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A Differential Reproducing Kernel Particle Method for the Analysis of
Multilayered Elastic and Piezoelectric Plates
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Abstract: A differential reproducing kernel
particle (DRKP) method is proposed and devel-
oped for the analysis of simply supported, mul-
tilayered elastic and piezoelectric plates by fol-
lowing up the consistent concepts of reproduc-
ing kernel particle (RKP) method. Unlike the
RKP method in which the shape functions for
derivatives of the reproducing kernel (RK) ap-
proximants are obtained by directly taking the dif-
ferentiation with respect to the shape functions of
the RK approximants, we construct a set of dif-
ferential reproducing conditions to determine the
shape functions for the derivatives of RK approx-
imants. On the basis of the extended Hellinger-
Reissner principle, the Euler-Lagrange equations
of three-dimensional piezoelectricity and the pos-
sible boundary conditions are derived. A point
collocation method based on the present DRKP
approximations is formulated for the static anal-
ysis of simply supported, multilayered elastic
and piezoelectric plates under electro-mechanical
loads. It is shown that the present DRKP method
indeed is a fully meshless approach with excellent
accuracy and fast convergence rate.

Keyword: Meshless methods, Reproducing
kernels, Point collocation, Piezoelectric plates,
Static, Bending.

1 Introduction

In recent decades, the laminated composite elas-
tic plates bonded with piezoelectric layers on the
lateral surfaces of the composite laminates have
been designed as the so-called smart (or intelli-
gent) structures. Since the direct and converse ef-
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fects of the piezoelectric materials, the previously
smart structures have been successfully applied
in various industries for the purposes of sensing,
actuating and controlling. Hence, many theoret-
ical methodologies and numerical modeling have
been proposed for the analysis of this new class of
smart structures under electro-mechanical loads.

Several two-dimensional (2D) coupled electro-
elastic theories have been proposed by extend-
ing the basic kinematics assumptions of 2D theo-
ries of laminated composite structures to account
for the coupled electro-elastic effects. Tauchert
(1992) and Tiersten (1969) extended the classi-
cal lamination theory (CLT) to study piezother-
moelastic and piezoelectric responses of multi-
layered piezoelectric plates, respectively. Jon-
nalagadda (1994) and Mindlin (1972) presented
the 2D piezothermoelastic and vibration anal-
yses of multilayered piezoelectric plates using
an extended first-order shear deformation the-
ory (FSDT), respectively. Khdeir and Aldraihem
(2007) proposed an extended higher-order shear
deformation theory (HSDT) for the static behav-
ior of laminated composite piezoelectric plates.
Shu (2005) presented an accurate theory for the
cylindrical bending vibration of laminated piezo-
electric plates. Batra and Vidoli (2002) presented
a higher-order piezoelectric plate theory derived
from a three-dimensional variational principle.
Ballhause et al. (2005) proposed a unified formu-
lation for the electro-mechanical analysis of mul-
tilayered piezoelectric plates. Various aforemen-
tioned 2D coupled theories can be included as the
special cases in the unified formulation. The re-
sults obtained from various 2D theories have been
validated and assessed by comparing these 2D re-
sults with 3D solutions available in the literature.

Apart from the aforementioned 2D coupled
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electro-elastic theories, several three-dimensional
(3D) approaches for the exact analysis of lam-
inated piezoelectric plates have also been de-
veloped. Following a similar approach as that
of Pagano (1969, 1970) for the 3D analysis of
laminated composite plates, Heyliger and Brooks
(1995, 1996), Heyliger (1994) and Dube et al.
(1996) presented the exact cylindrical bending de-
formation and vibration, electro-elastic and piezo-
thermo-elastic analyses of laminated piezoelec-
tric plates, respectively. In conjunction with
the state space method, an exact transfer-matrix-
based methodology was presented by Lee and
Jiang (1996) and Pan (2001, 2003) for the
electro-elastic and magneto-electro-elastic anal-
yses of laminated piezoelectric and magneto-
electro-elastic plates, respectively. Vel and Ba-
tra (2000) presented the 3D analytical solution for
hybrid multilayered piezoelectric plates with var-
ious boundary conditions. Based on the method
of perturbation, Wu and his colleagues (2004,
2006, 2007, 2008) presented the 3D asymptotic
solutions for the static and dynamic responses of
functionally graded and multilayered piezoelec-
tric plates and shells.

Recently, the meshless method in computational
mechanics has considerably attracted the re-
searchers’ attention. Liu and his colleagues
(1995) proposed a reproducing kernel particle
(RKP) method for numerical analysis of partial
differential equations. The continuous RKP in-
terpolation functions have been developed by sat-
isfying a set of the reproducing conditions. The
RKP method has been applied for the large de-
formation analysis of non-linear structures (Chen
et al., 1996), for metal forming analysis (Chen et
al., 1998) and for the dynamic analysis of linear
structures (Liu et al., 1995). A point collocation
method based on reproducing kernel (RK) ap-
proximations has been presented by Aluru (2000).
It is shown that Aluru’s results for several one
and two-dimensional problems are accurate and
the convergence rate is fast.

Lancaster and Salkauskas (1981) proposed an
alternative approach using the moving least
squares (MLS) approximations to develop a
meshless method. On a basis of the MLS in-

terpolation functions, several meshless methods
have been proposed such as the element-free
Galerkin method (Belytschko et al., 1994; Lu
et al., 1994), the meshless local Petrov-Galerkin
(MLPG) method (Atluri et al., 1999; Atluri and
Zhu, 1998, 2000a, 2000b) and the finite point
method (On̈ate et al., 1996). A comprehensive
literature survey on meshless methods has been
made by Belytschko et al. (1996).

The MLPG method has been proposed by Atluri
and Shen (2002a, b, 2004) for solving various
solid mechanics problems. The advantages of this
method in comparison with the conventional fi-
nite element method, are that the MLPG method
does not need to construct any mesh, neither for
the interpolation of the field variables nor for the
integration of the weak forms. A series of MLPG
approaches has been developed by Han and Atluri
(2004a, b) for solving the elasto-static and elasto-
dynamic problems, respectively. In their formu-
lations, the MLS and the radial basis functions
(RBF) are selected as the trial functions and the
Heaviside Dirac delta and the Kelvin fundamen-
tal elasticity solutions are selected as the test func-
tions. Since the successful applications and excel-
lent performance of the MLPG method to various
solid mechanics problems, the MLPG method be-
comes one of the promising numerical methods
for computational mechanics.

Atluri et al. (2004) have proposed a MLPG mixed
finite volume method to simplify and speed up
the MLPG implementation. In this method, the
displacement and stress variables are interpolated
using the same shape functions, independently.
Consequently, the continuity requirements on the
trial functions are reduced by one order and the
second derivatives of the shape derivatives of the
shape functions are avoided. The MLPG mixed
finite volume method was successfully applied to
elasto-static problems (Han and Atluri, 2004a),
elasto-dynamic problems (Han and Atluri, 2004b)
and nonlinear problems (Han et al., 2005).

By using the Dirac delta function as the test
function in the MLPG method, Atluri et al.
(2006a) have developed a MLPG mixed colloca-
tion method for solving elasticity problems. This
method has been demonstrated to yield very ac-
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curate results with a stable convergence rate. It
is concluded that the MLPG mixed collocation
method is much more efficient than the MLPG fi-
nite volume method. Atluri et al. (2006b) have
also proposed a MLPG mixed finite difference
method for solid mechanics where the generalized
finite difference method is used for approximating
the derivatives of a function using the nodal val-
ues in the local domain of definition. Numerical
examples illustrated that the MLPG mixed finite
difference method is suitably used for solving var-
ious elasticity problems.

