
Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

Genetic Approaches to Iteration-free Local Contact Search

Atsuya Oishi1 and Shinobu Yoshimura2

Abstract: This paper describes new methods
based on genetic approaches for finding approx-
imating expressions of local coordinates of a con-
tact point in a local contact search process. A
contact search process generally consists of the
following two phases: a global search phase for
finding the nearest node-segment pair and a local
search phase for finding an exact local coordinate
of the contact point within the segment. The lo-
cal contact search can be regarded as the mapping
from the coordinates of nodes to the local coordi-
nates of contact points. In this paper, two meth-
ods are proposed to find mathematical expressions
that approximate the mapping in the local contact
search using either the genetic algorithm (GA) or
the genetic programming (GP). For both meth-
ods, parallel processing is efficiently utilized, and
it enables massive search for suitable expressions
in reasonable time. The GA-based method is uti-
lized for finding approximating polynomials for
the mapping in the local contact search process,
while the linear GP-based method is utilized for
finding approximating rational expressions. Fun-
damental procedures of the proposed methods are
first described in detail, and next their basic per-
formance is thoroughly tested for sample data. Fi-
nally, the proposed method using the linear GP
is successfully applied to find the approximat-
ing expressions of the local coordinate value in
the local contact search process for the smoothed
contact surfaces with Gregory patches, and the
approximating expressions obtained by the pro-
posed method prove to be very fast in estimating
the local coordinate values of the contact point.

Keyword: Contact Search, Genetic Pro-
gramming, Genetic Algorithm, Finite Element
Method, Sliding Interface, Curved Surface.

1 Univ.Tokushima, Tokushima, JAPAN
2 Univ. Tokyo, Tokyo, JAPAN

1 Introduction

Concomitant with a remarkable progress in the
field of microelectronics, the performance of
computers has increased dramatically. This
has been promoting the replacement of time-
consuming and highly expensive experiments
with such computer simulations as the finite el-
ement method (FEM). As computer simulation is
increasingly utilized as a tool in design and anal-
ysis, more complex models will need to be simu-
lated.

For the analyses of dynamic problems such as ve-
hicle crashworthiness and metal forming, contact-
impact phenomena must inevitably be taken into
account [Zhong (1993), Schweizerhof, Nilsson
and Hallquist (1992), Guz, Menshykov, Zozulya
and Guz (2007), Guz and Zozulya (2007), Kep-
pas, Giannopoulos and Anifantis (2008), Ozaki,
Hashiguchi, Okayasu and Chen (2007), Vignje-
vic, De Vuyst and Campbell (2006)]. In the
contact-impact analyses, the contact point be-
tween two objects, or two parts of one identical
object, and their interaction are analyzed step by
step. Contact conditions between two objects are
in general described by the following two criteria:

Ω1 ∩Ω2 = φ (1)

Γ1 ∩Γ2 �= φ (2)

where Ω1, Ω2 are inner bodies of the objects, Γ1,
Γ2 are boundaries of the objects. Criterion (1)
means no penetration into each body. In dynamic
contact-impact analyses, it must be checked ev-
ery time step whether the contact conditions, i.e.
criteria (1), (2), will be met between any two sur-
faces of the whole analysis domain. This process
is called contact search.

The contact-impact algorithms in finite element
contact analyses can be divided into two phases:

128 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

the contact-searching algorithm phase and the
contact interface one. First, the contact-searching
algorithm locates where contact occurs. Second,
contact forces are applied to the contact surfaces
according to the contact interface algorithm. The
contact search process often consumes the most
amount of time for the contact-impact algorithm.
So, a fast and efficient contact search method has
been desired.

The sliding interface algorithm [Hallquist,
Goudreau and Benson (1985), Benson and
Hallquist (1990)] is most popular, and has been
implemented in DYNA3D code, which is an
explicit three-dimensional finite element code for
analyzing dynamic response of inelastic solids
and structures with large deformation. In the slid-
ing interface algorithm, any two surfaces that may
come into contact must be specified prior to the
analysis. One of the two surfaces is designated
as a master surface, while the other as the slave
surface. Contact searching is performed only
between slave nodes, i.e. the nodes on the slave
surface, and the master segments, i.e. the facets
of the elements on the master surface. Contact
search process usually consists of the following
two phases: the global search phase and the local
search phase. In the global contact search phase,
the master segment that is in close proximity to a
given slave node is picked up by checking all the
slave nodes in the whole analysis domain. In the
local contact search phase, the selected pair of the
segment and the slave node is examined precisely
and the local coordinates of the contact point, if
any, is determined by a time-consuming iterative
method such as Newton’s method.

Genetic approaches, such as Genetic Algorithms
(GAs) [Goldberg (1989)] and Genetic Program-
ming (GP) [Koza (1992), Koza (1994)], have been
developed as engineering algorithms that simulate
biological genetic mechanism. They are very use-
ful tools for combinatorial optimization problems
and have been successfully applied to various
problems in engineering fields [de Lacerda and
da Silva (2006), Globus, Menon and Srivastava
(2002), Mathur, Advani and Fink (2003), Mus-
tata, Harris, Elliott, Lesnic and Ingham (2000),
Rama Mohan Rao, Appa Rao and Dattaguru

(2004), Singh, Mani and Ganguli (2007)].

In the present paper, we propose a new iteration-
free local contact search method using an approx-
imating function that explicitly represents the lo-
cal coordinates of a contact point. The approxi-
mating functions are determined through genetic
approaches, such as genetic algorithms (GA) and
genetic programming (GP), on parallel comput-
ers. Fundamental formulations of the proposed
methods and their implementations on parallel
computers are explained in detail. Sample anal-
yses show that the approximating functions ob-
tained by the proposed methods are faster in es-
timating the contact point than the conventional
method based on the Newton’s iteration and accu-
rate enough for some practical applications.

2 Contact Search Algorithms in Sliding In-
terface Algorithm

2.1 Fundamental Algorithm

Each segment is assumed to be a quadrilateral
facet of an 8-noded hexahedral isoparametric ele-
ment on a contact surface. As for shell elements,
there are two segments in one element, which cor-
respond to both surfaces of the element. Figure 1
shows a configuration of a segment and a slave
node, where Ps is a slave node and the quadrilat-
eral A(Pm)BCD is a segment. Pm, the master node
that has been identified as the nearest one from
the slave node Ps in the global search, usually be-
longs to multiple segments. The segment that Ps

hits can be found by the following criterion:

(�c1 ×�r) · (�c1 ×�c2) > 0 (3)

(�c1 ×�r) · (�r×�c2) > 0 (4)

As shown in Figure 1,�c1 and�c2 are vectors drawn
from Pm to the neighboring node on the segment
counterclockwise or clockwise, respectively.

�r =�t −(
�t ·�m) ·�m (5)

�m =
�c1 ×�c2

|�c1 ×�c2| , (6)

�t is a vector drawn from Pm to Ps. The segment
meeting these criteria (3) and (4) is picked up and
denoted as a target segment.

Genetic Approaches to Iteration-free Local Contact Search 129

Figure 1: Local Contact Search

After the target segment is specified, the local co-
ordinates (ξ ,η) of an accurate contact point on
the segment will be identified by solving the fol-
lowing set of equations with Newton’s method
[Hallquist, Goudreau and Benson (1985), Benson
and Hallquist (1990), Oishi, Yoshimura and Ya-
gawa (2002)]:

∂�r
∂ξ

(ξc,ηc) ·
{
�t −�r (ξc,ηc)

}
= 0 (7)

∂�r
∂η

(ξc,ηc) ·
{
�t −�r (ξc,ηc)

}
= 0 (8)

In addition, penetration depth g is calculated as
follows:

g = �m · (�t −�r (ξc,ηc)
)

(9)

g > 0 means that the node and the segment are
not in contact but in proximity. If g < 0, contact
forces acting between the slave node Ps and the
master nodes on the segment are calculated as:

�fs = −gk�m (10)

�f i
m = φi (ξc,ηc) ·�fs, (11)

where �fs is the contact force vector for the slave
node Ps, �f i

m is the contact force assigned to the
i-th node on the target segment, k is the factor
determined by geometry and material properties
of the element including the target segment, and
φi (ξc,ηc) is a shape function.

