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Abstract: A differential reproducing kernel
particle (DRKP) method is proposed and devel-
oped for the analysis of simply supported, mul-
tilayered elastic and piezoelectric plates by fol-
lowing up the consistent concepts of reproduc-
ing kernel particle (RKP) method. Unlike the
RKP method in which the shape functions for
derivatives of the reproducing kernel (RK) ap-
proximants are obtained by directly taking the dif-
ferentiation with respect to the shape functions of
the RK approximants, we construct a set of dif-
ferential reproducing conditions to determine the
shape functions for the derivatives of RK approx-
imants. On the basis of the extended Hellinger-
Reissner principle, the Euler-Lagrange equations
of three-dimensional piezoelectricity and the pos-
sible boundary conditions are derived. A point
collocation method based on the present DRKP
approximations is formulated for the static anal-
ysis of simply supported, multilayered elastic
and piezoelectric plates under electro-mechanical
loads. It is shown that the present DRKP method
indeed is a fully meshless approach with excellent
accuracy and fast convergence rate.

Keyword: Meshless methods, Reproducing
kernels, Point collocation, Piezoelectric plates,
Static, Bending.

1 Introduction

In recent decades, the laminated composite elas-
tic plates bonded with piezoelectric layers on the
lateral surfaces of the composite laminates have
been designed as the so-called smart (or intelli-
gent) structures. Since the direct and converse ef-
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fects of the piezoelectric materials, the previously
smart structures have been successfully applied
in various industries for the purposes of sensing,
actuating and controlling. Hence, many theoret-
ical methodologies and numerical modeling have
been proposed for the analysis of this new class of
smart structures under electro-mechanical loads.

Several two-dimensional (2D) coupled electro-
elastic theories have been proposed by extend-
ing the basic kinematics assumptions of 2D theo-
ries of laminated composite structures to account
for the coupled electro-elastic effects. Tauchert
(1992) and Tiersten (1969) extended the classi-
cal lamination theory (CLT) to study piezother-
moelastic and piezoelectric responses of multi-
layered piezoelectric plates, respectively. Jon-
nalagadda (1994) and Mindlin (1972) presented
the 2D piezothermoelastic and vibration anal-
yses of multilayered piezoelectric plates using
an extended first-order shear deformation the-
ory (FSDT), respectively. Khdeir and Aldraihem
(2007) proposed an extended higher-order shear
deformation theory (HSDT) for the static behav-
ior of laminated composite piezoelectric plates.
Shu (2005) presented an accurate theory for the
cylindrical bending vibration of laminated piezo-
electric plates. Batra and Vidoli (2002) presented
a higher-order piezoelectric plate theory derived
from a three-dimensional variational principle.
Ballhause et al. (2005) proposed a unified formu-
lation for the electro-mechanical analysis of mul-
tilayered piezoelectric plates. Various aforemen-
tioned 2D coupled theories can be included as the
special cases in the unified formulation. The re-
sults obtained from various 2D theories have been
validated and assessed by comparing these 2D re-
sults with 3D solutions available in the literature.

Apart from the aforementioned 2D coupled
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electro-elastic theories, several three-dimensional
(3D) approaches for the exact analysis of lam-
inated piezoelectric plates have also been de-
veloped. Following a similar approach as that
of Pagano (1969, 1970) for the 3D analysis of
laminated composite plates, Heyliger and Brooks
(1995, 1996), Heyliger (1994) and Dube et al.
(1996) presented the exact cylindrical bending de-
formation and vibration, electro-elastic and piezo-
thermo-elastic analyses of laminated piezoelec-
tric plates, respectively. In conjunction with
the state space method, an exact transfer-matrix-
based methodology was presented by Lee and
Jiang (1996) and Pan (2001, 2003) for the
electro-elastic and magneto-electro-elastic anal-
yses of laminated piezoelectric and magneto-
electro-elastic plates, respectively. Vel and Ba-
tra (2000) presented the 3D analytical solution for
hybrid multilayered piezoelectric plates with var-
ious boundary conditions. Based on the method
of perturbation, Wu and his colleagues (2004,
2006, 2007, 2008) presented the 3D asymptotic
solutions for the static and dynamic responses of
functionally graded and multilayered piezoelec-
tric plates and shells.

Recently, the meshless method in computational
mechanics has considerably attracted the re-
searchers’ attention. Liu and his colleagues
(1995) proposed a reproducing kernel particle
(RKP) method for numerical analysis of partial
differential equations. The continuous RKP in-
terpolation functions have been developed by sat-
isfying a set of the reproducing conditions. The
RKP method has been applied for the large de-
formation analysis of non-linear structures (Chen
et al., 1996), for metal forming analysis (Chen et
al., 1998) and for the dynamic analysis of linear
structures (Liu et al., 1995). A point collocation
method based on reproducing kernel (RK) ap-
proximations has been presented by Aluru (2000).
It is shown that Aluru’s results for several one
and two-dimensional problems are accurate and
the convergence rate is fast.

Lancaster and Salkauskas (1981) proposed an
alternative approach using the moving least
squares (MLS) approximations to develop a
meshless method. On a basis of the MLS in-
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terpolation functions, several meshless methods
have been proposed such as the element-free
Galerkin method (Belytschko et al., 1994; Lu
et al., 1994), the meshless local Petrov-Galerkin
(MLPG) method (Atluri et al., 1999; Atluri and
Zhu, 1998, 2000a, 2000b) and the finite point
method (Onate et al., 1996). A comprehensive
literature survey on meshless methods has been
made by Belytschko et al. (1996).

The MLPG method has been proposed by Atluri
and Shen (2002a, b, 2004) for solving various
solid mechanics problems. The advantages of this
method in comparison with the conventional fi-
nite element method, are that the MLPG method
does not need to construct any mesh, neither for
the interpolation of the field variables nor for the
integration of the weak forms. A series of MLPG
approaches has been developed by Han and Atluri
(20044, b) for solving the elasto-static and elasto-
dynamic problems, respectively. In their formu-
lations, the MLS and the radial basis functions
(RBF) are selected as the trial functions and the
Heaviside Dirac delta and the Kelvin fundamen-
tal elasticity solutions are selected as the test func-
tions. Since the successful applications and excel-
lent performance of the MLPG method to various
solid mechanics problems, the MLPG method be-
comes one of the promising numerical methods
for computational mechanics.