Shu et al. (2003) recently proposed a local RBF-
based differential quadrature (DQ) method. In
the method, the conventional DQ method is com-
bined with the radial basis functions as the trial
functions in the DQ scheme. The local RBF-
based DQ method has been successfully applied
to study the incompressible flows in the steady
and unsteady regions (Shu et al., 2005), two-
dimensional incompressible Navier-Stokes equa-
tions (Shu et al., 2003), three-dimensional in-
compressible viscous flows with curved boundary
(Shan et al., 2008) and vibration problems of ar-
bitrarily shaped members (Wu et al., 2007).

In the present paper, the attention is placed on
the modifications for the derivatives of RK ap-
proximants. A novel approach is proposed in the
present paper where the shape functions for the
derivatives of RK approximants are determined
using a set of differential reproducing condi-
tions. That makes the present scheme, namely the
differential reproducing kernel particle (DRKP)
method, more efficient without directly taking the
differentiation with respect to the shape functions
of RK approximants. A point collocation method
based on the present DRKP approximations is for-
mulated and applied to the 3D electro-elastic anal-
ysis of simply supported, multilayered piezoelec-
tric plates under electro-mechanical loads.

2 The Extended Hellinger-Reissner Energy
Functional

We consider a simply supported, multilayered
elastic and piezoelectric plate as shown in Fig.
1 and subjected to electro-mechanical loads. A
Cartesian coordinate system (x1, x2 and x3 coor-

dinates) is adopted and located on the middle sur-
face of the plate. The total thickness of the plate
is 2h; L1 and L2 are the in-surface dimensions in
the x1 and x2 directions, respectively.

The linear constitutive equations valid for the na-
ture of symmetry class of piezoelectric materials
are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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where σ11,σ22, · · · ,σ12 are the stress compo-
nents; ε11, ε22, · · · , ε12 are the strain components;
D1, D2 and D3 are the electric displacement com-
ponents; E1, E2 and E3 are the electric field com-
ponents. ci j, ei j and ηi j are the elastic, piezoelec-
tric and dielectric coefficients, respectively, and
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they are layerwise constants through the thickness
coordinate of multilayered plates. For an elastic
layer, the corresponding piezoelectric coefficients
(ei j) in Eqs. (1)–(2) are zero.

The strain-displacement relations are

εi j = (ui, j +u j,i )/2 (i, j = 1, 2, 3), (3)

where u1, u2 and u3 denote the elastic displace-
ment components; the commas denote partial dif-
ferentiation with respect to the suffix variables.

The electric field-electric potential relations are

Ei = −Φ,i (i = 1, 2, 3), (4)

where Φ denotes the electric potential.

The Hellinger-Reissner (H-R) principle is ex-
tended to derive the Euler-Lagrange equations for
the coupled-fields analysis of multilayered elastic
and piezoelectric plates. The extended H-R en-
ergy functional for the problem is in the form

ΠHR =∫ h

−h

∫
Ω

[
σ11ε11 +σ22ε22 +σ33ε33 +2σ13ε13

+2σ23ε23 +2σ12ε12 +D1Φ,1 +D2Φ,2

+D3Φ,3 −B(σi j, Di)
]
dx1dx2dx3

−
∫

Ω+
q+

3 u3dx1dx2

−
∫

Ω−
q−3 u3dx1dx2

−δk2

∫
Ω+

D
+
3 Φdx1dx2

−δk1

∫
Ω+

D3(Φ−Φ+)dx1dx2

−δk2

∫
Ω−

D−
3 Φdx1dx2

−δk1

∫
Ω−

D3(Φ−Φ−)dx1dx2

−
∫ h

−h

∫
Γσ

T iuidΓdx3

−
∫ h

−h

∫
Γu

Ti(ui −ui)dΓdx3

−
∫ h

−h

∫
ΓD

DnΦdΓdx3

−
∫ h

−h

∫
ΓΦ

Dn(Φ−Φ)dΓdx3,

(5)

where δkl is called the Kronecker delta; as the sub-
scripts k = l=1 (or k = l=2), it represents the elec-
tric potential (or the normal electric displacement)
is prescribed on the lateral surfaces;Ω denotes the
plate domain on the x1−x2 plane; Ω+ and Ω− de-
note the top surface (x3 = h) and bottom surface
(x3 = −h) of the plate where the transverse loads
q±3 and either the electric potential Φ±

(k=1) or
the electric displacement D±

3 (k=2) are applied.
Γσ , Γu, ΓD and ΓΦ denote the portions of the
edge boundary where the surface tractions T i, the
surface displacements ui, the surface charge Dn

and the surface electric potential Φ are prescribed,
repectively. B(σi j,Di) is the complementary elec-
tric enthalpy density function.

In the present formulation, we take the elastic
displacements, the transverse stresses, the normal
electric displacement and the electric potential to
be the primary variables subject to variation. The
strains, electric fields, in-plane stresses and in-
plane electric displacements are then the depen-
dent variables. They can be expressed in terms of
the primary variables using Eqs. (1)-(4) and given
as follows:

ε11 = ∂B/∂σ11 = u1,1, (6)

ε22 = ∂B/∂σ22 = u2,2, (7)

ε33 = ∂B/∂σ33 = −a1u1,1−a2u2,2 +ησ33 +eD3,

(8)

2ε13 = ∂B/∂σ13 = c−1
55 σ13 −c−1

55 e15Φ,1, (9)

2ε23 = ∂B/∂σ23 = c−1
44 σ23 −c−1

44 e24Φ,2, (10)

2ε12 = ∂B/∂σ12 = u1,2 +u2,1, (11)

E1 = −∂B/∂D1 = −Φ,1, (12)

E2 = −∂B/∂D2 = −Φ,2, (13)

E3 = −∂B/∂D3 = b1u1,1 +b2u2,2−eσ33 +cD3,

(14)
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}
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⎤
⎦σ33
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+

⎡
⎣b1

b2

0

⎤
⎦D3, (15)

{
D1

D2

}
=
[

c−1
55 e15 0

0 c−1
44 e24

]{
σ13

σ23

}

−
[
(c−1

55 e2
15 +η11)∂1

(c−1
44 e2

24 +η22)∂2

]
Φ, (16)

where

ai = (e33e3i +η33ci3)/(η33c33 +e2
33),

bi = (e33ci3 −c33e3i)/(η33c33 +e2
33),

Qi j = ci j −a jci3 −b je3i (i, j = 1,2,6), Qi j �= Q ji,

η = η33/(η33c33 +e2
33),

e = e33/(η33c33 +e2
33),

c = c33/(η33c33 +e2
33).

3 Euler-Lagrange equations of 3D piezoelec-
tricity

Substituting Eqs. (6)-(16) into Eq. (5) and impos-
ing the stationary principle of the extended H-R
energy functional (i.e., δΠHR = 0) yields

δΠHR =∫ h

−h

∫
Ω

{
σ11δu1,1 +σ22δu2,2

+σ12(δu1,2 +δu2,1)+σ33δu3,3

+σ23(δu3,2 +δu2,3)+σ13(δu3,1 +δu1,3)
+D1δΦ,1 +D2δΦ,2 +D3δΦ,3

+[u3,3 − (−a1u1,1 −a2u2,2 +ησ33 +eD3)]δσ33

+[u2,3 +u3,2 − (c−1
44 σ23 −c−1

44 e24Φ,2)]δσ23

+[u1,3 +u3,1 − (c−1
55 σ13 −c−1

55 e15Φ,1)]δσ13

+[Φ,3 − (−b1u1,1 −b2u2,2 +eσ33 −cD3)]δD3

}
dx1dx2dx3

−
∫

Ω+
q+

3 δu3dx1dx2

−
∫

Ω−
q−3 δu3dx1dx2

−δk2

∫
Ω+

D
+
3 δΦdx1dx2

−δk1

∫
Ω+

δD3(Φ−Φ+)dx1dx2

−δk2

∫
Ω−

D
−
3 δΦdx1dx2

−δk1

∫
Ω−

δD3(Φ−Φ−)dx1dx2

−
∫ h

−h

∫
Γσ

T iδuidΓdx3

−
∫ h

−h

∫
Γu

δTi(ui −ui)dΓdx3

−
∫ h

−h

∫
ΓD

DnδΦdΓdx3

−
∫ h

−h

∫
ΓΦ

δDn(Φ−Φ)dΓdx3

= 0.

