithm. In finding extreme
responses we take x(0) = ẋ(0) = 0, t0 = 5s and
T = 45s. Figure 10 (a) and (b) show the sections
of kriging surfaces for the parameters λ and δ as
functions of c and m with the other parameters k
and ε fixed at their respective mean values. An
ensemble of realizations of the conditional PDF
PXm(x|ψ) is shown in figure 10 (c) and the uncon-
ditional PDF PXm(x) obtained by averaging this
ensemble is compared with results from 105 direct
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Monte Carlo simulations solution of equation 15
in figure 10(d). As can be observed from figure
10(d) the performance of the proposed response
surface method is observed to compare reason-
ably well with direct Monte Carlo simulation re-
sults.

7 Discussion

Clearly Method I (that is, the brute force Monte
Carlo simulations) is uniformly applicable, at
least, in principle, to all the problems considered
in this study. However, for problems of practi-
cal interest, such as the analysis of the W-seal, in
which, a single rtun of Monte Carlo simulation
takes about 8 min of CPU (on a Pentium 2.66GHz
1GB RAM machine), the evaluation of Pf of the
order of 10−3 requires at least about 104 simula-
tion runs leading to a CPU time requirement of
approximately about 1300 hrs. This clearly pro-
hibits the application of Method I for this type of
problems. On the other hand, the response sur-
face based methods do not suffer from such com-
putational demands. Moreover, the computational
effort involved in predicting Pf using Method I in-
creases significantly as Pf reduces. The response
surface methods, by and large, do not suffer from
this limitation. Among Methods II-IV, Method III
is the most robust in terms of its ability to handle
multiple design points and (or) multiple regions of
comparable importance for reliability calculation.
This feature of the method is particularly advanta-
geous in real-life situations in which it is difficult
(if not impossible) to establish a priori whether or
not a given performance function possess multi-
ple design points. Between Method II and IV, the
latter seems advantageous since in Method II, the
number of function evaluations depends upon the
number of iterations needed to reach a satisfactory
convergence on the reliability. Also, while Meth-
ods II and IV are rooted in the classical reliabil-
ity index methods (with the concomitant need to
linearize the performance function, as in the first
order reliability method), Method III, on the other
hand, is based on statistical principles and does
not involve any linearization of performance func-
tions. In terms of computational effort Method III
is perhaps the most demanding among Methods

II-IV and for problems with single design points,
the Methods II and IV are equally well applicable.

8 Closing remarks

The development of computational models for re-
liability analysis of complex engineering struc-
tures is one of the difficult problems that lie at the
forefront of structural engineering research. The
developments in the area of finite element mod-
eling have ensured that it is possible to perform
sample simulations of structural behavior allow-
ing for several complexities such as nonlinear-
ity, transient dynamic behavior and large sized
problems. However, when questions on relia-
bility of such structures are to be answered, es-
pecially when the probability of failure is very
small (of the order of 10−5 or less), the problem
becomes computationally intractable even with
modern computing facilities. This has prompted
development of simplified modeling tools that
lead to surrogate models for long-running finite
element codes. The present study explores the ap-
plication of developments in the area of design
and analysis of computer experiments to prob-
lems of structural reliability analysis. Specifi-
cally, the study combines the space filling optimal
Latin hypercube sampling techniques with krig-
ing models to develop surrogate functions for per-
formance functions associated with reliability of
structural systems whose behavior is modeled via
finite element models. The range of issues cov-
ered includes linear/nonlinear structural models,
static/dynamic behavior, Gaussian/non-Gaussian
uncertainty models, random variable/random field
models, time variant/invariant reliability analyses,
single/multiple performance functions, and ran-
dom excitation and random structural parameter
models. The application of kriging based sur-
rogate models for parameters of asymptotic ex-
treme value distributions in the context of re-
sponse of randomly parametered nonlinear sys-
tems subjected to random excitations is also dis-
cussed. The performance of the proposed pro-
cedures is assessed (where possible) by compar-
ing the results with direct Monte Carlo simulation
results obtained using large sample. The proce-
dures developed are demonstrated to perform sat-
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isfactorily in terms of accuracy, computational ef-
ficiency and ability to handle performance func-
tions with multiple design points or multiple re-
gions of comparable importance. The methods
developed herein have promise for further exten-
sions to obtain measures of sensitivity of failure
probability with respect to different random vari-
ables and also to carry out reliability based opti-
mization studies. These aspects are currently be-
ing investigated by the present authors.
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