2.2 Past Research on Local Contact Search
without Iteration

Iterative solvers, such as Newton’s method, have
been utilized to obtain the local coordinates of the

contact point in the node-segment type contact al-
gorithm. As iterative solvers often meet difficul-
ties in convergence and become time-consuming,
local contact search methods without any iteration
have been desired.

The approximating function described in liter-
atures [Zhong and Nilsson (1996), Wang and
Nakamachi (1997)], which uses area coordinates,
is the best-known one of this type. The values
of four shape functions for the contact point are
approximated by the function containing areas of
four triangles made of one slave node and two
nodes on the master segment as shown in Figure
2.

In the figure, the quadrilateral segment consists of
four nodes labeled from 1 to 4, and the point H
is the contact point. Δ1 is the area of the trian-
gle ΔHP1P2, Δ2 is that of the triangle ΔHP2P3, Δ3

is that of the triangle ΔHP3P4, Δ4 is that of the
triangle ΔHP4P1. Each shape function value is es-
timated by the following equations, respectively,

Figure 2: Area coordinates for a quadrilateral seg-
ment

Φ1 = Δ2Δ3/Δ (12)

Φ2 = Δ3Δ4/Δ (13)

Φ3 = Δ4Δ1/Δ (14)

Φ4 = Δ1Δ2/Δ (15)

where Δ is defined by the following equation:

Δ = (Δ1 +Δ3)× (Δ2 +Δ4) (16)

In this method, the value of each shape function at
the contact point is quickly obtained in an explicit
form without iteration, and the local coordinates
can also be obtained from the values of shape

130 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

functions if each shape function is linear. Though
this method has been adopted in several appli-
cations due to its fast calculation, it often shows
poor accuracy for configurations where four mas-
ter nodes are not coplanar.

Pinball algorithm [Belytschko and Neal (1991)] is
another local contact search algorithm without it-
eration. In the pinball algorithm, a pinball, i.e. a
sphere, is embedded in every element of the con-
tact surfaces. The volume of the pinball is equal
to that of the corresponding element and the cen-
ter of the pinball is located at the gravity center of
the element. This algorithm is fast, but it also has
some difficulties in accuracy due to its approxi-
mate representation of contact surfaces.

Recently, neural networks [Haykin (1994), Has-
soun (1995)] have been applied to the local con-
tact search process by the authors [Oishi and
Yoshimura (2007)]. Neural networks can simulate
arbitrary continuous functions [Funahashi (1989)]
and have been applied to various engineering
problems [Oishi, Yamada, Yoshimura, Yagawa,
Nagai and Matsuda (2001), Papadrakakis, La-
garos and Tsompanakis (1998), Noroozi, Sewell
and Vinney (2006), Furukawa and Yagawa
(1998)]. Their capabilities of simulating func-
tions have been utilized to simulate the mapping
that appears in the local contact search process.
Though the neural network approach is applicable
to various kinds of local contact search processes,
this approach is not very fast because many madd
(multiply and add) operations and evaluations of
the activation functions, such as sigmoid func-
tions, used in the neural network need some com-
putational power.

3 Searching for Optimal Polynomial Approx-
imation Using Genetic Algorithms

3.1 Optimal Polynomial Approximation Based
on Least Squares Method

Local coordinate values of the contact point
are obtained by solving equations (7), (8).
Solving equations (7), (8) is, in other words,
finding the mapping functions f and g
from the fifteen known coordinate values,
xA,yA, zA, · · · ,xD,yD, zD,xS,yS, zS, of the five

nodes, A, B, C, D, S in Figure 1 to the local
coordinate values ξc and ηc of the contact point,
respectively. The mapping functions f and g are
expressed as follows:

ξc = f (xA,yA, zA, · · · ,xS,yS, zS) (17)

ηc = g(xA,yA, zA, · · · ,xS,yS, zS) (18)

Though exact representations of the functions f
and g are unknown, they can be approximated by
polynomials with desired precision. In this re-
search, approximating polynomials of f and g are
searched, respectively, using genetic algorithms
(GA) [Oishi, Yoshimura and Yagawa (2004)].

As input variables of f and g, we do not employ
absolute coordinate values of nodes, but values
calculated from relative positions of the nodes.
This is based on the fact that the local coordinate
values ξc and ηc do not change by affine trans-
formation, such as translation, rotation, expansion
and reduction. Referring to Figure 1, the trans-
formation procedures adopted in this research is
specifically described as follows:

(1) Node A is translated to the origin (0,0,0), and
other nodes are also translated along with the
node A.

(2) All the nodes are rotated with the node B is
placed on the x-axis.

(3) All the nodes are rotated around the x-axis un-
til the node D is placed on the x-y plane.

(4) Using the distance between the nodes A and
B as a measure, all the coordinate values of
nodes are expanded or reduced until the coor-
dinate values of the node B is set to (1.0,0,0).

By the above transformation, fifteen coordi-
nate values xA,yA, zA, · · · ,xD,yD, zD,xS,yS, zS for
input variables of the functions f and g
can be reduced to eight coordinate values
xC,yC , zC,xD,yD,xS,yS, zS, and f and g are ex-
pressed in the following forms:

ξc = f (xC,yC, zC,xD,yD,xS,yS, zS) (19)

ηc = g(xC ,yC, zC,xD,yD,xS,yS, zS) (20)

Genetic Approaches to Iteration-free Local Contact Search 131

Assuming the N-th order perfect polynomials as a
candidate, an approximating polynomial for ξc is
represented as follows:

ξc = f (xC,yC, zC,xD,yD,xS,yS, zS)

= a0 +
N

∑
n=1

∑
i

ki
1+···+ki

8=n

aix
ki

1
C · · ·zki

8
S

(21)

Each coefficient ai of equation (21) is determined
so as to minimize the total sum of the square error
for multiple sample data points as described in the
following:

∑
i

(
f
(
xi

C ,yi
C, · · · ,yi

S, zi
S

)−ξ i
C

)2 → min (22)

Differentiate the left hand side of equation (22)
by part with respect to each ai and set it to be
zero, then simultaneous linear equations of ai is
derived. The most appropriate ai values from the
viewpoint of the least square are obtained by solv-
ing those equations, and an approximating poly-
nomial is determined.

As described above, the selected candidate poly-
nomial limits the degree of approximation. If each
of eight variables possesses third order polyno-
mial respectively, the highest order of the terms
of the approximating function becomes twenty-
fourth order polynomial and the number of its
terms may be as many as 65536. The polynomial
with such a huge number of terms cannot be prac-
tically used for approximating function because
it takes very long computation time for evaluat-
ing the value of the polynomial. This implies that
the number of terms involved in the approximat-
ing polynomial must be reduced until calculation
load falls within a feasible level without badly de-
grading the accuracy of approximation. Thus, a
key issue is to find the polynomial that consists
of as few terms as possible but realizes sufficient
accuracy in approximation. In this research, GAs
are adopted for searching polynomials that meet
the above criterion, and parallel processing is also
utilized for calculation speedup.