(17)

After performing the integration by parts and
using Green’s theorem, we obtain the Euler-
Lagrange equations of 3D piezoelectricity from
the domain integral terms and the admissible
boundary conditions from the boundary integral
terms. They are written as follows:

For Euler-Lagrange equations,

δu1 : σ13,3 = −σ11,1 −σ12,2, (18)

δu2 : σ23,3 = −σ12,1 −σ22,2, (19)

δu3 : σ33,3 = −σ13,1 −σ23,2, (20)

δσ13 : u1,3 =−u3,1 +c−1
55 σ13−c−1

55 e15Φ,1, (21)

δσ23 : u2,3 =−u3,2 +c−1
44 σ23−c−1

44 e24Φ,2, (22)

δσ33 : u3,3 = −a1u1,1 −a2u2,2 +ησ33 +eD3,

(23)

δD3 : Φ,3 = −b1u1,1−b2u2,2 +eσ33 −cD3,

(24)

δΦ : D3,3 = −D1,1 −D2,2. (25)

For the lateral boundary conditions,[
σ13 σ23

]
=
[
0 0

]
on x3 = ±h, (26a)
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σ33 = q+
3 (x1,x2)

and (either D3 = D
+
3 (x1,x2)

or Φ = Φ+ (x1,x2)) on x3 = h, (26b)

σ33 = −q−3 (x1,x2)

and (either D3 = −D
−
3 (x1,x2)

or Φ = −Φ− (x1,x2)) on x3 = −h. (26c)

The edge boundary conditions are

σ11n1 +σ12n2 = T 1 or u1 = u1, (27a)

σ12n1 +σ22n2 = T 2 or u2 = u2, (27b)

σ13n1 +σ23n2 = T 3 or u3 = u3, (27c)

D1n1 +D2n2 = Dn or Φ = Φ. (27d)

Using Eqs. (6)-(16), we can rewrite the previous
Euler-Lagrange equations in terms of the primary
variables and its matrix form is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,3

u2,3

σ33,3

D3,3

σ13,3

σ23,3

u3,3

Φ,3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 d15 0 d17 d18

0 0 0 0 0 d26 d27 d28

0 0 0 0 d17 d27 0 0
0 0 0 0 d18 d28 0 d48

d51 d52 d53 d54 0 0 0 0
d61 d62 d63 d64 0 0 0 0
d53 d63 d73 d74 0 0 0 0
d54 d64 d74 d84 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

σ33

D3

σ13

σ23

u3

Φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (28)

where

d15 = c−1
55 , d17 = −∂1, d18 = −c−1

55 e15∂1,

d26 = c−1
44 , d27 = −∂2, d28 = −c−1

44 e24∂2,

d48 = (c−1
55 e2

15 +η11)∂11 +(c−1
44 e2

24 +η22)∂22,

d51 = −(Q11∂11 +Q66∂22),

d52 = −(Q12 +Q66)∂12,

d53 = −a1∂1, d54 = −b1∂1,

d61 = −(Q21 +Q66)∂12,

d62 = −(Q66∂11 +Q22∂22),

d63 = −a2∂2, d64 = −b2∂2,

d73 = η, d74 = e, d83 = e, d84 = −c.

The set of Euler-Lagrange equations (Eq. (28))
associated with a set of appropriate boundary con-
ditions (Eqs. (26)-(27)) are composed of a well-
posed boundary value problem. Here, a differen-
tial reproducing kernel particle method is newly
proposed to solve this boundary value problem
corresponding to the static behavior of simply
supported, multilayered elastic and piezoelectric
plates under electro-mechanical loads.

4 A DRKP approximation scheme

4.1 Reproducing kernel shape functions

To solve the differential equation system govern-
ing a certain physical problem more efficient, we
aim at developing the continuous shape functions
for the derivatives of RK approximants associ-
ated with each discrete point in the domain (Ω)
by following up the consistent concepts of RKP
method (Liu et al., 1995). In order to make a clear
interpretation, we simplify the derivation of the
present scheme for one-dimensional problems.

It is assumed that there are NP discrete points ran-
domly selected and located at x1, x2, · · · , xNP, re-
spectively, in the domain. The reproducing ker-
nel approximant ua(x) of unknown function u(x),
∀ x ∈ Ω, is defined as

ua(x) =
NP

∑
l=1

φl(x)ûl, (29)

where φl(x) = wa(x−xl)C(x;x−xl),

C(x; x−xl) = PT (x−xl) b(x),
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PT (x−xl) =[
1 (x−xl) (x−xl)2 · · · (x−xl)n

]
,

bT (x) =
[
b0(x) b1(x) b2(x) · · · bn(x)

]
;

ûl(l = 1,2, · · · ,NP) are the fictitious nodal values
and are not the nodal values of ua(x) in general;
φl(x) is the reproducing kernel shape functions
corresponding to nodal point at x = xl; wa(x−xl)
is the weight function centered at xl with a support
size a, C(x;x−xl) is the correction function; b j(x)
( j = 0,1,2, · · · ,n) are the undetermined functions
and will be determined by satisfying the reproduc-
ing conditions, and n is the highest order of the
basis functions.

By selecting the complete nth-order polynomials
as the basis functions to be reproduced, we obtain
a set of reproducing conditions to determine the
undetermined functions of bl(x) in Eq. (29). The
reproducing conditions are give as

NP

∑
l=1

φl(x)xm
l = xm m = 0, 1, 2, · · · , n. (30)

Equation (30) represents (n+1) reproducing con-
ditions and can be rearranged in the explicit form
as follows:

m = 0 :
NP

∑
l=1

φl(x) = 1, (31)

m = 1 :
NP

∑
l=1

φl(x) (x−xl)

= x
NP

∑
l=1

φl(x)−
NP

∑
l=1

φl(x)xl = 0, (32)

m = 2 :
NP

∑
l=1

φl(x)(x−xl)2

= x2
NP

∑
l=1

φl(x)−2x
NP

∑
l=1

φl(x)xl +
NP

∑
l=1

φl(x)x2
l = 0,

(33)

...

m = n :
NP

∑
l=1

φl(x)(x−xl)n = 0. (34)

The matrix form of the previous reproducing con-
ditions is given as

NP

∑
l=1

P(x−xl)φl(x)

=
NP

∑
l=1

P(x−xl)wa(x−xl )PT (x−xl)b(x)

= P(0)

(35)

where P(0) =
[
1 0 0 · · · 0

]T
.

According to the reproducing conditions (Eq.
(7)), we may obtain the undetermined function
matrix b(x) in the following form

b(x) = A−1(x) P(0), (36)

where A(x) =
NP
∑

l=1
P(x−xl)wa(x−xl)PT (x−xl ).

Substituting Eq. (36) into Eq. (29) yields the re-
producing kernel shape functions in the form of

φl(x) = wa(x−xl)PT (x−xl)A−1(x)P(0). (37)

It is realized from Eq. (37) that φl(x) vanishes
when x is not in the support of nodal point at
x = xl . The influence of the shape functions in
the support of the referred nodal point mono-
tonically decreases as the relative distance to the
nodal point increases. The fact preserves the local
character of the present scheme.

4.2 Derivatives of reproducing kernel shape
functions

Since the reproducing kernel approximant ua(x)
is given in Eq. (29), the first derivative of ua(x) is
therefore expressed as

dua(x)
dx

=
NP

∑
l=1

φ (1)
l (x)ûl, (38)

where φ (1)
l (x) denote the first-order derivatives of

the shape functions.