Atluri et al. (2004) have proposed a MLPG mixed
finite volume method to simplify and speed up
the MLPG implementation. In this method, the
displacement and stress variables are interpolated
using the same shape functions, independently.
Consequently, the continuity requirements on the
trial functions are reduced by one order and the
second derivatives of the shape derivatives of the
shape functions are avoided. The MLPG mixed
finite volume method was successfully applied to
elasto-static problems (Han and Atluri, 2004a),
elasto-dynamic problems (Han and Atluri, 2004b)
and nonlinear problems (Han et al., 2005).

By using the Dirac delta function as the test
function in the MLPG method, Atluri et al.
(2006a) have developed a MLPG mixed colloca-
tion method for solving elasticity problems. This
method has been demonstrated to yield very ac-
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curate results with a stable convergence rate. It
is concluded that the MLPG mixed collocation
method is much more efficient than the MLPG fi-
nite volume method. Atluri et al. (2006b) have
also proposed a MLPG mixed finite difference
method for solid mechanics where the generalized
finite difference method is used for approximating
the derivatives of a function using the nodal val-
ues in the local domain of definition. Numerical
examples illustrated that the MLPG mixed finite
difference method is suitably used for solving var-
ious elasticity problems.

Shu et al. (2003) recently proposed a local RBF-
based differential quadrature (DQ) method. In
the method, the conventional DQ method is com-
bined with the radial basis functions as the trial
functions in the DQ scheme. The local RBF-
based DQ method has been successfully applied
to study the incompressible flows in the steady
and unsteady regions (Shu et al., 2005), two-
dimensional incompressible Navier-Stokes equa-
tions (Shu et al.,, 2003), three-dimensional in-
compressible viscous flows with curved boundary
(Shan et al., 2008) and vibration problems of ar-
bitrarily shaped members (Wu et al., 2007).

In the present paper, the attention is placed on
the modifications for the derivatives of RK ap-
proximants. A novel approach is proposed in the
present paper where the shape functions for the
derivatives of RK approximants are determined
using a set of differential reproducing condi-
tions. That makes the present scheme, namely the
differential reproducing kernel particle (DRKP)
method, more efficient without directly taking the
differentiation with respect to the shape functions
of RK approximants. A point collocation method
based on the present DRKP approximations is for-
mulated and applied to the 3D electro-elastic anal-
ysis of simply supported, multilayered piezoelec-
tric plates under electro-mechanical loads.

2 The Extended Hellinger-Reissner Energy
Functional

We consider a simply supported, multilayered
elastic and piezoelectric plate as shown in Fig.
1 and subjected to electro-mechanical loads. A
Cartesian coordinate system (xj, x, and x3 coor-
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dinates) is adopted and located on the middle sur-
face of the plate. The total thickness of the plate
is 2h; Ly and L, are the in-surface dimensions in
the x; and x, directions, respectively.

The linear constitutive equations valid for the na-
ture of symmetry class of piezoelectric materials
are given by
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where ©j1,02;,---,01, are the stress compo-
nents; €11, &3, - -, €2 are the strain components;
D, D; and Ds are the electric displacement com-
ponents; E1, E; and E5 are the electric field com-
ponents. ¢;;, e;; and 1;; are the elastic, piezoelec-
tric and dielectric coefficients, respectively, and
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they are layerwise constants through the thickness
coordinate of multilayered plates. For an elastic
layer, the corresponding piezoelectric coefficients
(eij) in Egs. (1)—(2) are zero.

The strain-displacement relations are
81']' = (ui7j +uj7i)/2 (lv .]: 17 27 3)7 (3)

where u1, uy and u3 denote the elastic displace-
ment components; the commas denote partial dif-
ferentiation with respect to the suffix variables.

The electric field-electric potential relations are
E;= _(I)ai (l = 17 27 3)7 (4)

where @ denotes the electric potential.

The Hellinger-Reissner (H-R) principle is ex-
tended to derive the Euler-Lagrange equations for
the coupled-fields analysis of multilayered elastic
and piezoelectric plates. The extended H-R en-
ergy functional for the problem is in the form
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where & is called the Kronecker delta; as the sub-
scripts k = [=1 (or k = [=2), it represents the elec-
tric potential (or the normal electric displacement)
is prescribed on the lateral surfaces;€2 denotes the
plate domain on the x; — x, plane; Q' and Q~ de-
note the top surface (x3 = h) and bottom surface
(x3 —h) of the plate where the transverse loads
q3 and either the electric potentlal o (k=1) or
the electric displacement D3 (k=2) are applied.
I's, Ty, I'p and I'p denote the portions of the
edge boundary where the surface tractions 7, the
surface displacements %;, the surface charge D,
and the surface electric potential @ are prescribed,
repectively. B(o;;,D;) is the complementary elec-
tric enthalpy density function.

In the present formulation, we take the elastic
displacements, the transverse stresses, the normal
electric displacement and the electric potential to
be the primary variables subject to variation. The
strains, electric fields, in-plane stresses and in-
plane electric displacements are then the depen-
dent variables. They can be expressed in terms of
the primary variables using Eqgs. (1)-(4) and given
as follows:
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3 Euler-Lagrange equations of 3D piezoelec-
tricity

Substituting Egs. (6)-(16) into Eq. (5) and impos-
ing the stationary principle of the extended H-R
energy functional (i.e., 6Ty = 0) yields
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After performing the integration by parts and
using Green’s theorem, we obtain the Euler-
Lagrange equations of 3D piezoelectricity from
the domain integral terms and the admissible
boundary conditions from the boundary integral
terms. They are written as follows:

For Euler-Lagrange equations,
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For the lateral boundary conditions,
(013 023] = [0 0] onux3 =+h, (26a)
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033 =3 (X1,%2)
and (either D3 = 5; (x1,x2)
or®d==0" (x1,x2)) onx3 = h, (26b)

033 = —q; (¥1,X%2)
and (either D3 = —D5 (x1,x2)
or®=—-® (x,x))onxz=—h. (26c)

The edge boundary conditions are

o11n1+01any =Ty or uy =1y, (27a)
Oi2n1 + Ony = T o1 uy = iy, (27b)
o131 + O3ny = T3 or u3 = Us, (27¢)
Diny+Dyny =D, or ® = O. (27d)

Using Eqgs. (6)-(16), we can rewrite the previous
Euler-Lagrange equations in terms of the primary
variables and its matrix form is given as
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where

-1 -1
dis=cs5, dig=—01, dig= —cs5e150,
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e =cy}, dyy=—0, dag=—cy]end,
dag = (c55 €15 +M11)d11 + (chy €34+ M22) Iha,
dsi = — (011911 + Q66022),

dsy = —(Q12+ Q66) 12,

dsy = —a1d, dss=—b10,

ds1 = —(Q21 + Q66) 12,

der = —(Qe6911 + 022022),

des = —axdh, des = —byos,

d;3=", diy=e, dsz=e, ds4=—C.