3.2 Searching for Optimal Polynomial Ap-
proximation Using Genetic Algorithms

Genetic algorithms are a kind of artificial opti-
mization methods that mimic the theory of evo-
lution, i.e. natural selection [Goldberg (1989),
Michalewicz (1992)]. In genetic algorithms, the
fundamental unit to be optimized is called an in-
dividual, which is an array of parameters to be ad-
justed, which is called genes. A group of individ-
uals that are to be optimized evolve by repeatedly
suffering genetic operations that simulate the pro-
cedures of natural selection. Operations in GAs
consist of the following four genetic operations:

(1) Crossover: Two individuals are picked up at
random, then randomly selected sequence of
several genes of both individuals are inter-
changed to make two new individuals.

(2) Mutation: One individual is picked up at ran-
dom, and then one randomly selected gene of
the individual is modified to make a new in-
dividual.

(3) Evaluation: Every individual in the popula-
tion is evaluated, that is, its degree of fitness
for target objectives is calculated.

(4) Selection: Every individual is tested for sur-
vival to the next generation. The higher the
fitness of the one individual is, the higher the
probability of its survival to the next genera-
tion is.

In this research, each individual represents a poly-
nomial expression, and polynomials that approx-
imate the mapping from coordinates of related
nodes to the local coordinates of the contact point
in the local contact search process are searched
using GAs. Hereafter, to make explanation clear
and compact, the implementation of perfect poly-
nomials with two variables into the individual of
GAs is explained as an example. The second-
order perfect polynomial with two variables, x
and y, consists of six terms as follows:

a0 +a1x+a2y+a3x2 +a4xy+a5y2 (23)

where a0, · · · ,a5 are real-valued coefficients.
Polynomials with two variables, in which the or-
der of each term is equal to or under than two,

132 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

are implemented on the GA individual that con-
sists of six genes where each gene corresponds to
one term in the second-order perfect polynomial,
respectively. When the value of a gene is one,
the polynomial represented by the individual in-
cluding the gene has the corresponding term, and
when the value of a gene is zero, it does not have
the corresponding term. For example, the individ-
ual (110001) represents the following polynomial,

a0 +a1x+a5y2 (24)

and (100110) represents the following one,

a0 +a3x2 +a4xy (25)

Replacing the sequence of genes in the individ-
ual (24), which are shaded in equation (26), with
correspondent counterpart in the individual (25),
which are also shaded in equation (27), and vice
versa,

(110 001) a0 +a1x+a5y2 (26)

(100 110) a0 +a3x2 +a4xy (27)

it makes two new individuals as shown in equa-
tions (28) and (29). This is an example of the
crossover.

(110 110) a0 +a1x+a3x2 +a4xy (28)

(100 001) a0 +a5y2 (29)

An example of mutation is shown below. The
shaded gene in equation (30) suffers mutation
such that the value of the gene is changed from
0 to 1.

(110 0 01) a0 +a1x+a5y2 (30)

This mutation results in the following new poly-
nomial expression:

(110 1 01) a0 +a1x+a3x2 +a5y2 (31)

Repeating crossover and mutation operations gen-
eration by generation results in creating a lot of
new individuals to be evaluated.

Evaluation of each newly created individual, i.e. a
polynomial expression, consists of two processes.

Firstly, all the coefficients of the terms in the
polynomial are determined using the least squares
method as described in the previous section. Sec-
ondly the fitness of the individual with its coef-
ficients is evaluated. For example, the f itness of
the individual for polynomials that approximate
local coordinate ξ is defined as follows:

f itness =
1

∑
i

∣∣ f
(
xi

C,yi
C, · · · ,yi

S, zi
S

)−ξ i
∣∣ (32)

where f (·) is the polynomial to be evaluated,
xi

C · · ·zi
S is the coordinate values of the related

nodes in the i-th sample data and ξ i is the local
coordinate value to be approximated, i.e. the tar-
get value.

In the selection process, every individual is tested
and reproduced according to its fitness value: the
higher the fitness of an individual is, the more
probably it will be reproduced for the next gen-
eration. In this research, roulette type selection
rule is adopted.

By repeating the four operations, crossover, muta-
tion, evaluation and selection generation by gen-
eration, approximating polynomials that fit well
to the target function can be obtained out of huge
amount of candidates created during many gener-
ations.

4 Searching for Optimal Approximating
Function using Genetic Programming

4.1 Genetic Programming

The genetic programming (GP) was invented by
Koza [Koza (1992), Koza (1994), Langdon and
Poli (2002)]. It can be regarded as a variation of
genetic algorithms. Major difference between GA
and GP is that the latter can handle structural rep-
resentation such as tree structure. Though genetic
operations such as crossover, mutation, evaluation
and selection, act on individuals that are a sim-
ple sequence of bits in GA, almost the same ge-
netic operations act on individuals represented by
tree structure. The tree structure can represent nu-
merical expressions. Figure 3 shows an example
of tree structure representation of a numerical ex-
pression, x+3y. In the figure, each circle is called

Genetic Approaches to Iteration-free Local Contact Search 133

a node: the nodes that have x, 3 and y are termi-
nal nodes, the nodes that have + and - are non-
terminal nodes, and the node + is also called the
root node. The tree structure can represent various
mathematical expressions by setting variables and
constants in the terminal nodes and setting opera-
tors or functions in the non-terminal nodes.

Figure 3: Tree representation of mathematical ex-
pression

Genetic operations such as crossover and muta-
tion for tree structures in GP are also defined in
the same way as those for bit sequence in GA. An
example of the crossover of two tree structures is
shown in Figure 4.

The crossover of two individuals that represent
y(3+x) and 3xy+x respectively creates two new
individuals that represent 3xy2 and 3 + 2x. In
the crossover of tree structures, a selected branch
of one individual is exchanged with a selected
branch of another individual to produce new in-
dividuals. An example of the mutation is also
shown in Figure 5. The individual that represents
y(3+x) is mutated to produce the new individ-
ual that represents 3xy. In the mutation of the tree
structure, one node is selected at random for mu-
tation, then it is changed to different value if the
selected one is a terminal node and otherwise to
different operator.

A whole procedure of genetic programming is
summarized as follows:

(1) Initial Population: A number of individuals
with tree structure are generated at random.

(2) Evaluation: Fitness of each individual is eval-
uated based on a prescribed measure.

(3) Selection and Reproduction: Each individual
is tested for reproduction. The higher its fit-
ness is, the more probably it is reproduced to
the next generation.

(4) Crossover: Two randomly selected individu-
als are crossed to produce two new individu-
als.

(5) Mutation: Randomly selected individual is
mutated to a new individual.

(6) Go back to (2)

Figure 4: Crossover

Figure 5: Mutation

4.2 Linear Genetic Programming

Tree structure of an individual in the genetic pro-
gramming is usually implemented using pointers

134 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

in C language. Though it is a natural implemen-
tation where crossover between two individuals
can be realized only by exchanging pointers for
subtrees, it has some disadvantages in computa-
tion speed during evaluation and in implementa-
tion on a parallel processing environment. Our
target application must evaluate mathematical ex-
pressions represented by individuals in GP for a
vast amount of test data, so that both efficiency in
evaluation and parallel processing are essential.

Linear genetic programming which uses a one-
dimensional array to express mathematical ex-
pressions is faster in speed, better in search
performance and more efficient in memory us-
age than the pointer-based genetic programming
[Tokui and Iba (1999)]. In this research, linear
genetic programming utilizing stack to represent
tree structures is adopted. Mathematical expres-
sions are implemented on the one-dimensional
array in a prefix order, where every operator
is placed before its operands. Table 1 shows
some examples of mathematical expressions rep-
resented by the linear GP.