In the conventional RKP method, φ (1)
l (x) (l =

1, 2, · · · ,NP) are obtained by directly taking the
differential operation toward the shape functions
of the approximants φl(x). That results in the
lengthy expression and complicated computation,
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especially for the calculation involving the higher-
order derivatives of the approximant. Contrary
to the aforementioned manipulation, a novel ap-
proach is proposed in the paper. The shape func-
tions for the derivatives of approximants are de-
termined using a set of differential reproducing
conditions. The detailed derivation is given as fol-
lows.

In the present scheme, we express φ (1)
l (x) in the

similar form of φl(x) and given as

φ (1)
l (x) = wa(x−xl) C1(x; x−xl ), (39)

where C1(x; x−xl) = PT (x−xl) b1(x),

bT
1 (x) =

[
b1

0(x) b1
1(x) b1

2(x) · · · b1
n(x)

]
.

The differential reproducing conditions for a set
of complete nth-order polynomials are given as

NP

∑
l=1

φ (1)
l (x) xm

l = mxm−1 m = 0, 1, 2, · · · , n.

(40)

Equation (40) can be rearranged and explicitly
written as follows:

m = 0 :
NP

∑
l=1

φ (1)
l (x) = 0, (41)

m = 1 :
NP

∑
l=1

φ (1)
l (x) (x−xl)

= x
NP

∑
l=1

φ (1)
l (x)−

NP

∑
l=1

φ (1)
l (x)xl = −1, (42)

m = 2 :
NP

∑
l=1

φ (1)
l (x) (x−xl)2

= x2
NP

∑
l=1

φ (1)
l (x)−2x

NP

∑
l=1

φ (1)
l (x)xl +

NP

∑
l=1

φ (1)
l (x)x2

l = 0,

(43)

...

m = n :
NP

∑
l=1

φ (1)
l (x) (x−xl)n = 0. (44)

The matrix form of the differential reproducing
conditions is given as

NP

∑
l=1

P(x−xl)φ (1)
l (x)

=
NP

∑
l=1

P(x−xl)wa(x−xl)PT (x−xl)b1(x)

= −P(1)(0), (45)

where (-1)
[
P(1)(0)

]
= − dP(x−xl)

dx

∣∣∣
x=xl

=[
0 −1 0 · · · 0

]T
.

The undetermined function matrix b1(x) can then
be obtained and given by

b1(x) = −A−1(x) P(1)(0). (46)

Substituting Eq. (46) into Eq. (39) yields the first-
order derivative of the reproducing kernel shape
functions in the form of

φ (1)
l (x) = −wa(x−xl)PT (x−xl)A−1(x)P(1)(0).

(47)

Carrying on the similar derivation to the kth-order
derivative of the reproducing kernel approximant
leads to

dkua(x)
dxk =

NP

∑
l=1

φ (k)
l (x)ûl, (48)

where

φ (k)
l (x) =

(−1)kwa(x−xl)PT (x−xl)A−1(x)P(k)(0),

P(k)(0) =
dkP(x−xl)

dxk

∣∣∣∣
x=xl

.

It is found from observing Eqs. (37), (47) and (48)
that the shape functions of reproducing kernel ap-
proximant and its derivatives are independent of
one another and easy to be applied in the point
collocation method.
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4.3 Weight functions

In implementing the present scheme, the weight
functions must be selected in advance. The con-
ventional weight function of cubic spline is used
in the present analysis and given as

Cubic spline: wa(x−xl) = w(s) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4s3 −4s2 +(2/3)
for s ≤ (1/2)

−(4/3)s3 +4s2 −4s+(4/3)
for (1/2) < s ≤ 1

0 for s > 1

,

(49)

where s = |x−xl |/a.

It is noted that a very small value of a may re-
sult in an ill-conditioned problem since the system
matrix A(x) will becomes singular. On the other
hand, the value of a also has to be small enough to
preserve the local character of the present scheme.
Hence, a compromise range of the value of a has
to be studied later to ensure the accuracy and con-
vergence of the present scheme.

5 Applications

Based on the proposed differential reproduc-
ing kernel particle scheme, a point collocation
method is used for the coupled analysis of simply
supported, multilayered elastic and piezoelectric
plates. The loading conditions on the top and bot-
tom surfaces and edge boundary conditions of the
plate are given as follows:

The loading conditions of the plates are

q+
3 = q+

0 sin(m̂πx1/L1) sin(n̂πx2/L2),
q−3 = q−0 sin(m̂πx1/L1) sin(n̂πx2/L2);

(50)

either

D+
3 = D+

0 sin(m̂πx1/L1) sin(n̂πx2/L2),

D
−
3 = D−

0 sin(m̂πx1/L1) sin(n̂πx2/L2),
(51a)

or,

Φ+ = Φ+
0 sin(m̂πx1/L1) sin(n̂πx2/L2). (51b)

where m̂ and n̂ are the wave numbers along the x1

and x2 coordinates, respectively.

The edge boundary conditions of the plates are
considered as the fully simple supports and suit-
ably grounded and written as

u2 = u3 = σ11 = Φ = 0 at x1 = 0 and L1, (52a)

u1 = u3 = σ22 = Φ = 0 at x2 = 0 and L2. (52b)

For making the calculation more efficient and pre-
venting from the ill-conditioned of system matrix,
we select a set of dimensionless variables to nor-
malize the coordinates and the variables of elec-
tric and elastic fields. The dimensionless variables
are given as

x = x1/L, y = x2/L, z = x3/h; (53a)

u = u1/h, v = u2/h, w = u3/L; (53b)

σx = Lσ11/(hQ), σy = Lσ22/(hQ),
σxy = Lσ12/(hQ);

(53c)

σxz = L2σ13/h2Q, σyz = L2σ23/h2Q,

σz = L3σ33/h3Q;
(53d)

Dx = hD1/(Le), Dy = hD2/(Le),
Dz = LD3/(he);

(53e)

φ = LeΦ/(h2Q); (53f)

where L denotes a typical in-plane dimension of
the plate and is taken to be L =

√
L1L2 in the pa-

per; −1 ≤ z ≤ 1; e and Q stand for a reference
piezoelectric and elastic modulus; Q is taken as
Q = (1/2h)

∫ h
−h c33dx3.

The method of double Fourier series expansion is
firstly applied to reduce the system of partial dif-
ferential equations (Eq. (28)) to a system of ordi-
nary differential equations. By satisfying the edge
boundary conditions, we express the primary vari-
ables in the following form

u =
∞

∑̂
m=1

∞

∑̂
n=1

um̂n̂(z)cosm̃xsin ñy, (54)

v =
∞

∑̂
m=1

∞

∑̂
n=1

vm̂n̂(z) sinm̃xcos ñy, (55)

w =
∞

∑̂
m=1

∞

∑̂
n=1

wm̂n̂(z) sinm̃xsin ñy, (56)

τxz =
∞

∑̂
m=1

∞

∑̂
n=1

τxzm̂n̂(z)cosm̃xsin ñy, (57)
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τyz =
∞

∑̂
m=1

∞

∑̂
n=1

τyzm̂n̂(z) sinm̃xcos ñy, (58)

σz =
∞

∑̂
m=1

∞

∑̂
n=1

σzm̂n̂(z) sinm̃xsin ñy, (59)

Dz =
∞

∑̂
m=1

∞

∑̂
n=1

Dzm̂n̂(z) sinm̃xsin ñy, (60)

φ =
∞

∑̂
m=1

∞

∑̂
n=1

φm̂n̂(z) sinm̃xsin ñy, (61)

where m̃ = m̂πL/L1 and ñ = n̂πL/L2.

