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Particular Solutions of Chebyshev Polynomials for Polyharmonic and
Poly-Helmholtz Equations

Chia-Cheng Tsai1

Abstract: In this paper we develop analytical
particular solutions for the polyharmonic and the
products of Helmholtz-type partial differential
operators with Chebyshev polynomials at right-
hand side. Our solutions can be written explicitly
in terms of either monomial or Chebyshev bases.
By using these formulas, we can obtain the ap-
proximate particular solution when the right-hand
side has been represented by a truncated series
of Chebyshev polynomials. These formulas are
further implemented to solve inhomogeneous par-
tial differential equations (PDEs) in which the ho-
mogeneous solutions are complementarily solved
by the method of fundamental solutions (MFS).
Numerical experiments, which include eighth or-
der PDEs and three-dimensional cases, are carried
out. Due to the exponential convergence of the
Chebyshev interpolation and the MFS, our numer-
ical results are extremely accurate.
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1 Introduction

There are a number of numerical methods that can
be classified as boundary-type numerical methods
[Cheng and Cheng (2005)] because the numerical
discretization is performed either on the solution
boundary, or on a boundary-like geometry, which
resides in a lower spatial dimension than the so-
lution domain. Examples include the boundary
element method (BEM), the MFS [Kupradze and
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Aleksidze (1964); Bogomolny (1985)], the Tre-
fftz Methods (TM) [Cozzano, Rodríguez (2007);
Liu (2007A); Liu (2007B)], the meshless local
boundary integral equation method [Zhu, Zhang,
and Atluri (1998)], and et al. Boundary-type nu-
merical methods generally require the governing
equation to be homogeneous hence a special algo-
rithm is needed for inhomogeneous PDEs.

One way to eliminate the inhomogeneous term is
by the method of particular solutions (MPS) ad-
dressed by Golberg and Chen (1999). Consider
an inhomogeneous linear PDE:

Λu = f (x); x ∈ Ω (1)

which is subject to the boundary conditions

B(u) = g(x); x ∈ Γ (2)

In the above, Λ and B are partial differential op-
erators, Ω is the solution domain, and Γ is its
boundary. We can decompose the solution into
two parts, a particular solution part up and a ho-
mogeneous part uh, such that

u = up +uh (3)

We require the particular solution to satisfy Eq.
(1) as

Λup = f (x); x ∈ Ω (4)

but not the boundary condition Eq. (2), such that
the solution is easier to find. The solutions of Eq.
(4) can be found by the MPS which will be de-
scribed later. Then, it is easy to show that the ho-
mogeneous solution must satisfy

Λuh = 0; x ∈ Ω (5)

and is subject to the modified boundary condition

Buh = g(x)−Bup; x ∈ Γ (6)
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Eqs. (5) and (6) can then be formally solved by
boundary-type numerical methods. The original
idea of this formulation stemmed form the dual
reciprocity boundary element method (DRBEM)
innovated by Nardini and Brebbia (1982). Actu-
ally, the dual reciprocity procedure is equivalent
to the MPS.

From the above description, it is clear that the ap-
plicability of previous formulation depends on the
availability of the particular solution up associated
with right hand side function f and the operator
Λ. It is obvious that analytical expressions for up

are rare. Hence, in the same spirit of numerical
solutions, approximate expressions of the particu-
lar solution are sought. This can be accomplished
by approximating the right hand side function as
a summation of basis (trial) functions,

f (x)≈ ∑
i

αi ϕi(x) (7)

where ϕi are basis functions, and αi are constants
to be determined by solving a linear system result-
ing from collocations or least squares. Once the
basis functions in Eq. (7) are selected, the prob-
lem of finding particular solution is reduced to

Λψi = ϕi(x); x ∈ Ω (8)

where ψi is the particular solution corresponding
to ϕi. Once ψi is found, the approximate particu-
lar solution sought for becomes

up ≈
n

∑
i=1

αi ψi(x) (9)

Therefore, the success of the MPS depends on the
availability of the exact expression of ψi associ-
ated to the basis function ϕi and operators Λ.