The set of Euler-Lagrange equations (Eq. (28))
associated with a set of appropriate boundary con-
ditions (Egs. (26)-(27)) are composed of a well-
posed boundary value problem. Here, a differen-
tial reproducing kernel particle method is newly
proposed to solve this boundary value problem
corresponding to the static behavior of simply
supported, multilayered elastic and piezoelectric
plates under electro-mechanical loads.

4 A DRKP approximation scheme

4.1 Reproducing kernel shape functions

To solve the differential equation system govern-
ing a certain physical problem more efficient, we
aim at developing the continuous shape functions
for the derivatives of RK approximants associ-
ated with each discrete point in the domain ()
by following up the consistent concepts of RKP
method (Liu et al., 1995). In order to make a clear
interpretation, we simplify the derivation of the
present scheme for one-dimensional problems.

It is assumed that there are NP discrete points ran-
domly selected and located at x1, x2,- -, xyp, re-
spectively, in the domain. The reproducing ker-
nel approximant u?(x) of unknown function u(x),
Vx € Q, is defined as

NP
u(x) =Y ou(x)ay, (29)
=1

where ¢;(x) = wy(x—x,)C(x;x —x7),

C(x; x—x;) =PT (x—x;) b(x),
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P (x—x)=

[1 (x—x7) (x—xl)2 (x—xl)"] ,
b' (x) = [bo(x) bi(x) ba(x) -+ bu(x)];
(I =1,2,---,NP) are the fictitious nodal values

and are not the nodal values of u“(x) in general;
¢1(x) is the reproducing kernel shape functions
corresponding to nodal point at x = x;; w,(x —x7)
is the weight function centered at x; with a support
size a, C(x;x—x;) is the correction function; b ;(x)
(j=0,1,2,---,n) are the undetermined functions
and will be determined by satisfying the reproduc-
ing conditions, and # is the highest order of the
basis functions.

By selecting the complete n/"-order polynomials
as the basis functions to be reproduced, we obtain
a set of reproducing conditions to determine the
undetermined functions of b;(x) in Eq. (29). The
reproducing conditions are give as

Y o)) =x" m=0,1,2,---, n (30)

Equation (30) represents (n+1) reproducing con-
ditions and can be rearranged in the explicit form
as follows:

NP
m=0: Y ¢(x)=1, 31
=1

m:1:2¢1 (x—x7)

NP
= xz 0i(x) = 2, ¢i(x) =0, (32)
=1 =1

m=2: Z@ (x— xl
:x22¢1(x)—2xz¢1( xz+z¢z )x; =
=1 =1

(33)

m=n: Z@ (x—x;)"=0. (34)
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The matrix form of the previous reproducing con-
ditions is given as

NP

N P(x—x)(x)

=1

=

=Y P(x—x))wa(x —x)PT (x —x;)b(x) (35)

(0)

where P(O)=1[1 0 0 --- 0] .

According to the reproducing conditions (Eq.
(7)), we may obtain the undetermined function
matrix b(x) in the following form

I
)

b(x) = A~ (x) P(0), (36)

NP

where A(x) = Y P(x —x;)wq(x —x;)PT (x —x;).
I=1

Substituting Eq. (36) into Eq. (29) yields the re-

producing kernel shape functions in the form of

or(x) = wu(x—xl)PT(x—xl)A_l(x)P(O). (37)

It is realized from Eq. (37) that ¢;(x) vanishes
when x is not in the support of nodal point at
x = x;. The influence of the shape functions in
the support of the referred nodal point mono-
tonically decreases as the relative distance to the
nodal point increases. The fact preserves the local
character of the present scheme.

4.2 Derivatives of reproducing kernel shape
functions

Since the reproducing kernel approximant u“(x)
is given in Eq. (29), the first derivative of u“(x) is
therefore expressed as

a

NP
X _ S oM, (38)
=1

where ¢l(1)(x) denote the first-order derivatives of
the shape functions.

In the conventional RKP method, ¢l(1)(x) (1=
1, 2,---,NP) are obtained by directly taking the
differential operation toward the shape functions
of the approximants ¢;(x). That results in the
lengthy expression and complicated computation,



170 Copyright ©) 2008 Tech Science Press

especially for the calculation involving the higher-
order derivatives of the approximant. Contrary
to the aforementioned manipulation, a novel ap-
proach is proposed in the paper. The shape func-
tions for the derivatives of approximants are de-
termined using a set of differential reproducing
conditions. The detailed derivation is given as fol-
lows.

In the present scheme, we express ¢l(1)(x) in the
similar form of ¢;(x) and given as

¢l(1)(x) =wy(x—x7) C(x; x—x7), (39)
where Cy (x; x—x;) = PT (x —x;) by (),
bi (x) = [by(x) bi(x) bi(x) ba(x)] -

The differential reproducing conditions for a set
of complete n'-order polynomials are given as

= mx" !

Z%

m=0,1,2,---,n

(40)

Equation (40) can be rearranged and explicitly
written as follows:

NP
m:O:ZQ)l (x) =0,
=1

(41)

ZQ)Z (x—x7)

:x2¢f”(x)—2¢}” x=—1, (42)
=1 =1

m22¢l xxl

= Z ¢l(1)(x) —ZxZ ¢l(])(x
=1 =1

NP

m=n: Z ¢l(1)(x) (x—xp)"

=1

=0. (44)

NP 1
Y+ Y 0! (x)x? =0,
=1
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The matrix form of the differential reproducing
conditions is given as

NP

S P(—x)d ) (x)
=1
NP

=Y P(x—x;)wa(x—x;)P" (x—x;)by (x)
=1

=-P(0), (45)

where  (-1) [P(l)(O)} = - w =
[0 -1 0 o]".