For brevity, the symbols of summation are omit-
ted in the following derivation. By using the set
of dimensionless coordinates and field variables
((Eq. (53)) and substituting the Eqs. (54)-(61) in
the Euler-Lagrange equations (Eq. (28)), we have
the resulting equations as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

um̂n̂,z
vm̂n̂,z
σzm̂n̂,z
Dzm̂n̂,z
σxzm̂n̂,z
σyzm̂n̂,z
wm̂n̂,z
φm̂n̂,z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 d̃15 0 d̃17 d̃18

0 0 0 0 0 d̃26 d̃27 d̃28

0 0 0 0 −d̃17 −d̃27 0 0
0 0 0 0 −d̃18 −d̃28 0 d̃48

d̃51 d̃52 d̃53 d̃54 0 0 0 0
d̃61 d̃62 d̃63 d̃64 0 0 0 0
−d̃53 −d̃63 d̃73 d̃74 0 0 0 0
−d̃54 −d̃64 d̃74 d̃84 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

um̂n̂

vm̂n̂

σzm̂n̂

Dzm̂n̂

σxzm̂n̂

σyzm̂n̂

wm̂n̂

φm̂n̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (62)

where

d̃15 = Qh2/c55L2, d̃17 = −m̃,

d̃18 = −Qe15h2m̃/c55e0L2,

d̃26 = Qh2/c44L2, d̃27 = −ñ,

d̃28 = −Qe24h2ñ/c44e0L2,

d̃48 = −(c−1
55 e2

15 +η11)(Qh2/e2
0L2)m̃2

− (c−1
44 e2

24 +η22)(Qh2/e2
0L2)ñ2,

d̃51 = (Q̃11m̃2 + Q̃66ñ2), d̃52 = (Q̃12 + Q̃66)m̃ñ,

d̃53 = −a1(h2/L2)m̃, d̃54 = −b1(e0/Q)m̃,

d̃61 = (Q̃21 + Q̃66)m̃ñ, d̃62 = (Q̃66m̃2 + Q̃22ñ2),

d̃63 = −a2(h2/L2)ñ, d̃64 = −b2(e0/Q)ñ,

d̃73 = ηQ(h4/L4), d̃74 = ee0h2/L2,

d̃81 = b1(e0/Q)m̃, d̃82 = b2(e0/Q)ñ,

d̃83 = ee0h2/L2, d̃84 = −ce2
0/Q.

Similarly, the dimensionless dependent variables
of in-plane stresses and in-plane electric displace-
ments can be expressed in terms of the primary
variables as follows:

σx =
∞

∑̂
m=1

∞

∑̂
n=1

σxm̂n̂(z) sinm̃xsin ñy, (63)

σy =
∞

∑̂
m=1

∞

∑̂
n=1

σym̂n̂(z) sinm̃xsin ñy, (64)

σxy =
∞

∑̂
m=1

∞

∑̂
n=1

σxym̂n̂(z)cosm̃xcos ñy, (65)

Dx =
∞

∑̂
m=1

∞

∑̂
n=1

Dxm̂n̂(z)cosm̃xsin ñy, (66)

Dy =
∞

∑̂
m=1

∞

∑̂
n=1

Dym̂n̂(z) sinm̃xcos ñy, (67)

where⎧⎨
⎩

σxm̂n̂

σym̂n̂

σxym̂n̂

⎫⎬
⎭ =

⎡
⎣l11 l12

l21 l22

l31 l32

⎤
⎦{um̂n̂

vm̂n̂

}
+

⎡
⎣l13

l23

0

⎤
⎦σzm̂n̂

+

⎡
⎣l14

l24

0

⎤
⎦Dzm̂n̂,

{
Dxm̂n̂

Dym̂n̂

}
=
[

l41 0
0 l52

]{
σxzm̂n̂

σyzm̂n̂

}
+
[

l43

l53

]
φm̂n̂,
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and l11 = −m̃Q̃11, l12 = −ñQ̃12, l13 = a1h2/L2,
l14 = b1e0/Q,

l21 = −m̃Q̃21, l12 = −ñQ̃12, l23 = a2h2/L2,

l14 = b1e0/Q, l31 = ñQ̃66, l32 = m̃Q̃66,

l41 = e15Qh2/e0c55L2,

l43 = −(c−1
55 e2

15 +η11)(Qh2/e2
0L2)m̃,

l52 = e24Qh2/e0c44L2,

l53 = −(c−1
44 e2

24 +η22)(Qh2/e2
0L2)ñ.

Eq. (62) represents a system of eight simulta-
neously linear ordinary differential equations in
terms of eight primary variables. A point colloca-
tion method based on the present DRKP approxi-
mations is applied to determine the primary vari-
ables in the elastic and electric fields. Once these
primary variables are determined, the dependent
variables can then be calculated using Eqs. (6)-
(16).

6 Illustrative Examples

6.1 Single-layer homogeneous piezoelectric
plates

The present DRKP method is applied to the cou-
pled electro-elastic analysis of a single-layered
piezoelectric plate. Selecting NP nodal points
along the thickness coordinate from bottom to top
surfaces of the plate with a uniform spacing and
applying the present DRK approximations to Eq.
(62) at each nodal point, we obtain

(
NP

∑
l=1

φ (1)
l (zk)

(
F̂i
)

l

)

− d̃i j

(
NP

∑
l=1

φl(zk)
(
F̂j
)

l

)
= 0

for i = 1,2,3, · · · ,8 and k = 1,2,3, · · · ,NP,

(68)

where F̂ =
{

û v̂ σ̂z D̂z σ̂xz σ̂yz ŵ φ̂
}T

and
(
F̂j
)

l denotes the fictitious nodal value of jth

primary variable in F̂ at the lth nodal point; zk

denotes the thickness coordinate of kth referred
nodal point.

Similarly, the DRK approximations for the
boundary conditions on the lateral surfaces are
given by

NP

∑
l=1

φl(z = −1)
(
F̂5
)

l = 0,

NP

∑
l=1

φl(z = −1)
(
F̂6
)

l = 0,

NP

∑
l=1

φl(z = −1)
(
F̂3
)

l = q̃−0 ,

either
NP

∑
l=1

φl(z = −1)
(
F̂8
)

l = Φ̃−
0

or
NP

∑
l=1

φl(z = −1)
(
F̂4
)

l = D̃−
0 ;

(69)

NP

∑
l=1

φl(z = 1)
(
F̂5
)

l = 0,

NP

∑
l=1

φl(z = 1)
(
F̂6
)

l = 0,

NP

∑
l=1

φl(z = 1)
(
F̂3
)

l = q̃+
0 ,

either
NP

∑
l=1

φl(z = 1)
(
F̂8
)

l = Φ̃+
0

or
NP

∑
l=1

φl(z = 1)
(
F̂4
)

l = D̃+
0 ;

(70)

where q̃±0 = q±0 L3/(h3Q), Φ̃±
0 = LeΦ±

0 /(h2Q) and
D̃±

0 = LD
±
3 /(he).

Equations (68)-(70) represent a linear mathemat-
ical system consisting of [(8×NP)+8] simultane-
ously algebraic equations in terms of (8xNP) un-
knowns. A weighted least square method is used
in the present analysis where the weight number
for the lateral boundary conditions is taken to be
10000 and for Euler-Lagrange equations is 1.