Table 1: Linear GP Representation

Mathematical Representation
Expression by Linear GP
x+3y +x*3y
y(3+x) *y+3x
3xy+x +*3*xyx

Though any mathematical expression can be rep-
resented by the linear GP, two genetic opera-
tions, crossover and mutation, that are easy to
be implemented on the pointer-based GP, need
some special treatment. Unlike every node in the
pointer-based GP automatically represents a sub-
tree which can be crossed or mutated, in the lin-
ear GP the subtree arisen from one node, i.e. the
tree structure with the node as root, cannot be au-
tomatically obtained but must be determined by
checking the sequence of nodes in the array just
after the node. Stack count is used for this pur-
pose. Every node has its own stack count accord-
ing to its node type: the stack count of an opera-
tor node that has two operands, such as + and *,
is -1, that of an operator node that has only one

operand, such as sin() and cos(), is 0 and that of
variable or constant is +1. With this definition of
the stack count, a total sum of stack count of the
entire nodes in subtree is always 1. Once a node
is specified, checking the stack count can pick up
a subtree starting from the node.

As an example, let’s consider the following math-
ematical expression:

3xy+y. (33)

This is represented by the linear GP as follows:

[+*3*xyy] (34)

Its stack count is also given by[−1 −1 1 −1 1 1 1
]
. (35)

Therefore, once the second node from the left is
selected as:

[+ * 3 * x y y] (36)

then the subtree starting from the selected node is
picked up by

[+ * 3 * x y y] (37)

because the sum of the stack count of the con-
tiguous five genes starting from the selected gene
equals to 1, as shown below:[
-1 -1 1 -1 1 1 1

]
. (38)

This shows that the subtree starting from any
given node in the one dimensional array is deter-
mined by the correspondent array of each gene’s
stack count. The stack count is also utilized to
evaluate the fitness of each individual: each value
of operators can be evaluated one after another us-
ing stack operation in interpreting the genes of the
individual in the reverse order.

In this research, one dimensional integer array is
adopted for representing the individual in the lin-
ear GP. Operators and variables are represented by
corresponding integer numbers, and constants are
represented by integer numbers that indicate cor-
responding locations in the real array that consists
of previously selected real values for constants.

Genetic Approaches to Iteration-free Local Contact Search 135

4.3 Searching for Optimal Expressions for Lo-
cal Contact Search using Linear GP

Our goal is to find as compact and accurate ex-
pression as possible for the mapping in the local
contact search. As described in equations (19) and
(20), the mapping to be approximated is the one
from eight coordinates of nodes to the local coor-
dinate value of the contact point. Unlike the GA
case, mathematical expressions to be searched by
the linear GP are not restricted within polynomi-
als.

In the case of quadrilateral segment derived from
a linear hexahedral element and a slave node, the
fundamental procedure of the search for mathe-
matical expressions of the mapping in the local
contact search process using the linear GP is sum-
marized as follows:

(1) Data Preparation: A number of configura-
tions of five nodes shown in Figure 1, i.e. one
slave node Ps and four master nodes A, B, C
and D that construct quadrilateral master seg-
ment, are generated at random, then the corre-
sponding contact point H for each configura-
tion is calculated using Newton’s method. A
number of data pairs, coordinates of related
nodes and the local coordinates ξ , η of the
corresponding contact point, are collected.

(2) Search by Linear GP: Using the linear GP,
approximating functions that use coordinate
values of nodes as input data and output the
local coordinate value ξ or η of the contact
point are searched. This process leads to find-
ing the explicit mathematical expressions of
the local coordinate ξ or η of the contact
point as the functions of coordinate values of
the related nodes.

(3) Application: The approximating expressions
obtained in the procedure (2) are imple-
mented in the code for local contact search.

This method basically applies to any local contact
between a slave node and a master segment de-
rived from various elements, such as four-noded
tetrahedral elements, ten-noded tetrahedral ele-
ments and twenty-noded hexahedral elements.

5 Parallel Processing of Genetic Approaches

5.1 PC cluster as Parallel Processing Environ-
ment

Parallel processing is a promising technique for
high performance computing [Almasi and Got-
tlieb (1994), Ma, Lu, Wang, Roy, Hornung,
Wissink and Komanduri (2005), Ha, Seo and
Sheen (2006)]. A large amount of computational
workload distributed among processors may lead
to the speedup proportional to the number of pro-
cessors used if additional overheads due to par-
allel processing are negligible [Grimaldi, Pas-
cazio and Napolitano (2006), Namilae, Chan-
dra, Srinivasan and Chandra (2007), Trindade and
Pereira (2007), Moulinec, Issa, Marongiu and Vi-
oleau (2008)]. A PC cluster is a popular paral-
lel processing machine. It usually uses Linux OS
equipped with MPI [Gropp, Lusk and Skjellum
(1999), Pacheco (1997)] and Ethernet for com-
munication among processors. PC clusters, how-
ever, usually have relatively large latency in inter-
processor communication. Therefore, the larger
computational grain, i.e. the larger amount of
computational workload performed without any
interprocessor communication, is more suitable to
parallel processing in PC clusters.

5.2 Parallel Processing of Genetic Approaches

Both genetic approaches in this research, the GA
and the Linear GP for searching approximating
functions of the mapping in the local contact
search process, are computation intensive in the
evaluation process that calculates the fitness of ev-
ery individual for a lot of sample data. In addition,
as the computation of fitness value of each in-
dividual can be performed independently, imple-
menting the evaluation process in the parallel pro-
cessing environment is not difficult. Therefore,
parallel processing is employed for the present ge-
netic approaches.

There exist two types of implementations of par-
allel processing for our genetic approaches de-
pending on the number of populations. The one
consists of only one group of individuals where all
the individuals belong to, and the other consists
of several groups of individuals where all the in-

136 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

dividuals are divided into several groups and each
group evolves independently with occasional in-
terchanges of individuals among groups. We call
the former a parallel GA /GP, the latter a parallel
and distributed GA/GP.

In the present research, a parallel version of ge-
netic algorithm, denoted as p-GA, and a parallel-
distributed version of linear genetic program-
ming, denoted as pd-LinearGP, are implemented
in PC cluster. PCs in the cluster are divided into
two categories, one server PC and other client
PCs. In the case of p-GA, only the evaluation
process is distributed among the client PCs and
other processes such as crossover, mutation and
selection are performed in the server PC. In the
case of pd-LinearGP, a whole of individuals are
first divided into several groups and each group
independently goes through the whole processes
of linear GP with occasional interchange of indi-
viduals among groups. The server PC manages
the exchange of individuals in the latter case, so
arbitrary exchange pattern is possible. In this re-
search, we virtually place all the client PCs in
a circle and one PC always sends individuals to
the previously chosen PC that is assumed to be
adjoining in the virtual circle. In both cases,
the amount of data to be communicated among
PCs is relatively small: only the individuals and
their fitness values, one dimensional integer ar-
rays and real variables, are communicated among
PCs. This compactness of the data to be commu-
nicated is suitable for PC clusters where commu-
nication speed is relatively slow.

6 Basic Performances

6.1 Problem Definition

Basic performance of the proposed methods is
tested through sample analyses of the following
test problem. Figure 6 shows the configuration
of the test problem in which a slave node Ps and
its corresponding four-noded quadrilateral master
segment ABCD are located. The master node A,
which is the nearest to the slave node Ps, is located
on the origin of the coordinate axes, (0.0, 0.0,
0.0). The node B is located at (1.0, 0.0, 0.0). The
node D is located somewhere on the x-y plane,

i.e. its z-coordinate is set to be zero. The x, y
coordinates of the nodes C, D, Ps are set within
the range of (-2.0, 2.0) at intervals of 0.2 in both
directions. The z coordinate of the node C and Ps
is set within the range of (-0.3, 0.3) at intervals
of 0.1. Moreover, the following condition on the
configuration of nodes is added: the length of the
edge AD is equal to or shorter than that of AB
(= 1.0) and the quadrilateral ABC∗D, where C* is
the projection of the node C onto the x-y plane,
is convex. This condition reduces the number of
node configurations to be considered without any
loss of generalization, which improves efficiency
of the genetic approaches due to eliminating re-
dundancy.