The undetermined function matrix b; (x) can then
be obtained and given by

by (x) = —A~' (x) PY(0). (46)

Substituting Eq. (46) into Eq. (39) yields the first-
order derivative of the reproducing kernel shape
functions in the form of

¢l(1)(x) = —wy(x—x)PT (x —x))A™! (x)P(l)(O).
47)

Carrying on the similar derivation to the k"-order
derivative of the reproducing kernel approximant
leads to

dk u
dxk

Z¢l 1y

(48)

(=1 wa(x —x)PT (x —x;) A~ (x)PX)(0),

d"P(x—x;)

PO(0) = — <
X

X=X

It is found from observing Eqs. (37), (47) and (48)
that the shape functions of reproducing kernel ap-
proximant and its derivatives are independent of
one another and easy to be applied in the point
collocation method.
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4.3 Weight functions

In implementing the present scheme, the weight
functions must be selected in advance. The con-
ventional weight function of cubic spline is used
in the present analysis and given as

Cubic spline: w,(x —x7) = w(s) =
453 —4s*> +(2/3)
fors <(1/2)
—(4/3)s> +-4s> — 45+ (4/3) ,
for (1/2) <s<1
0 fors > 1
(49)

where s = [x — x| /a.

It is noted that a very small value of a may re-
sultin an ill-conditioned problem since the system
matrix A(x) will becomes singular. On the other
hand, the value of a also has to be small enough to
preserve the local character of the present scheme.
Hence, a compromise range of the value of a has
to be studied later to ensure the accuracy and con-
vergence of the present scheme.

5 Applications

Based on the proposed differential reproduc-
ing kernel particle scheme, a point collocation
method is used for the coupled analysis of simply
supported, multilayered elastic and piezoelectric
plates. The loading conditions on the top and bot-
tom surfaces and edge boundary conditions of the
plate are given as follows:

The loading conditions of the plates are

g5 = qg sin(mmx; /Ly) sin(Amx, /Ly),

50
G5 = qq sin(mmxy /Ly)sin(Anxy/L,); 0
either
Dy = D{ sin(iimx; /Ly) sin(Anxa /L),
(51a)

53_ = Da sin(ﬁm:xl /L] ) Sin(ﬁTCXQ/Lz),
or,
@' =@ sin(hmx /L)) sin(Anxy/Ly).  (51b)

where 71 and 71 are the wave numbers along the x;
and x, coordinates, respectively.
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The edge boundary conditions of the plates are
considered as the fully simple supports and suit-
ably grounded and written as

u=u3=01 =®=0atx; =0and L, (52a)
up=u3=0ynp=>=0atx; =0and L,. (52b)

For making the calculation more efficient and pre-
venting from the ill-conditioned of system matrix,
we select a set of dimensionless variables to nor-
malize the coordinates and the variables of elec-
tric and elastic fields. The dimensionless variables
are given as

x=x1/L, y=x/L, z=x3/h; (53a)
u=u/h, v=uy/h, w=us/L; (53b)
oy = Loy /(hQ), oy =Loxn/(hQ), (53¢)
ny = LG]Q/(hQ);

Ox; = L2(713/h2Q, Oy; = L2623 /thv (53d)
O; = L3G33/h3Q;

D,=hD;/(Le), D,=hDy/(Le), (53¢)

D.=LDs/(he);
¢ = Le®/(h*Q); (53f)

where L denotes a typical in-plane dimension of
the plate and is taken to be L = /L L, in the pa-
per; —1 <z < 1; e and Q stand for a reference
piezoelectric and elastic modulus; Q is taken as
Q = (I/Zh) fth33dX3.

The method of double Fourier series expansion is
firstly applied to reduce the system of partial dif-
ferential equations (Eq. (28)) to a system of ordi-
nary differential equations. By satisfying the edge
boundary conditions, we express the primary vari-
ables in the following form

u= Z Zu,;lﬁ(z) cosmxsiny, (54)
m=17n=1
Y= Z Zv,;lﬁ(z) sinsixcos iy, (55)

3
Il
—_
3
Il
—_

wyia(z) sinmxsin iy, (56)

=

I
M
M

s
il
=

o
I
-
s L

s
il
=
i

Tyzin (2) COS X SINTTY, (57)
=1
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Z Z Ty (2) sinsix cos iy, (58)
m=1n=
Z Z O.na(z) sinmxsin iy, (59)
m=17A=
Z Z 2ia (2) sinmxsin iy, (60)
m=17n=1

Z Z ) sinrx sinfy, (61)

where /i = mnL/L; and ii = AnL/L,.

For brevity, the symbols of summation are omit-
ted in the following derivation. By using the set
of dimensionless coordinates and field variables
((Eq. (53)) and substituting the Eqs. (54)-(61) in
the Euler-Lagrange equations (Eq. (28)), we have
the resulting equations as follows:

Uitz )
Vifiii sz
Ozt sz
Dzrhﬁaz —
Oxziiiirz
Gyzrhﬁaz
Wit sz
L Drivaz
[0 0 0 0 ds 0 dy dg]
0 0 0 0 0 dy dy dy
0 0 0 0 —d7 —d7 0 0
0 0 0 0 —d~13 —d~23 0 d~43
dsy, ds, ds3 dsa O 0 0 0
dei  der des desa O 0 0 0
~dsy —des dr3 du O 0 0 0
|—dsa  —des dra dza O 0 0 0
Ui )
Vi
Ozni
Dzrhﬁ
Oz [ 62)
Oyzimi
Wi
L D
where
dis=Qh*/cssL?,  di7 = —m,
dig = —Qeish*i/csseol?,
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dre = Qh* Jeul?,  dyg = —

dhg = —Qersh?ii/caseol?,

dig = —(c55 €is+ M) (Qh* ) egL? )in®

- (CLL] &4+ 1M0) (OW /g L7) i
dsi = (011w + Qe6it*),  dsz = (Q12+ Qes )i,
dsy = —ai(W*/L*)im, dsy = —b(eo/ Q)
de1 = (021 + Qee)i,  der = (Qeet” + Qi)
dey = —ax(W* [L*)7i,  des = —ba(eo/ Q)i
d73 =MO(H* /L), dyy =eeoh’® /L7,
dg1 = bi(eo/Q)m,  dgy = by(eo/Q)A,
dg3 = eegh? /L?,  dgq = —ce}/ Q.
Similarly, the dimensionless dependent variables
of in-plane stresses and in-plane electric displace-

ments can be expressed in terms of the primary
variables as follows:

Z Zmen ) sinsx sin iy, (63)
m=1n=
Z Zo)mn ) sinrxsin iy, (64)
m=1n=
Z ZGX)mn ) COS X COS iy, (65)
m=1n=
Z ZDxm,, ) cosrxsin iy, (66)
m=1 A=
= Z Z i (2) Sinix cos iy, 67)
m=1h=1
where
O ln ho| o h3
Oyina ¢ = |1 [ {vmn} + | 123 | Oz
Oy L I " 0
l14
+ | l2a | Dy,
0

Dxrhﬁ} | 0] {zerhﬁ} [143] 00
D Y 0 Is Oyzhi i
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and Iy; = —mQy1, Lp = —iQ1a, li3 = ath*/L?,
lia=bie/0Q,

Ly =—mQs, lip=—-iQn, bhs=ah*/L?

lis=bieo/Q, 131 =10¢s, I32=r0gs,
lsy = e1sQh” [egessL?,

ls = —(c55 els + 1) (Qh* /e L? )i,

Isy = 240" [egcasl?,

lIs3 = —(caq €34+ M) (QH* /G L7,

Eq. (62) represents a system of eight simulta-
neously linear ordinary differential equations in
terms of eight primary variables. A point colloca-
tion method based on the present DRKP approxi-
mations is applied to determine the primary vari-
ables in the elastic and electric fields. Once these
primary variables are determined, the dependent
variables can then be calculated using Eqs. (6)-
(16).

6 Illustrative Examples

6.1 Single-layer homogeneous piezoelectric
plates

The present DRKP method is applied to the cou-
pled electro-elastic analysis of a single-layered
piezoelectric plate. Selecting NP nodal points
along the thickness coordinate from bottom to top
surfaces of the plate with a uniform spacing and
applying the present DRK approximations to Eq.
(62) at each nodal point, we obtain

(o)
—d; <Z Or(zk) (ﬁj)l> =0
=1

fori=1,2,3,---,8and k=1,2,3,--- NP,
(68)
where F={a v 6, D, 6. 6, W é}T
and (F;), denotes the fictitious nodal value of ;"
primary variable in F at the /" nodal point; z
denotes the thickness coordinate of k' referred
nodal point.

173

Similarly, the DRK approximations for the
boundary conditions on the lateral surfaces are
given by

NP .

> 0(z=—1)(F),=0,

=1

NP .

Z@(Z =-1) (F6)1 =0,

=1

NP .

Y oiz=-1)(F),=4y. (69)
=1

NP
either Z di(z=—-1) (ﬁs)l = d;
=1

NP .
or Y ¢(z=—1)(F), =Dy
=1

NP
> 0(z=1)(f5), =0,
I=1
NP
> 9(z=1) (fs), =0,
I=1

NP .
Y oiz=1)(F),=4g, (70)
=1

NP

either Y ¢(z=1) (ﬁs)l = &f
I=1

NP R B
or Y 9u(z= 1) (f3), = D{:
=1

where gy = g5 L /(W3 Q), ®F = Le®] /(h*Q) and
DE = LDy /(he).

Equations (68)-(70) represent a linear mathemat-
ical system consisting of [(8 x NP)+8] simultane-
ously algebraic equations in terms of (8x/NP) un-
knowns. A weighted least square method is used
in the present analysis where the weight number
for the lateral boundary conditions is taken to be
10000 and for Euler-Lagrange equations is 1.

Table 2 considers a simply supported, single-layer
homogeneous piezoelectric plate under the cylin-
drical bending type of electric potential. The
applied electric potentials on lateral surfaces are
givenas @ (x1) = Dosin(7x;/L;) and @ (x;) =
0. The material properties are given in Table 1
(Dube et al., 1996). The geometric parameter of
S (S=L;/(2h)) is taken as 4. For the comparison
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Table 1: Elastic, piezoelectric and dielectric properties of piezoelectric materials

Ceramics
Crystal class mm2
Moduli (Heyliger and

(Dube et al., 1996)
Brooks, 1996)

¢,, (GPa) 74.1 138.28
r 74.1 138.28
Cy 82.6 128.07
¢ 452 32.359
ey 39.3 27.821
C 39.3 27.821
Cas 13.17 53.5

Css 13.17 53.5

Css 14.45 53.0
ey (C/m?) 0.0 2.96
e -0.138 2.96

ey, -0.160 0.8

es) -0.160 0.8

ess 0.347 6.88

Ty (F/m) 0.825¢-10 1.7885¢-09
Ty 0.825¢-10 1.7885¢-09
s 0.902¢-10 1.6026¢-09

PZT-4 Composite

(Heyliger and | Moduli P Material

(Heyliger, 1994)

Brooks, 1996) (Heyliger, 1994)
139.02 E,, (GPa) 81.3 132.38
139.02 E, 81.3 10.756
115.45 E; 64.5 10.756
77.848 Vi, 0.329 0.24
74.328 Vi3 0.432 0.24
74.328 Vi 0.432 0.49

25.6 Gy, 25.6 3.606
25.6 Gis 25.6 5.654
30.6 G 30.6 5.654
12.72 ey, (C/m?) 12.72 0.000
12.72 es 12.72 0.000
5.2 e -5.20 0.000
5.2 5 -5.20 0.000
15.08 es3 15.08 0.000
1.306e-08 | 7, (F'/m) 1.306¢-08 0.3099-10
1.306e-08 | 77 1.306¢-08 0.2656¢-10
1.151e-08 | 775 1.151e-08 0.2656e-10

purpose, a set of normalized field variables used
by Dube et al. (1996) is adopted and given by

0= lOOu/ (S‘d]‘q)o), W= IOOW/(‘dl‘(Do),

G, = S*(2h)0y/ (Y |di|@o),

Gy = (2h)0y/ (Ye|d1|®o),

G, = 5" (2h)o;/ (Yc|di| Do),

Ge = §°(2h)Gc/ (Y || Do) ,

¢ =®/Dy, D,=(2h)D,/ (Y:di D),

di = —3.9238x10"12C/N, Y, =42.785 GPa.
(71)