Table 2 considers a simply supported, single-layer
homogeneous piezoelectric plate under the cylin-
drical bending type of electric potential. The
applied electric potentials on lateral surfaces are
given as Φ+(x1) = Φ0 sin(πx1/L1) and Φ−(x1) =
0. The material properties are given in Table 1
(Dube et al., 1996). The geometric parameter of
S (S = L1/(2h)) is taken as 4. For the comparison
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Table 1: Elastic, piezoelectric and dielectric properties of piezoelectric materials

Moduli 
Crystal class mm2 

(Dube et al., 1996) 

Ceramics 

(Heyliger and 

Brooks, 1996) 

PZT-4 

(Heyliger and 

Brooks, 1996) 

Moduli 
PZT-4 

(Heyliger, 1994) 

Composite 

Material  

(Heyliger, 1994)

11c ( )GPa 74.1 138.28 139.02 11E ( )GPa 81.3 132.38 

22c 74.1 138.28 139.02 22E 81.3 10.756 

33c 82.6 128.07 115.45 33E 64.5 10.756 

12c 45.2 32.359 77.848 12v 0.329 0.24 

23c 39.3 27.821 74.328 13v 0.432 0.24 

13c 39.3 27.821 74.328 23v 0.432 0.49 

44c 13.17 53.5 25.6 44G 25.6 3.606 

55c 13.17 53.5 25.6 55G 25.6 5.654 

66c 14.45 53.0 30.6 66G 30.6 5.654 

24e ( )2/ mC  0.0 2.96 12.72 24e ( )2/ mC  12.72 0.000 

15e -0.138 2.96 12.72 15e 12.72 0.000 

31e -0.160 0.8 -5.2 31e -5.20 0.000 

32e -0.160 0.8 -5.2 32e -5.20 0.000 

33e 0.347 6.88 15.08 33e 15.08 0.000 

11η )/( mF 0.825e-10 1.7885e-09 1.306e-08 11η )/( mF 1.306e-08 0.3099e-10 

22η 0.825e-10 1.7885e-09 1.306e-08 22η 1.306e-08 0.2656e-10 

33η 0.902e-10 1.6026e-09 1.151e-08 33η 1.151e-08 0.2656e-10 

purpose, a set of normalized field variables used
by Dube et al. (1996) is adopted and given by

ũ = 100u/(S |d1|Φ0) , w̃ = 100w/(|d1|Φ0) ,

σ̃x = S2(2h)σx/(Yx |d1|Φ0) ,

σ̃y = (2h)σy/(Yx |d1|Φ0) ,

σ̃z = S4(2h)σz/(Yx |d1|Φ0) ,

σ̃xz = S3(2h)σxz/(Yx |d1|Φ0) ,

φ̃ = Φ/Φ0, D̃z = (2h)Dz/
(
Yxd

2
1Φ0

)
,

d1 = −3.9238x10−12 C/N, Yx = 42.785 GPa.

(71)

Table 2 shows the present solutions of various
variables of elastic and electric fields at the cru-
cial positions in the piezoelectric plate where a

uniform spacing (Δx3) for each pair of neighbor-
ing nodal points is used. The number of total
nodal points is taken as NP=5, 7, 9, 11, 21 and
Δx3 = 2h/(NP− 1). The effects of the highest
order of basis functions (n) and the support size
(a) on the present solutions are presented where
the values of (n, Δx3) are taken as (2, 2.1Δx3), (2,
3.1Δx3) and (3, 3.1Δx3). The accuracy and rate
of convergence of the present DRKP method are
validated by comparing the present solutions with
the available 3D solutions in the literature (Dube
et al., 1996). It is shown that the present solu-
tions with n=3 and a=3.1Δx3 yield more accurate
results than the others. It is shown that the present
solutions rapidly converge and the present 11-
nodes solutions are in excellent agreement with
the available 3D solutions.
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Table 3: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of mechanical load

ζ             Theories ( ) 1310,0 ×ζυ 1010,
2

×ζLw 410,
2

×ζφ L ζσ ,
2
L

y ( )ζτ ,0yz ζσ ,
2
L

z
1010,

2
×ζLDz

h        DRKP NP=7
9

11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
0.5h      DRKP NP=7

9
11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
0        DRKP NP=7

9

11 

21

Wu et al. (2007) 

Heyliger and Brooks 
(1996) 

-0.5h     DRKP NP=7 
9

11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
-h       DRKP NP=7

9
11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 

-170.374 
-170.416 
-170.415 
-170.415 
-170.415 
-170.406 

-88.8697 
-88.8866 
-88.8859 
-88.8862 
-88.8861 
-88.8804 

-9.13372 

-9.13413 

-9.13406 

-9.13403 

-9.13402 

-9.13120 

72.3010 
72.3133 
72.3127 
72.3129 
72.3128 
72.3126 

150.735 
154.770 
154.769 
154.769 
154.769 
154.765 

1.05566 
1.05613 
1.05612 
1.05613 
1.05613 
1.05609 

1.06070 
1.06109 
1.06108 
1.06109 
1.06109 
1.06105 

1.06256 

1.06296 

1.06295 

1.06295 

1.06295 

1.06291 

1.06228 
1.06267 
1.06267 
1.06267 
1.06267 
1.06263 

1.06069 
1.06116 
1.06115 
1.06116 
1.06116 
1.06112 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

10.5730 
10.5727 
10.5728 
10.5729 
10.5729 
10.5763 

14.0608 

14.0663 

14.0661 

14.0663 

14.0662 

14.0706 

8.14234 
8.14385 
8.14363 
8.14371 
8.14370 
8.14620 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

57.8768 
57.8908 
57.8904 
57.8905 
57.8904 
57.8914 

30.1851 
30.1905 
30.1903 
30.1903 
30.1903 
30.1904 

2.93287 

2.93278 
(3.77200) 
2.93277 

(3.77198) 
2.93275 

(3.77196) 
2.93275 

(3.77196) 
2.93185 

(3.77076) 

-30.1957 
-30.2008 
-30.2006 
-30.2007 
-30.2007 
-30.2007 

-64.5397 
-64.5542 
-64.5538 
-64.5538 
-64.5538 
-64.5526 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

3.45515 
3.45484 
3.45474 
3.45473 
3.45473 
3.45477 

4.75307 

4.75390 

4.75387 

4.75387 

4.75387 

4.75387 

3.71761 
3.71722 
3.71711 
3.71710 
3.71709 
3.71705 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 

0.850178 
0.850105 
0.850100 
0.850098 
0.850098 
0.850095 

0.513743 

0.513739 

0.513739 

0.513739 

0.513739 

0.513734 

0.163562 
0.163619 
0.163623 
0.163625 
0.163625 
0.163623 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

-2.21441 
-2.21653 
-2.21645 
-2.21653 
-2.21653 
-2.21625 

-2.67778 
-2.68014 
-2.68007 
-2.68015 
-2.68015 
-2.67988 

-3.73228 

-3.73430 

-3.73420 

-3.73427 

-3.73427 

-3.73402 

-3.87166 
-3.87363 
-3.87354 
-3.87361 
-3.87361 
-3.87336 

-3.94165 
-3.94364 
-3.94355 
-3.94362 
-3.94362 
-3.94337 

6.2 Multilayered elastic and piezoelectric
plates

The present DRKP method is also applied to the
coupled electro-elastic analysis of multilayered
elastic and piezoelectric plates. Selecting NP(m)

nodal points along the thickness coordinate from
bottom to top surfaces of the mth-layer and apply-
ing the present DRK approximations to Eq. (62)
at each nodal point, we obtain

(
NP

∑
l=1

φ (1)
l (z(m)

k )
(

F̂(m)
i

)
l

)

− d̃(m)
i j

(
NP

∑
l=1

φl(z(m)
k )

(
F̂(m)

j

)
l

)
= 0

for i = 1,2,3, · · · ,8 and k = 1,2,3, · · · ,NP(m),

(72)

where
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Table 4: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of electric potential

ζ              Theories ( ) 1110,0 ×ζυ 1010,
2

×ζLw ζφ ,
2
L ζσ ,

2
L

y ( )ζτ ,0yz
210,

2
×ζσ L

z
710,

2
×ζLDz

h        DRKP NP=7
9

11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
0.5h       DRKP NP=7 

9
11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
0         DRKP NP=7 

9

11 

21

Wu et al. (2007) 