Figure 6: Configuration of nodes

With the above conditions, a number of patterns
of configurations are obtained, and for each con-
figuration the local coordinate values of the con-
tact point are obtained by Newton’s method. Data
set, node configurations and corresponding local
coordinates of the contact point, are utilized for
test data in the evaluation process of the genetic
approaches.

6.2 Performance of Genetic Algorithm Ap-
proach

6.2.1 Setting Up

Approximating polynomials for the mapping in
the local contact search are searched by the pro-
posed GA-based approach. A parallel GA code
written in C using MPI is developed. The PC
cluster, which consists of thirty-two Linux PCs

Genetic Approaches to Iteration-free Local Contact Search 137

equipped with Pentium4 CPU and Fast Ethernet,
in the Center for Advanced Information Technol-
ogy of Tokushima University, is used. In this
study, the polynomial expressions for ξc and ηc

are determined by the proposed method. Out of
the node configurations generated in the previous
section, 28546 patterns are selected at random for
test data in the fitness evaluation in this test.

In this study, the highest order of each term in the
polynomials to be determined is set to be three
due to the restriction of practical computational
workload for evaluating the value of the polyno-
mial. Table 2 shows the relationship between the
highest order among all terms in the perfect poly-
nomial of eight variables and the estimated com-
putational workload, such as the multiplication
counts and the number of terms, for calculating
its value. The number of multiplication is counted
term by term. Though it is known that polynomi-
als with one variable can be efficiently evaluated
by Horner’s method (Knuth, 1969), any similar
efficient algorithm is not popular for polynomials
with several variables. Therefore, computational
workload is roughly estimated by the number of
terms included in the polynomial.

Table 2: Number of Terms in the Perfect Polyno-
mial with Eight Variables

Highest Number of terms Number of
Order in the polynomial Multiplications
0 1 0
1 9 8
2 45 80
3 165 440
4 495 1760
5 1287 5720

Ten test runs for each setting of parameters are
executed with different initial populations and dif-
ferent random number sequences. The maximum
number of generations, MaxGeneration, is set to
3000. The average error of the best polynomial
obtained in the ten test runs is defined as follows:

Eξ =
1
N

N

∑
i=1

∣∣ξ approx
i −ξ exact

i

∣∣ (39)

where N is the total number of test patterns,
ξ approx

i is the value of the polynomial for the local
coordinate ξ of the contact point for the i-th con-
figuration pattern and ξ exact

i is that obtained by the
Newton’s method.

To test accuracy in the estimation of the local co-
ordinate values of the contact point, Basic perfor-
mance of the proposed methods is tested through
sample analyses of the following test problem.

6.2.2 Results

Accuracy of Approximating Polynomials: Ta-
ble 3 shows the average error Eξ , Eη and the num-
ber of terms Nterm of the best approximating poly-
nomial obtained. The average errors Eξ , Eη of
the area coordinate method described in equa-
tions (12)-(16) are 0.2361 and 0.2174, respec-
tively. This shows that the polynomial obtained
by the proposed method is superior in accuracy to
the area coordinate method.

Table 3: Average Error

Eξ Nterm Eη Nterm

0.017445 124 0.022610 129

Accuracy vs. The Number of Terms: Though
the result above shows basic superiority of the
proposed method in accuracy, the polynomial
consists of almost 120 terms and it leads to much
heavier computational load than other methods.

To reduce the number of terms of polynomials
without degradation in accuracy, a new modified
fitness value fp of the individual in the proposed
system is defined as follows:

fp =

{
f itness (n ≤ N)

f itness
100×(n−N) (n > N)

(40)

where f itness is the basic fitness defined in equa-
tion (32), n is the number of terms in the poly-
nomial and N is the target number of terms, i.e.
n should be below N. Figure 7 shows the av-
erage error of the polynomial obtained with set-
ting N to be five different values, 10,20,40,60 and
80. The vertical axis means the average error
of the obtained polynomial, while the horizontal

138 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

axis means the number of terms of the polyno-
mial. The average error of the polynomial ob-
tained without restricting the number of terms,
where N is set to 165, is also shown for the pur-
pose of comparison. Figure 7 shows that the poly-
nomial obtained with N>=60 shows little degrada-
tion in accuracy. In addition, though the average
error of the polynomial obtained with N<=40 in-
creases significantly, even the average error of the
polynomial with ten terms is much smaller than
that of the area coordinate method. The obtained
polynomials with N=10 for local coordinates ξ , η
are as follows:

ξ =a0yD +a1xS +a2yS +a3xCyS +a4yCyS

+a5xCyCyS +a6xCxSyS +a7x2
CyD

+a8x2
DyS +a9yDx2

S

(41)

η =b0 +b1xC +b2yD +b3yS +b4xCyS

+b5yCy2
D +b6yCy2

S +b7xCyDyS

+b8yCxSyS +b9yDxSyS

(42)

With adjusting the order of operations, both poly-
nomials can be evaluated by totally twenty-four
multiplications and the total multiplication oper-
ations for the whole process including the affine
preprocessing described before is almost equal to
one hundred, which is double of that of the area
coordinate method.

Figure 7: Average Error w.r.t. Number of Terms

Parallel Efficiency: Figure 8 shows the speedup
of the proposed GA-based system in a parallel

0

5

10

15

20

25

0 5 10 15 20 25

Measured Speedup
Ideal Speedup

S
pe

ed
up

Number of Processors
Figure 8: Speedup by Parallel Processing

processing environment. The vertical axis denotes
the ratio of speedup in the parallel processing,
while the horizontal axis does the total number of
processors used. The ratio of speedup Pn is de-
fined by the following equation:

Pn =
T1

Tn
(43)

where T1 is the elapsed time for one generation
using one client processor, Tn is that using n client
processors. Figure 8 indicates the good scalability
of the proposed GA-based system.

6.3 Performance of Genetic Programming Ap-
proach

6.3.1 Setting Up

A parallel and distributed linear GP code written
in C using MPI is developed. The same PC cluster
used in the GA-based case is also used. In this
study, only the expressions for ξc are searched by
the linear GP. It is clear that the same methods
and results of ξc directly apply to the search for
expressions of ηc.

Two kinds of expressions are obtained: polyno-
mials using +, - and × operators and rational ex-
pressions using +, -, × and / operators. Constants
in the expressions are to be selected from the pre-
scribed 201 values at an interval of 0.05 within the

Genetic Approaches to Iteration-free Local Contact Search 139

range of (-5.0,5.0). The number of individuals per
group is set to 200, the maximum count of gener-
ations to evolve is set to 3000 and the one-tenth
of individuals of each group is exchanged among
groups every 10 generations. As for the maximum
number of genes, MaxGeneLength, of individu-
als, five kinds of length, 50, 100, 150, 200 and
250, are tested. For each combination of various
parameters, ten different runs are tested chang-
ing random number sequence, and each individ-
ual is evaluated according to the average error of
approximation for test data.

6.3.2 Results

Parallel Efficiency: Parallel efficiency of the
present parallel and distributed linear GP system
is tested changing the number of groups with
the number of individuals per group unchanged.
CPU time is measured in the case of MaxGene-
Length=50 and MaxGeneration=500. Figure 9
shows the results. The vertical axis denotes
elapsed time, while the horizontal axis does the
number of groups, i.e. the number of client pro-
cessors. It can be seen from the figure that the
elapsed time does not depend on the number of
groups. It indicates very high parallel efficiency
of the present code, and it directly leads to the
feasibility of massive search for best expression
using a lot of groups of individuals.