Table 2 shows the present solutions of various
variables of elastic and electric fields at the cru-
cial positions in the piezoelectric plate where a

uniform spacing (Axs) for each pair of neighbor-
ing nodal points is used. The number of total
nodal points is taken as NP=5, 7, 9, 11, 21 and
Ax3 = 2h/(NP —1). The effects of the highest
order of basis functions (n) and the support size
(a) on the present solutions are presented where
the values of (n, Ax3) are taken as (2, 2.1Ax3), (2,
3.1Ax3) and (3, 3.1Ax3). The accuracy and rate
of convergence of the present DRKP method are
validated by comparing the present solutions with
the available 3D solutions in the literature (Dube
et al.,, 1996). It is shown that the present solu-
tions with n=3 and a=3.1Ax3 yield more accurate
results than the others. It is shown that the present
solutions rapidly converge and the present 11-
nodes solutions are in excellent agreement with
the available 3D solutions.
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Table 3: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of mechanical load

H — 13 — £ 10 L 4 = £ = = £ Y £ 10
I Theories  (0,¢)x10 w(zgjxlo ¢)[2,§j><10 6‘(2’;) z'y_;(O,g“) az(z,;j DZ[Z,fJxlo
h DRKP NP=7  -170.374 1.05566 0.00000 57.8768 0.00000 1.000000 -2.21441
9 -170.416 1.05613 0.00000 57.8908 0.00000 1.000000 -2.21653
11 -170.415 1.05612 0.00000 57.8904 0.00000 1.000000 -2.21645
21 -170.415 1.05613 0.00000 57.8905 0.00000 1.000000 -2.21653
Wu et al. (2007) -170.415 1.05613 0.00000 57.8904 0.00000 1.000000 -2.21653
Heyliger and Brooks  -170.406 1.05609 0.00000 57.8914 0.00000 1.000000 -2.21625
(1996)
0.5h DRKP NP=7  -88.8697 1.06070 10.5730 30.1851 3.45515 0.850178 -2.67778
9  -88.8866 1.06109 10.5727 30.1905 3.45484  0.850105 -2.68014
11 -88.8859 1.06108 10.5728 30.1903 3.45474  0.850100 -2.68007
21 -88.8862 1.06109 10.5729 30.1903 3.45473 0.850098 -2.68015
Wu et al. (2007)  -88.8861 1.06109 10.5729 30.1903 3.45473 0.850098 -2.68015
Heyliger and Brooks  -88.8804 1.06105 10.5763 30.1904 3.45477 0.850095 -2.67988
(1996)
0 DRKP NP=7  -9.13372 1.06256 14.0608 2.93287 4.75307 0.513743 -3.73228
9 -9.13413 1.06296 14.0663 2.93278 4.75390  0.513739 -3.73430
(3.77200)
11 -9.13406 1.06295 14.0661 2.93277 4.75387 0.513739 -3.73420
(3.77198)
21 -9.13403 1.06295 14.0663 2.93275 4.75387 0.513739 -3.73427
(3.77196)
Wu et al. (2007)  -9.13402 1.06295 14.0662 2.93275 4.75387 0.513739 -3.73427
(3.77196)
Heyliger and Brooks  -9.13120 1.06291 14.0706 2.93185 4.75387 0.513734 -3.73402
(1996) (3.77076)
-0.5h DRKP NP=7 72.3010 1.06228 8.14234 -30.1957 3.71761 0.163562 -3.87166
9 72.3133 1.06267 8.14385 -30.2008 3.71722 0.163619 -3.87363
11 72.3127 1.06267 8.14363 -30.2006 3.71711 0.163623 -3.87354
21 72.3129 1.06267 8.14371 -30.2007 3.71710  0.163625 -3.87361
Wu et al. (2007) 72.3128 1.06267 8.14370 -30.2007 3.71709 0.163625 -3.87361
Heyliger and Brooks 72.3126 1.06263 8.14620 -30.2007 3.71705 0.163623 -3.87336
(1996)
-h DRKP NP=7 150.735 1.06069 0.00000 -64.5397 0.00000  0.000000 -3.94165
9 154.770 1.06116 0.00000 -64.5542 0.00000  0.000000 -3.94364
11 154.769 1.06115 0.00000 -64.5538 0.00000  0.000000 -3.94355
21 154.769 1.06116 0.00000 -64.5538 0.00000  0.000000 -3.94362
Wu et al. (2007) 154.769 1.06116 0.00000 -64.5538 0.00000  0.000000 -3.94362
Heyliger and Brooks 154.765 1.06112 0.00000 -64.5526 0.00000  0.000000 -3.94337
(1996)
. . . . NP
6.2 Multilayered elastic and piezoelectric Z ¢(1) (Z(m)) ( ﬁ(m))
plates P B i),
The present DRKP method is also applied to the NP
. . : _dm Z ( (m)) Flm) —0
coupled electro-elastic analysis of multilayered ij O (z; i) =
elastic and piezoelectric plates. Selecting NP 1=
nodal points along the thickness coordinate from fori=1,2,3,---,8andk=1,2,3,--- NP™,
bottom to top surfaces of the m'"-layer and apply- (72)

ing the present DRK approximations to Eq. (62)
at each nodal point, we obtain where
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Table 4: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of electric potential