Heyliger and Brooks 
(1996) 

-0.5h      DRKP NP=7 
9

11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 
-h         DRKP NP=7 

9
11 
21

Wu et al. (2007) 
Heyliger and Brooks 

(1996) 

-17.2271 
-17.2285 
-17.2285 
-17.2285 
-17.2285 
-17.2277 

-11.6674 
-11.6682 
-11.6682 
-11.6682 
-11.6682 
-11.6676 

-6.21149 

-6.21174 

-6.21173 

-6.22174 

-6.21174 

-6.21137 

-3.85943 
-3.85895 
-3.85896 
-3.85896 
-3.85896 
-3.85882 

-1.52206 
-1.52079 
-1.52083 
-1.52082 
-1.52083 
-1.52091 

2.21492 
2.21654 
2.21650 
2.21653 
2.21653 
2.21625 

2.37228 
2.37367 
2.37361 
2.37365 
2.37365 
2.37336 

2.49685 

2.49839 

2.49835 

2.49838 

2.49838 

2.49809 

2.74103 
2.74248 
2.74242 
2.74246 
2.74246 
2.74217 

2.97988 
2.98147 
2.98143 
2.98146 
2.98145 
2.98116 

1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 

0.935603 
0.935608 
0.935608 
0.935609 
0.935608 
0.935611 

0.874721 

0.874731 

0.874731 

0.874732 

0.874731 

0.874736 

0.436351 
0.436357 
0.436357 
0.436357 
0.436357 
0.436359 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

98.0248 
98.0680 
98.0664 
98.0665 
98.0664 
98.0706 

-39.0097 
-38.9875 
-38.9882 
-38.9881 
-38.9881 
-38.9872 

-175.595 
(135.711) 
-175.591 
(135.720) 
-175.591 
(135.720) 
-175.591 
(135.720) 
-175.591 
(135.720) 
-175.593 
(135.710) 

38.9647 
38.9429 
38.9437 
38.9436 
38.9437 
38.9426 

-57.9642 
-58.0187 
-58.0169 
-58.0172 
-58.0171 
-58.0090 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

2.31359 
2.31079 
2.31032 
2.31026 
2.31023 
2.31044 

-6.11577 

-6.11231 

-6.11243 

-6.11242 

-6.11243 

-6.11227 

0.744316 
0.744193 
0.743848 
0.743840 
0.743825 
0.743546 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

-16.1184 
-16.1146 
-16.1155 
-16.1156 
-16.1157 
-16.1166 

-8.21644 

-8.20430 

-8.20483 

-8.20464 

-8.20466 

-8.20718 

7.90082 
7.90383 
7.90396 
7.90413 
7.90414 
7.90257 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

-4.38166
-4.38171
-4.38171
-4.38171
-4.38171
-4.38016

-3.91981
-3.91986
-3.91986
-3.91987
-3.91986
-3.91847

-3.48672

-3.48676

-3.48676

-3.48676

-3.48676

-3.48550

-3.45506
-3.44465
-3.45511 
-3.45511 
-3.45511 
-3.45386

-3.44460 
-3.44465
-3.44464
-3.44465
-3.44464
-3.44340

F̂(m) ={
û(m) v̂(m) σ̂ (m)

z D̂(m)
z σ̂ (m)

xz σ̂ (m)
yz

ŵ(m) φ̂ (m)
}T

and
(

F̂ (m)
j

)
l

denotes the fictitious nodal value of

jth primary variable in F̂(m) at the lth nodal point
of the mth-layer. In the present analysis, we let

NP(m) = NP and Δx(m)
3 = 2h(m)/(NP− 1), m =

1,2,3 · · · ,NL where 2h(m) denotes the thickness
of the mth-layer and 2h(m) = z(m)

NP − z(m)
1 .

Similarly, the DRK approximations for the
boundary conditions on the lateral surfaces are
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Table 5: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of electric displacement

ζ             Theories ( ) 610,0 ×ζυ 310,
2

×ζLw 610,
2

−×ζφ L 610,
2

−×ζσ L
y ( ) 510,0 −×ζτ yz

510,
2

−×ζσ L
z ζ,

2
LDz

h        DRKP NP=7 
9

11 
21

Wu et al. (2007) 

0.5h       DRKP NP=7 
9

11 
21

Wu et al. (2007) 

0         DRKP NP=7 

9

11 

21

Wu et al. (2007) 

-0.5h      DRKP NP=7 
9

11 
21

Wu et al. (2007) 

-h        DRKP NP=7 
9

11 
21

Wu et al. (2007) 

429.0613 
429.0517 
429.0516 
429.0510 
429.0510 

177.2110 
177.2146 
177.2144 
177.2145 
177.2145 

-72.9028 

-72.8846 

-72.8890 

-72.8842 

-72.8842 

4.2154 
4.2130 
4.2131 
4.2131 
4.2131 

81.3398 
81.3166 
81.3172 
81.3165 
81.3164 

1.54993 
1.54985 
1.54985 
1.54985 
1.54985 

1.51923 
1.51928 
1.51929 
1.51929 
1.51929 

1.50961 

1.50955 

1.50955 

1.50955 

1.50955 

1.50556 
1.50546 
1.50545 
1.50546 
1.50545 

1.50331 
1.50325 
1.50325 
1.50325 
1.50325 

-9.62434 
-9.62432 
-9.62432 
-9.62432 
-9.62432 

-9.50763 
-9.50763 
-9.50763 
-9.50763 
-9.50763 

-9.45347 

-9.45347 

-9.45347 

-9.45347 

-9.45347 

-9.36675 
-9.36677 
-9.36677 
-9.36677 
-9.36676 

-9.33942 
-9.33942 
-9.33942 
-9.33942 
-9.33942 

-345.1262 
-345.0937 
-345.0934 
-345.0915 
-345.0915 

1.7511 
1.7404 
1.7411 
1.7408 
1.7408 

347.2639 
(335.5428) 
347.2014 

(335.4665) 
347.2025 

(335.4679) 
347.2002 

(335.4650) 
347.2001 

(335.4649) 

-1.5336 
-1.5239 
-1.5245 
-1.5243 
-1.5244 

-338.5371 
-338.4408 
-338.4434 
-338.4402 
-338.4401 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-134.7230 
-134.5574 
-134.5459 
-134.5430 
-134.5425 

2.3898 

2.3745 

2.3754 

2.3752 

2.3752 

133.5282 
133.3767 
133.3693 
133.3671 
133.3667 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

7.07033 
7.06543 
7.06580 
7.06579 
7.06581 

14.04560 

14.03095 

14.03141 

14.03126 

14.03128 

6.97584 
6.96867 
6.96888 
6.96881 
6.96882 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 

0.5431662 
0.5431676 
0.5431676 
0.5431677 
0.5431676 

0.0904129 

0.0904129 

0.0904129 

0.0904129 

0.0904129 

0.0450689 
0.0450689 
0.0450689 
0.0450689 
0.0450689 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

given by

NP

∑
l=1

φl(z = −1)
(

F̂(1)
5

)
l
= 0,

NP

∑
l=1

φl(z = −1)
(

F̂(1)
6

)
l
= 0,

NP

∑
l=1

φl(z = −1)
(

F̂(1)
3

)
l
= q̃−0 ,

either
NP

∑
l=1

φl(z = −1)
(

F̂(1)
8

)
l
= Φ̃−

0

or
NP

∑
l=1

φl(z = −1)
(

F̂ (1)
4

)
l
= D̃−

0 ;

(73)

NP

∑
l=1

φl(z = 1)
(

F̂(NL)
5

)
l
= 0,

NP

∑
l=1

φl(z = 1)
(

F̂(NL)
6

)
l
= 0,

NP

∑
l=1

φl(z = 1)
(

F̂(NL)
3

)
l
= q̃+

0 ,

either
NP

∑
l=1

φl(z = 1)
(

F̂ (NL)
8

)
l
= Φ̃+

0

or
NP

∑
l=1

φl(z = 1)
(

F̂(NL)
4

)
l
= D̃+

0 .