0

500

1000

1500

2000

0 5 10 15 20 25 30 35

Ti
m

e
(s

)

Number of Client Processors
Figure 9: Parallel Performance

Number of Groups: Figure 10 shows how the
performance of the best individual in accuracy de-
pends on the number of groups for various Max-
GeneLength values. The vertical axis denotes the

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25

E
rro

r

Number of Populations
Figure 10: Average Error w.r.t. Number of Popu-
lations

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25

E
rr

or

Number of Populations

Figure 11: Minimum Error w.r.t. Number of Pop-
ulations

average error of the expressions derived from the
best individual obtained, while the horizontal axis
does the number of groups. Twelve kinds of runs
are performed under the conditions where Max-
GeneLength = 50, 100 or 150 and the number of
groups is set to 5, 10, 15 or 20, and the average
error of the best expressions obtained from each
condition is tested. Figure 10 shows the aver-
age of the average errors among ten different runs
for each condition, and Figure 11 shows the min-

140 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

imum of the average errors among ten different
runs for each condition. Though the average of
the average errors becomes smaller when more
groups are involved, the variation of the mini-
mum error against the number of groups is much
smaller than that of the average error. The compu-
tational load is almost proportional to the number
of groups: the more groups are involved, the more
computational time is required. Therefore, the
number of groups is hereafter set to five through
this research.

Length of Genes: The length of genes of indi-
viduals is apparently the most important factor in
the linear GP system for the performance in accu-
racy of the corresponding expression. Five differ-
ent values of MaxGeneLength ranging from 50 to
250 at an interval of 50 are tested. Figures 12 and
13 show the performance of the best expression
for each MaxGeneLength. The left vertical axis
denotes the error of the polynomial expression de-
rived from the best individual obtained, while the
right vertical axis does the count of multiplication
operations of the polynomial expression in Fig-
ure 12, i.e. the count of multiplication and divi-
sion operations of the rational expression in Fig-
ure 13, respectively. The horizontal axis denotes
MaxGeneLength. The operation count of mul-
tiplications is used for evaluating the computa-
tional complexity of the obtained polynomial ex-
pression. Figure 12 shows that when MaxGene-
Length increases, the polynomial expression de-
rived from the individual includes more multipli-
cation operations but shows little improvement in
accuracy. As for the case of rational expression,
Figure 13 shows almost the same results as those
of polynomial expressions. The obtained accu-
racy shows little difference between polynomial
expressions and rational expressions.

Computation Time vs. MaxGeneLength: The
MaxGeneLength, as well as the number of in-
dividuals per group, the number of test data for
evaluation of individuals and the number of gen-
erations to evolve, have impact on the required
CPU time. Therefore, for five kinds of MaxGene-
Length, 50, 100, 150, 200 and 250, the elapsed
CPU time for one generation is measured. Figure
14 shows the results for both polynomial expres-

sions and rational expressions. The vertical axis
denotes the CPU time per generation, while the
horizontal axis does MaxGeneLength. For both
cases, the CPU time per generation is almost pro-
portional to the value of MaxGeneLength. The
CPU time of the rational expression case is almost
20 % longer than that of the polynomial case due
to both the additional CPU cost of division over
multiplication and the fact that division needs ex-
tra operations in order to prevent division by zero.

0.00

0.02

0.04

0.06

0.08

0

10

20

30

40

50

0 50 100 150 200 250 300

Error

Number of Multiplications

E
rr

or

N
um

ber of M
ultiplications

Maximum Gene Length

Figure 12: Accuracy of approximating polynomi-
als

0.00

0.02

0.04

0.06

0.08

0

10

20

30

40

50

0 50 100 150 200 250 300

Error

Number of Multiplications
Number of Divisions

E
rr

or

N
um

ber of O
perations

Maximum Gene Length

Figure 13: Accuracy of approximating rational
expressions

Genetic Approaches to Iteration-free Local Contact Search 141

0

5

10

15

20

0 50 100 150 200 250 300

Polynomial Expression
Rational Expression

T
im

e
(s

)

Maximum Gene Length

Figure 14: Computation Time

7 Application of Genetic Approach to
Smoothed Contact Surface

7.1 Smoothed Contact Surface

The proposed local contact search method based
on the linear GP system is applied to find the ap-
proximating functions for the mapping of the lo-
cal contact search in smoothed contact surfaces.

Ordinary contact surfaces consist of facets, each
of which is one face of elements exposed to the
contact surface. There exists discontinuity of the
tangents of the facets at the boundary between
two facets that arise from the bi-linear elements,
and this discontinuity often makes contact anal-
yses difficult in numerical stability and in con-
vergence. Therefore, contact smoothing has been
desired [Wang, Cheng and Yao (2001), Puso and
Laursen (2002)].

Bezier surfaces, typical smoothing surfaces, can
be represented by the set of Bezier patches, i.e.
quadrilateral facets made from four vertex points
and additional control points [Farin (2002)]. A
contact surface consists of quadrilateral facets,
faces of elements that reside in the surface, and
each facet can be regarded as the Bezier patch
if additional control points are given. Bezier
patches, however, can construct smoothing sur-
face of only C0 continuity at the boundary be-

tween patches, which is insufficient for numeri-
cal stability and convergence property. In contrast
to the Bezier patches, Gregory patches, which
can be derived from the Bezier patches by mod-
ifying their internal control points, can construct
smoothing surface of G1 continuity at the bound-
ary between patches, which reduces difficulties in
numerical stability and convergence property, and
can also be applied to the contact surface arose
from unstructured meshes [Puso and Laursen
(2002), Chiyokura and Kimura (1983)]. Figure
15 shows the Bezier patch, and Figure 16 shows
the Gregory patch. Internal control points in the
Bezier patch, P11,P21,P22,P12, are divided into
two separate control points in the Gregory patch,
P110,P111, P210,P211, P220,P221, P120,P121, respec-
tively. Control points of the Gregory patch consist
of twenty points. The control points other than
the four corner nodes can be generated by calcu-
lation using the coordinate values of the four cor-
ner nodes and normal vectors at the corners. The
node normal vector �nA at the corner node is de-
fined by the following equation and is illustrated
in Figure 17,

�nA =
∑
i

(
�c(i)

1 ×�c(i)
2

)
∣∣∣∣∑

i

(
�c(i)

1 ×�c(i)
2

)∣∣∣∣
(44)

where �c(i)
1 and �c(i)

2 are vectors that stem from the
node along the edge of the i-th element that shares
the node.

The Gregory patch is represented by the following
equation:

P(u,v) =
3

∑
i=0

3

∑
j=0

B3
i (u)B3

j (v)Pi j (u,v) (45)

where Bn
i (·) is the n-th order Bernstein polyno-

mial,

Bn
i (u) = nCi ·ui · (1−u)n−i (46)

and P11,P21,P22,P12 are actually the linear combi-
nations of two control points as follows.

P11(u,v) =
uP110 +vP111

u+v
(47)

142 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

P12 (u,v) =
uP120 +(1−v)P121

u+(1−v)
(48)

P21 (u,v) =
(1−u)P210 +vP211

(1−u)+v
(49)

P22 (u,v) =
(1−u)P220 +(1−v)P221

(1−u)+(1−v)
(50)

Figure 15: Control Points for Bezier Patch

Figure 16: Control Points for Gregory Patch

7.2 Application of Linear GP System to Local
Contact Search for Smoothed Contact Sur-
face with Gregory Patches

7.2.1 Problem definition

Basic performance of the proposed method us-
ing the linear GP for finding the approximating
functions that explicitly represent the mapping in

Figure 17: Nodal Normal Vector

the local contact search for smoothed contact sur-
faces with Gregory patches is tested through sam-
ple analyses of a test problem. Figure 6 again
shows the configuration of the test problem, and
the same patterns of configurations of nodes are
considered. For each pattern of configuration,
twenty patterns with different node normal vec-
tors at corner nodes are generated. Each node
normal vector is set in random directions where
the tangent between the node normal vector and
the normal vector at the corner node is below 0.2.
With these conditions, the mapping pattern, i.e.
the mappings from 16 input data to the local coor-
dinate of the contact point are generated. Sixteen
input data consist of three coordinate values of
the node C, two coordinate values, x and y, of the
node D, three coordinate values of the slave node
Ps and eight vector component values of node nor-
mal vectors (two values of the ratio of the x- and
y-component to z-component per node). Finally,
835906 patterns of configurations are generated
and 83552 patterns out of them are selected as the
test data for fitness evaluation in the linear GP-
based system.