¢ Theories (0, £)x10" W(%,;’)XIO'O &[%,(j c*ry(%,{j ?}Z(O,é’) a{%,;jxloz 5{%,{}@07
h DRKP NP=7 -17.2271 2.21492 1.000000  98.0248 0.00000 0.00000 -4.38166
9 -17.2285 2.21654 1.000000  98.0680 0.00000 0.00000 -4.38171
11 -17.2285 2.21650 1.000000  98.0664 0.00000 0.00000 -4.38171
21 -17.2285 2.21653 1.000000  98.0665 0.00000 0.00000 -4.38171
Wu et al. (2007) -17.2285 2.21653 1.000000  98.0664 0.00000 0.00000 -4.38171
Heyliger and Brooks -17.2277 2.21625 1.000000  98.0706 0.00000 0.00000 -4.38016
(1996)
0.5h DRKP NP=7 -11.6674 2.37228 0.935603 -39.0097 2.31359 -16.1184 -3.91981
9 -11.6682 2.37367 0.935608 -38.9875 2.31079 -16.1146 -3.91986
11 -11.6682 2.37361 0.935608 -38.9882  2.31032 -16.1155 -3.91986
21  -11.6682 2.37365 0.935609 -38.9881  2.31026 -16.1156 -3.91987
Wu et al. (2007) -11.6682 2.37365 0.935608 -38.9881  2.31023 -16.1157 -3.91986
Heyliger and Brooks -11.6676 2.37336 0.935611 -38.9872  2.31044 -16.1166 -3.91847
(1996)
0 DRKP NP=7 -6.21149 2.49685 0.874721 -175.595 -6.11577 -8.21644 -3.48672
(135.711)
9 -6.21174 2.49839 0.874731 -175.591 -6.11231 -8.20430 -3.48676
(135.720)
11 -6.21173 2.49835 0.874731 -175.591 -6.11243 -8.20483 -3.48676
(135.720)
21  -6.22174 2.49838 0.874732 -175.591 -6.11242 -8.20464 -3.48676
(135.720)
Wu et al. (2007) -6.21174 2.49838 0.874731 -175.591 -6.11243 -8.20466 -3.48676
(135.720)
Heyliger and Brooks -6.21137 2.49809 0.874736  -175.593  -6.11227 -8.20718 -3.48550
(1996) (135.710)
-0.5h DRKP NP=7 -3.85943 2.74103 0.436351 38.9647 0.744316 7.90082 -3.45506
9 -3.85895 2.74248 0.436357 38.9429 0.744193 7.90383 -3.44465
11 -3.85896 2.74242 0.436357 38.9437 0.743848 7.90396 -3.45511
21 -3.85896 2.74246 0.436357 38.9436  0.743840 7.90413 -3.45511
Wu et al. (2007) -3.85896 2.74246 0.436357 38.9437 0.743825 7.90414 -3.45511
Heyliger and Brooks -3.85882 2.74217 0.436359 38.9426 0.743546 7.90257 -3.45386
(1996)
-h DRKP NP=7 -1.52206 2.97988 0.00000 -57.9642  0.00000 0.00000 -3.44460
9 -1.52079 2.98147 0.00000 -58.0187  0.00000 0.00000 -3.44465
11 -1.52083 2.98143 0.00000 -58.0169  0.00000 0.00000 -3.44464
21 -1.52082 2.98146 0.00000  -58.0172  0.00000 0.00000 -3.44465
Wu et al. (2007) -1.52083 2.98145 0.00000  -58.0171 0.00000 0.00000 -3.44464
Heyliger and Brooks -1.52091 2.98116 0.00000  -58.0090  0.00000 0.00000 -3.44340
(1996)
B — NP = NP and Ax)") = 280" /(NP — 1), m =
{ am) 5m) 6(,,1) D(m) A (m) AS’") 1,2,3--- ,NL where 2h(m) de?c;tes Eh? thickness
¢ ‘ oo of the m™-layer and 21" = 77 — 2™

Similarly, the DRK approximations for the
boundary conditions on the lateral surfaces are

and (ﬁ j(m)>l denotes the fictitious nodal value of

j™ primary variable in F") at the I"* nodal point
of the m"-layer. In the present analysis, we let
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Table 5: The elastic and electric field variables in a two-layer piezoelectric plate under cylindrical bending
type of electric displacement

R T DR V1L S S0 DS g
¢ Theories  (0,)x10 w[z,é’jxlo ¢[2,4)x10 o“[2,§]><10 7,.(0,{)x10 a_,[2,§j><10 Dz(z,fj
I DRKP NP=7 429.0613 154993  9.62434  -345.1262 _ 0.0000 0.00000  1.0000000

9 4290517 154985  -9.62432  -345.0937  0.0000 0.00000  1.0000000

11 429.0516  1.54985  -9.62432  -345.0934  0.0000 0.00000  1.0000000

21 4290510 154985  -9.62432  -345.0915  0.0000 0.00000  1.0000000

Wu et al. (2007) 429.0510 154985  -9.62432  -345.0915  0.0000 0.00000  1.0000000
0.5h DRKPNP=7 1772110 151923  -9.50763 17511 -134.7230 707033 0.5431662

9 1772146 151928  -9.50763 17404  -134.5574 7.06543  0.5431676

11 1772144 151929  -9.50763 17411 -134.5459 706580  0.5431676

21 1772145 151929  -9.50763 17408  -134.5430 706579 0.5431677

Wu et al. (2007) 177.2145 151929 950763  1.7408  -134.5425 706581  0.5431676

0 DRKPNP=7 -72.9028 150961  -9.45347  347.2639 2.3898 14.04560  0.0904129
(335.5428)

9 728846 150955  -9.45347  347.2014 23745 14.03095  0.0904129
(335.4665)

11 -72.8890  1.50955  -9.45347  347.2025 23754 1403141 0.0904129
(335.4679)

21 728842 150955  -9.45347  347.2002 23752 1403126 0.0904129
(335.4650)

Wu et al. (2007) -72.8842 150955  -9.45347  347.2001 23752 14.03128  0.0904129
(335.4649)

-0.5h DRKPNP=7 42154 150556  -9.36675  -1.5336 133.5282 6.97584  0.0450689

9 42130 150546  -9.36677  -1.5239 133.3767 6.96867  0.0450689

11 42131 150545 936677  -1.5245 133.3693 6.96888  0.0450689

21 42131 150546  -936677  -1.5243 133.3671 6.96881  0.0450689

Wu et al. 2007) 42131 150545 936676  -1.5244 1333667 6.96882  0.0450689
h DRKPNP=7 813398 150331 933942  -3385371  0.0000 0.00000  0.0000000

9 813166 150325 933942  -338.4408  0.0000 0.00000  0.0000000

11 813172 150325  -9.33942  -3384434  0.0000 0.00000  0.0000000

21 813165 150325  -9.33942  -3384402  0.0000 0.00000  0.0000000

Wu et al. (2007) 813164 150325 933942 -338.4401  0.0000 0.00000  0.0000000

~ NP

given by ~(NL
Z@@:l)@i)lza
i=1

e A(1) & (NL)

Z@&:—U<5L:Q Z@@:UQ% )ZQ

=1 I=1 !

i ~(1) > (NL)

Ya=-1(£") =0, Ya=1(A") =a. (74)

=1 =1

Ny ~(1) & (NL)

Yale=-1 (A"), =, (73) cither Y ¢i(z=1) (F™) = &g

- i=1

NP
either )’ ¢y(z= —1) (

M) _ g & (a0 _ At
> ), =% mg@@qwa ),= D5

NP
:—lvm>:DT N -
or Z{ ¢i(z ) (Fa i 0 The DRK approximations for the continuity con-
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ditions at interfaces between adjacent layers are
also given by

NP

(m)\ [ p(m)
d(z=2zyp) | F;

Z{ i NP ( )z

NP
=Y gi(z=2""") (E(erl))
=1

fori=1,2,3,---,8andm=1,2,---,(NL—1).
(75)

l

Equations (72)-(75) represent a linear mathemati-
cal system consisting of [(§XNPXxNL)+(8xNL)]
simultaneously algebraic equations in terms of
(8XNPxNL) unknowns. Again, the weighted
least square method is used in the present anal-
ysis where the weight number for both the lateral
boundary conditions and continuity conditions is
taken to be 10000 and for Euler-Lagrange equa-
tionsis 1.