(74)

The DRK approximations for the continuity con-
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ditions at interfaces between adjacent layers are
also given by

NP

∑
l=1

φl(z = z(m)
NP )

(
F̂ (m)

i

)
l

=
NP

∑
l=1

φl(z = z(m+1)
1 )

(
F̂ (m+1)

i

)
l

for i = 1,2,3, · · · ,8 and m = 1,2, · · · , (NL−1).
(75)

Equations (72)-(75) represent a linear mathemati-
cal system consisting of [(8×NP×NL)+(8xNL)]
simultaneously algebraic equations in terms of
(8×NP×NL) unknowns. Again, the weighted
least square method is used in the present anal-
ysis where the weight number for both the lateral
boundary conditions and continuity conditions is
taken to be 10000 and for Euler-Lagrange equa-
tions is 1.

Tables 3-5 consider a simply supported, two-
layered laminate composed of [PZT-4/ceramics]
with equal thickness layers under the cylindri-
cal bending type of mechanical load, electric
potential and electric displacement, respectively.
The applied mechanical load, electric potential
and electric displacement on lateral surfaces are
given as q+

3 (x2) = q0 sin(πx2/L2), q−3 (x2) = 0;

Φ+(x2) = Φ0 sin(πx2/L2), Φ−(x2) = 0; D
+
3 (x2) =

D0 sin(πx2/L2), D
−
3 (x2) = 0 for Tables 3-5, re-

spectively. The material properties of PZT-4 and
ceramics layers are given in Table 1 (Heyliger
and Brooks, 1996). The dimensions of length
and total thickness of the plate are L2=0.1m and
2h=0.01m. Tables 3-5 show the present DRKP
solutions of elastic and electric field components
at the middle surface of each layer and at the in-
terface between the dissimilar layers where the
values of (n, a) are taken as (3, 3.1Δx(m)

3 ) for
each layer. The present DRKP solutions are com-
pared with the 3D solutions obtained from both
Heyliger and Brooks (1996) using Pagano’s ap-
proach (1969, 1970) and Wu et al. (2007) using an
asymptotic approach. It is shown that the present
solutions rapidly converge and the present solu-
tions with 11 nodes at each layer are in excellent
agreement with both available 3D solutions.

A multilayered piezoelectric plate composed of
[0◦/90◦/0◦] laminated composite plate bounded
with piezoelectric layers (PZT-4) on the outer sur-
faces under mechanical load, piezoelectric po-
tential and piezoelectric displacement is consid-
ered in Figures 2-4, respectively. The applied
mechanical load, electric potential and electric
displacement on lateral surfaces are given as
q+

3 = q0 sin(πx1/L1) sin(πx2/L2), q−3 = 0; Φ+ =
Φ0 sin(πx1/L1) sin(πx2/L2), Φ− = 0; D

+
3 =

D0 sin(πx1/L1) sin(πx2/L2), D
−
3 = 0 for Figures

2-4, respectively. The material properties of PZT-
4 and composite layers are given in Table 1
(Heyliger, 1994). The dimensions of length and
total thickness of the plate are L1 = L2 = L and
L/2h = 4,10,20. The thickness ratio of each layer
is PZT-4 layer: 0◦-layer: 90◦-layer: 0◦-layer:
PZT-4 layer=0.1h: 0.6h: 0.6h: 0.6h: 0.1h. A
set of normalized elastic and electric variables are
given as follows:

For the applied mechanical load cases,

(u,w) = (u1,u3)c∗/q0 (2h) ,

(τxz,σ z) = (σ13,σ3)/q0,

φ = Φe∗/q0 (2h) ,

Dz = D3c∗/(q0e∗);

(76)

For the applied electric potential cases,

(u,w) = (u1,u3)c∗/(Φ0e∗),
(τxz,σ z) = (σ13,σ3) (2h)/(Φ0e∗),

φ = Φ/Φ0,

Dz = D3c∗ (2h)/Φ0 (e∗)2 ;

(77)

For the applied electric displacement cases,

(u,w) = (u1,u3)e∗/(2hD0),
(τxz,σ z) = (σ13,σ3)e∗/(D0c∗),

φ = Φ (e∗)2 /(2hD0c∗),
Dz = D3/D0;

(78)

where c∗ = 1 N/m2, e∗ = 1 C/m2.

Figures 2-4 present the through-the-thickness dis-
tributions of various elastic and electric variables
of the [PZT-4/0◦/90◦/0◦/PZT-4] laminated plates
under mechanical load, electric potential and elec-
tric displacement, respectively. It is shown that
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Figure 1: (a) The geometry and coordinates of a piezoelectric plate; (b) The dimensionless thickness coor-
dinates of nodal points in a typical laminated [PZT-4/0◦/90◦/0◦/PZT-4] plate.
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Figure 2: The through-the-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/0◦/PZT-4] plate under mechanical load.
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Figure 3: The through-the-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/0◦/PZT-4] plate under electric potential.



A Differential Reproducing Kernel Particle Method 183

a b 

-0.02 0 0.02 0.04 0.06
u ( 0 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

0 0.03 0.06 0.09
w ( La / 2 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

c d 

-2.0E+007 -1.0E+007 0.0E+000 1.0E+007
 τ xz ( 0 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

-2.5E+006 0.0E+000 2.5E+006 5.0E+006
 σz ( La / 2 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

e f  

-1.6E+010 -8.0E+009 0.0E+000
 φ ( La / 2 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

0 0.2 0.4 0.6 0.8 1
Dz ( La / 2 , Lb / 2 , z )

-1

-0.5

0

0.5

1

z

S = 4
S = 10
S = 20

Figure 4: The through-the-thickness distributions of various field variables in a laminated [PZT-
4/0◦/90◦/0◦/PZT-4] plate under electric displacement.
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the transverse shear stresses produced in the plate
decrease as the plates become thicker for the ap-
plied mechanical load cases; contrarily, they in-
crease as the plates become thicker for the ap-
plied electric load cases. The maximum trans-
verse shear stresses occur in the composite ma-
terial layer for the applied mechanical load cases;
they, however, occur at interfaces between elas-
tic and piezoelectric layers for the applied electric
load cases. The distributions of the elastic dis-
placements through the thickness coordinate are
merely linear functions for the applied mechan-
ical load cases; they, however, reveal approxi-
mately layerwise linear or higher-order polyno-
mial functions for the applied electric load cases.
It is observed that the through-the-thickness dis-
tributions of elastic and electric variables reveal
large difference between the applied mechanical
load cases and the applied electric load cases.

7 Conclusions

In this paper, we have proposed a differential re-
producing kernel particle method for the anal-
ysis of multilayered piezoelectric plates. The
newly proposed DRKP method is efficient for
determinations of the shape functions of the
derivatives of the reproducing kernel approxi-
mants using a set of differential reproducing con-
ditions. The present DRKP method has been ap-
plied to the coupled elastic-electric analysis of
multilayered piezoelectric plates under electro-
mechanical loads. It is shown that the present
DRKP solutions converge rapidly and are in ex-
cellent agreement with the available 3D solutions.
In the present analysis, it is concluded that the
basic kinematics assumptions of generalized 2D
plate theories based on the global displacement
fields, such as the classical plate theory, the first-
order and higher-order shear deformation theo-
ries etc, may not be suitable for the analysis of
multilayered piezoelectric plates under the elec-
tric load. Hence, an advanced 2D plate theory ac-
counting for the layerwise nonlinear distributions
of generalized kinematics variables in elastic and
electric fields through the thickness coordinate is
needed to be developed.
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