7.2.2 Results

Five different values of MaxGeneLength ranging
from 50 to 250 at an interval of 50 are tested. Fig-
ures 18 and 19 show the performance of the best
expression for each MaxGeneLength. In these
figures, the left vertical axis denotes the error
of the expression derived from the best individ-
ual obtained, while the horizontal axis does Max-
GeneLength. The right vertical axis denotes the

Genetic Approaches to Iteration-free Local Contact Search 143

count of multiplication operations of the polyno-
mial expression in Figure 18, and the count of
multiplication and division operations of the ra-
tional expression in Figure 19, respectively. Fig-
ures 18 and 19 show that as MaxGeneLength in-
creases, the expression derived from the individ-
ual includes more operations but shows little im-
provement in accuracy. The obtained accuracy
shows little difference between polynomial ex-
pressions and rational expressions. As for the
total number of multiplication and division op-
erations in the obtained expression, it is within
50 for the polynomial expression and within one
hundred for the rational expression, and both of
them are much lower than that required to solve
equations (7), (8) by the Newton’s iteration for the
patches described in equation (45).

For five kinds of MaxGeneLength, 50, 100, 150,
200 and 250, the elapsed CPU time for one gen-
eration is measured. Figure 20 shows the results
for both polynomial expressions and rational ex-
pressions. The vertical axis denotes the CPU time
per generation, while the horizontal axis does
MaxGeneLength. For both cases, the CPU time
per generation is again almost proportional to the
value of MaxGeneLength.

0

0.02

0.04

0.06

0.08

0

10

20

30

40

50

0 50 100 150 200 250 300

Error

Number of Multiplications

E
rr

or

N
um

ber of M
ultiplications

Maximum Gene Length

Figure 18: Accuracy of approximating polynomi-
als

0.00

0.02

0.04

0.06

0.08

0

10

20

30

40

50

0 50 100 150 200 250 300

Error

Number of Multiplications
Number of Divisions

E
rr

or

N
um

ber of O
perations

Maximum Gene Length

Figure 19: Accuracy of approximating rational
expressions

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Polynomial Expression
Rational Expression

T
im

e
(s

)

Maximum Gene Length
Figure 20: Computation Time

8 Conclusion

In this study, new methods based on genetic ap-
proaches for finding mathematical expressions
that explicitly represent local coordinates of a
contact point in a local contact search process.
Two methods using either the genetic algorithm
or the genetic programming, respectively, are pro-
posed. For both methods, parallel processing is
efficiently utilized.

The method based on the genetic algorithm is uti-

144 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

lized for finding approximating polynomials for
the mapping in the local contact search process,
and the following results are obtained.

(1) Approximating polynomials that are much
superior in accuracy to the area coordinate
method are obtained, while they are slightly
more intensive in computation.

(2) Using parallel processing enables massive
search with the proposed method.

The other method based on the linear genetic pro-
gramming is utilized for finding approximating
rational expressions, and the following results are
obtained.

(1) Approximating expressions, either polynomi-
als or rational expressions that are superior
in accuracy to the area coordinate method are
obtained, while they are also slightly more in-
tensive in computation.

(2) Using parallel processing enables massive
search with the proposed method.

(3) Both polynomials and rational expressions
have achieved good accuracy in the similar
level for sample data, while rational expres-
sions are not as fast in evaluation speed as ra-
tional expressions due to division operations.

The linear GP-based method is then applied to
find approximating expressions for the mapping
in the local contact search process for smoothed
contact surfaces using Gregory patches, and the
following results are obtained.

(1) Good approximating expressions, either poly-
nomials or rational expressions are obtained,
and using these expressions enables much
faster evaluation of the local coordinates of
the contact point for smoothed surface than
the ordinary Newton’s method.

Both proposed methods can be easily applied to
any contact surfaces arisen from various finite el-
ements. In addition, the accuracy of expressions
can be controlled by the length of genes. There-
fore these methods are applicable to various ap-
plications.

References

Almasi, G.S.; Gottlieb, A. (1994): Highly Paral-
lel Computing 2nd edition, Benjamin, Redwood
City, CA.

Benson, D.J.; Hallquist, J.O. (1990): A single
surface contact algorithm for the post-buckling
analysis of shell structures, Computer Methods
in Applied Mechanics and Engineering, vol.78,
pp.141-163.

Belytschko, T.; Neal, M.O. (1991): Contact-
impact by the pinball algorithm with penalty
and Lagrangian methods, International Journal
for Numerical Methods in Engineering, vol.31,
pp.547-572.

Chiyokura, H.; Kimura, F. (1983): Design of
solids with free-form surfaces, Computer Graph-
ics, vol.17, pp.289-298.

de Lacerda, L.A.; da Silva, J.M. (2006): A Dual
BEM Genetic Algorithm Scheme for the Identifi-
cation of Polarization Curves of Buried Slender
Structures. CMES: Computer Modeling in Engi-
neering & Sciences, vol.14, no.3, pp.153-160.

Farin, G. (2002): Curves and Surfaces for
CAGD: A Practical Guide 5th ed., Academic
Press.

Funahashi, K. (1989): On the approximate re-
alization of continuous mappings by neural net-
works, Neural Networks, 2, pp.183-192.

Furukawa, T.; Yagawa, G. (1998): Implicit con-
stitutive modelling for viscoplasticity using neu-
ral networks. International Journal for Numerical
Methods in Engineering, vol. 43, pp. 195-219.

Globus, A.; Menon, M.; Srivastava, D. (2002):
JavaGenes: Evolving Molecular Force Field Pa-
rameters with Genetic Algorithm. CMES: Com-
puter Modeling in Engineering & Sciences, vol.3,
no.5, pp.557-574.

Goldberg, D.E. (1989): Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA.

Grimaldi, A.; Pascazio, G.; Napolitano, M.
(2006): A Parallel Multi-block Method for the
Unsteady Vorticity-velocity Equations. CMES:
Computer Modeling in Engineering & Sciences,
vol.14, no.1, pp.45-56.

Genetic Approaches to Iteration-free Local Contact Search 145

Gropp, W.; Lusk, E.; Skjellum, A. (1999): Us-
ing MPI: Portable Parallel Programming with the
Message-Passing Interface, second edition, MIT
Press, Cambridge, MA.

Guz, A.N.; Menshykov, O.V.; Zozulya, V.V.;
Guz, I.A. (2007): Contact Problem for the Flat
Elliptical Crack under Normally Incident Shear
Wave. CMES: Computer Modeling in Engineer-
ing & Sciences, vol.17, no.3, pp.205-214.

Guz, A.N.; Zozulya, V.V. (2007): Investigation
of the Effect of Frictional Contact in III-Mode
Crack under Action of the SH-Wave Harmonic
Load. CMES: Computer Modeling in Engineer-
ing & Sciences, vol.22, no.2, pp.119-128.

Ha, T.; Seo, S.; Sheen, D. (2006): Parallel iter-
ative procedures for a computational electromag-
netic modeling based on a nonconforming mixed
finite element method. CMES: Computer Mod-
eling in Engineering & Sciences, vol.14, no.1,
pp.57-76.