Tables 3-5 consider a simply supported, two-
layered laminate composed of [PZT-4/ceramics]
with equal thickness layers under the cylindri-
cal bending type of mechanical load, electric
potential and electric displacement, respectively.
The applied mechanical load, electric potential
and electric displacement on lateral surfaces are
given as gy (x2) = qosin(mxy /L), g5 (x2) = 0;
D (xvy) = Dpsin(nx2/Ls), ® (x2) =0; D (x2) =
Dysin(mxa/Ly), D5 (x2) = 0 for Tables 3-5, re-
spectively. The material properties of PZT-4 and
ceramics layers are given in Table 1 (Heyliger
and Brooks, 1996). The dimensions of length
and total thickness of the plate are L,=0.1m and
2h=0.01m. Tables 3-5 show the present DRKP
solutions of elastic and electric field components
at the middle surface of each layer and at the in-
terface between the dissimilar layers where the
values of (n, a) are taken as (3, 3.1Axgm)) for
each layer. The present DRKP solutions are com-
pared with the 3D solutions obtained from both
Heyliger and Brooks (1996) using Pagano’s ap-
proach (1969, 1970) and Wu et al. (2007) using an
asymptotic approach. It is shown that the present
solutions rapidly converge and the present solu-
tions with 11 nodes at each layer are in excellent
agreement with both available 3D solutions.
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A multilayered piezoelectric plate composed of
[0°/90°/0°] laminated composite plate bounded
with piezoelectric layers (PZT-4) on the outer sur-
faces under mechanical load, piezoelectric po-
tential and piezoelectric displacement is consid-
ered in Figures 2-4, respectively. The applied
mechanical load, electric potential and electric
displacement on lateral surfaces are given as
i . . __ L=t
g3 = qosin(mx; /Ly)sin(nxy/Ly), g5 =0; @ =
®gsin(7x; /L) sin(mxy /L), ® = 0; Dy =
Dysin(7x;/Ly)sin(mxa/Ly), D3 = 0 for Figures
2-4, respectively. The material properties of PZT-
4 and composite layers are given in Table 1
(Heyliger, 1994). The dimensions of length and
total thickness of the plate are L; = L, = L and
L/2h =4,10,20. The thickness ratio of each layer
is PZT-4 layer: 0°-layer: 90°-layer: 0°-layer:
PZT-4 layer=0.1h: 0.6h: 0.6h: 0.6h: 0.1h. A
set of normalized elastic and electric variables are
given as follows:

For the applied mechanical load cases,

(u,w) = (u1,u3)c*/q0 (2h),
(?xzvgz) = (6137 63)/q07

¢ =®e"/qo(2h),

D, = D3c™/(qoe");

(76)

For the applied electric potential cases,
(,w) = (ur,u3)c”/(Poe”),

(?xzvgz) = (6137 63) (Zh) /((I)oe*),

¢ =0/,

D. = D3c* (2h) /@ (¢*)?;

(77

For the applied electric displacement cases,
(@, w) = (u1,u3)e”/(2hDy),

(?xzvgz) = (613763)6*/(D0C*)7

¢ =@(e")’ /(2hDoc”),

Bz =D;3 /DO;

(78)

where ¢* = 1 N/m?, ¢* = 1 C/m>.

Figures 2-4 present the through-the-thickness dis-
tributions of various elastic and electric variables
of the [PZT-4/0°/90°/0°/PZT-4] laminated plates
under mechanical load, electric potential and elec-
tric displacement, respectively. It is shown that
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Figure 1: (a) The geometry and coordinates of a piezoelectric plate; (b) The dimensionless thickness coor-
dinates of nodal points in a typical laminated [PZT-4/0°/90°/0°/PZT-4] plate.
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Figure 2: The through-the-thickness distributions of various field variables in a laminated [PZT-

4/0°/90°/0°/PZT-4] plate under mechanical load.
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Figure 3:

4/0°/90°/0°/PZT-4] plate under electric potential.
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Figure 4: The through-the-thickness distributions of various field variables in a laminated

4/0°/90°/0°/PZT-4] plate under electric displacement.
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the transverse shear stresses produced in the plate
decrease as the plates become thicker for the ap-
plied mechanical load cases; contrarily, they in-
crease as the plates become thicker for the ap-
plied electric load cases. The maximum trans-
verse shear stresses occur in the composite ma-
terial layer for the applied mechanical load cases;
they, however, occur at interfaces between elas-
tic and piezoelectric layers for the applied electric
load cases. The distributions of the elastic dis-
placements through the thickness coordinate are
merely linear functions for the applied mechan-
ical load cases; they, however, reveal approxi-
mately layerwise linear or higher-order polyno-
mial functions for the applied electric load cases.
It is observed that the through-the-thickness dis-
tributions of elastic and electric variables reveal
large difference between the applied mechanical
load cases and the applied electric load cases.

7 Conclusions

In this paper, we have proposed a differential re-
producing kernel particle method for the anal-
ysis of multilayered piezoelectric plates. The
newly proposed DRKP method is efficient for
determinations of the shape functions of the
derivatives of the reproducing kernel approxi-
mants using a set of differential reproducing con-
ditions. The present DRKP method has been ap-
plied to the coupled elastic-electric analysis of
multilayered piezoelectric plates under electro-
mechanical loads. It is shown that the present
DRKP solutions converge rapidly and are in ex-
cellent agreement with the available 3D solutions.
In the present analysis, it is concluded that the
basic kinematics assumptions of generalized 2D
plate theories based on the global displacement
fields, such as the classical plate theory, the first-
order and higher-order shear deformation theo-
ries etc, may not be suitable for the analysis of
multilayered piezoelectric plates under the elec-
tric load. Hence, an advanced 2D plate theory ac-
counting for the layerwise nonlinear distributions
of generalized kinematics variables in elastic and
electric fields through the thickness coordinate is
needed to be developed.
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