Hallquist, J.O.; Goudreau, G.L.; Benson, D.J.
(1985): Sliding interfaces with contact-impact in
large-scale Lagrangian computationa, Computer
Methods in Applied Mechanics and Engineering,
vol.51, pp.107-137.

Hassoun, M.H. (1995): Fundamentals of Artifi-
cial Neural Networks, MIT Press.

Haykin, S. (1994): Neural Networks: A Compre-
hensive Foundation, Prentice-Hall.

Keppas, L.K.; Giannopoulos, G.I.; Anifan-
tis, N. (2008): Transient Coupled Thermoelastic
Contact Problems Incorporating Thermal Resis-
tance: a BEM Approach. CMES: Computer Mod-
eling in Engineering & Sciences, vol.25, no.3,
pp.181-196.

Knuth, D.E. (1969): The Art of Computer
Programming Vol.2: Seminumerical Algorithms,
Addison-Wesley, Reading, MA.

Koza, J.R. (1992): Genetic Programming, MIT
Press, Cambridge, MA.

Koza, J.R. (1994): Genetic Programming II, MIT
Press, Cambridge, MA.

Langdon, W.B.; Poli, R. (2002): Foundations of
Genetic Programming, Springer-Verlag, Berlin.

Ma, R.; Lu, H.; Wang, B.; Roy, S.; Hornung,

R.; Wissink, A.; Komanduri, R. (2005): Mul-
tiscale Simulations Using Generalized Interpola-
tion Material Point (GIMP) Method And SAM-
RAI Parallel Processing. CMES: Computer Mod-
eling in Engineering & Sciences, vol.8, no.2,
pp.135-152.

Mathur, R.; Advani, S.G.; Fink, B.K. (2003):A
Real-Coded Hybrid Genetic Algorithm to Deter-
mine Optimal Resin Injection Locations in the
Resin Transfer Molding Process. CMES: Com-
puter Modeling in Engineering & Sciences, vol.4,
no.5, pp.587-602.

Michalewicz, Z. (1992): Genetic Algorithms +
Data Structures = Evolution Programs, Springer-
Verlag, Berlin.

Moulinec, C.; Issa, R.; Marongiu, J.-C.; Vio-
leau, D. (2008): Parallel 3-D SPH Simulations.
CMES: Computer Modeling in Engineering &
Sciences, vol.25, no.3, pp.133-148.

Mustata, R.; Harris, S.D.; Elliott, L.; Lesnic,
D.; Ingham, D.B. (2000): An Inverse Boundary
Element Method for Determining the Hydraulic
Conductivity in Anisotropic Rocks. CMES: Com-
puter Modeling in Engineering & Sciences, vol.1,
no.3, pp.107-116.

Namilae, S.; Chandra, U.; Srinivasan, A.;
Chandra, N. (2007): Effect of Interface Modi-
fication on the Mechanical Behavior of Carbon
Nanotube Reinforced Composites Using Paral-
lel Molecular Dynamics Simulations. CMES:
Computer Modeling in Engineering & Sciences,
vol.22, no.3, pp.189-202.

Noroozi, S.; Sewell, P.; Vinney, J. (2006): The
Application of a Hybrid Inverse Boundary Ele-
ment Problem Engine for the Solution of Poten-
tial Problems. CMES: Computer Modeling in En-
gineering & Sciences, vol.14, no.3, pp.171-180.

Oishi,A.; Yamada, K.; Yoshimura, S.; Ya-
gawa, G.; Nagai, S.; Matsuda, Y. (2001): Neu-
ral Network-Based Inverse Analysis for Defect
Identification with Laser Ultrasonics, Research in
Nondestructive Evaluation, vol.13, No.2, pp.79-
95.

Oishi, A.; Yoshimura, S.; Yagawa, G. (2002):
Domain Decomposition Based Parallel Contact
Algorithm and Its Implementation to Explicit Fi-

146 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.127-146, 2008

nite Element Analysis, JSME International, Se-
ries A, vol.45, No.2, pp.123-130.

Oishi, A.; Yoshimura, S.; Yagawa, G. (2004): A
polynomial approximation of the solution of local
contact search using a parallel genetic algorithm.
Journal of the Japan Society for Simulation Tech-
nology, vol.23, no.4, pp.326-332. (in Japanese)

Oishi, A.; Yoshimura, S. (2007): A New Lo-
cal Contact Search Method Using a Multi-Layer
Neural Network. CMES: Computer Modeling in
Engineering & Sciences, vol.21, no.2, pp.93-103.

Ozaki, S.; Hashiguchi, K.; Okayasu, T.; Chen,
D.H. (2007): Finite Element Analysis of Parti-
cle Assembly-water Coupled Frictional Contact
Problem. CMES: Computer Modeling in Engi-
neering & Sciences, vol.18, no.2, pp.101-120.

Pacheco, P.S. (1997): Parallel Programming with
MPI, Morgan Kaufmann, San Francisco, CA.

Papadrakakis, M.; Lagaros, N.D.; Tsom-
panakis, Y. (1998): Structural optimization using
evolution strategies and neural networks. Com-
puter Methods in Applied Mechanics and Engi-
neering, vol. 156, pp. 309-333.

Puso, M.A.; Laursen, T.A. (2002): A 3D contact
smoothing method using Gregory patches, Inter-
national Journal for Numerical Methods in Engi-
neering, vol.54, pp.1161-1194.

Rama Mohan Rao, A.; Appa Rao, T.V.S.R.;
Dattaguru, B. (2004): Generating optimized
partitions for parallel finite element compu-
tations employing float-encoded genetic algo-
rithms. CMES: Computer Modeling in Engineer-
ing & Sciences, vol.5, no.3, pp.213-234.

Schweizerhof, K.; Nilsson, L.; Hallquist, J.O.
(1992): Crash-worthiness analysis in the automo-
tive industry, International Journal of Computer
Applications in Technology, vol.5, pp.134-156.

Singh, A.P.; Mani, V.; Ganguli, R. (2007):
Genetic Programming Metamodel for Rotating
Beams. CMES: Computer Modeling in Engineer-
ing & Sciences, vol.21, no.2, pp.133-148.

Tokui, N.; Iba, H. (1999): Empirical and Statis-
tical Analysis of Genetic Programming with Lin-
ear Genome, Proceedings of 1999 IEEE Interna-
tional Conference on Systems, Man and Cyber-

netics, Vol.3, pp.610-615.

Trindade, J.M.F.; Pereira, J.C.F. (2007): On the
Efficiency of the Parallel-in-Time Finite Volume
Calculation of the Unsteady Navier-Stokes Equa-
tions. CMES: Computer Modeling in Engineering
& Sciences, vol.20, no.1, pp.1-10.

Vignjevic, R.; De Vuyst, T.; Campbell, J.C.
(2006): A Frictionless Contact Algorithm for
Meshless Methods. CMES: Computer Modeling
in Engineering & Sciences, vol.13, no.1, pp.35-
48.

Wang, F.; Cheng, J.; Yao, Z. (2001): FFS con-
tact searching algorithm for dynamic finite ele-
ment analysis, International Journal for Numer-
ical Methods in Engineering, vol.52, pp.655-672.

Wang,S.P.; Nakamachi,E. (1997): The inside-
outside contact algorithm for finite element analy-
sis, International Journal for Numerical Methods
in Engineering, vol.40, pp.3665-3685.

Zhong, Z.H. (1993): Finite Element Procedures
for Contact -Impact Problems, Oxford U.P.

Zhong,Z.-H.; Nilsson,L. (1996): A unified con-
tact algorithm based on the territory concept,
Computer Methods in Applied Mechanics and En-
gineering, vol.130, pp.1-16.