In the last few decades, significant progress has
been made in obtaining analytical particular so-
lutions for various basis functions. Among these
are the radial basis functions [Cheng, Lafe, and
Grilli (1994); Golberg (1995); Golberg, Chen,
and Karur (1996); Golberg and Chen (1999);
Muleshkov, Golberg, and Chen (1999); Cheng
(2000); Muleshkov and Golberg (2007)], the
trigonometric functions [Atkinson (1985); Li and,
Chen (2004)], the monomials [Janssen and, Lam-
bert (1992); Cheng, Lafe, and Grilli (1994);

Cheng, Chen, Golberg, Rashed (2001); Golberg,
Muleshkov, Chen, and Cheng (2003)], the Cheby-
shev polynomials [Golberg, Muleshkov, Chen,
and Cheng (2003); Reutskiy and Chen (2006);
Karageorghis, and Kyza (2007); Ding and Chen
(2007)] and others. In this study, we consider the
analytical particular solution corresponding to the
Chebyshev polynomials.

In the original study of Chebyshev interpolation,
Golberg, Muleshkov, Chen, and Cheng (2003)
utilized symbolic software Mathematica to con-
nect monomials and Chebyshev polynomials and
used their derived particular solution as follows

Λ∑
i, j

αi jx
iy j = xmyn (10)

to implement floating number computing. How-
ever some book keepings are required in their
study. Reutskiy and Chen (2006) remedied the
tedious book keeping by using two-stage approx-
imations of trigonometric functions and Cheby-
shev polynomials. On the other hand, Kara-
georghis, and Kyza (2007) studied the same issue
by directly considering

Λ∑
i, j

βi jTi(x)Tj(y) = Tm(x)Tn(y) (11)

where Tm(x) is the Chebyshev polynomial of de-
gree m. However matrix inverses are conducted to
their final formulas. Thus they have to face the is-
sue of ill-conditioning. Recently, Ding and Chen
(2007) discovered a recursive formulation free
from book keepings and matrix inverses. Thus
their formulation can be implemented by floating
number computing.

It is well known that systems involving the cou-
pling of a set of second order elliptic equations
are encountered in some engineering problems,
such as a multilayered aquifer system [Cheng and
Morohunfola (1993A); Cheng and Morohunfola
(1993B)], or a multiple porosity system [Cheng
(2000)]. These coupled systems can be reduced
to a single partial differential equation by using
the Hörmander operator decomposition technique
[Hörmander (1963)]. The resultant partial differ-
ential equations usually involve the polyharmonic
or the products of Helmholtz-type operators. This
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motivated us to generalize the situation by consid-
ering analytical particular solutions of

Λ ∑
i, j,k

αi jkxiy jzk = xmynzl (12)

where the partial differential operator Λ is in a
very general form

Λ =
σ

∏
i=1

(Δ−λi)Ai

= (Δ−λ1)A1(Δ−λ2)A2 . . .(Δ−λσ )Aσ (13)

with A1, A2, . . . , Aσ ∈ N, λ1,λ2, ...,λσ ∈ C, and Δ
is the Laplacian. We notice that when

σ
∏
i=1

λi �= 0

in Eq. (13), the operator is the product of the
Helmholtz-type operators, and when σ = 1, Eq.
(13) becomes the poly-Hemholtz or polyharmonic
operator.

In our implementation, we use the explicit for-
mulas between monomials and Chebyshev poly-
nomials [Mason and Handscomb (2003)] as well
as the explicit formulas in Eq. (12), which can
be easily coded by multiple loops. Our imple-
mentation is free from book keepings and ma-
trix inverses. Compared to the recursive for-
mulation [Ding and Chen (2007)], our formula-
tion is easier and more suitable for higher or-
der PDEs and three dimensions. Furthermore,
we solve the homogeneous solution by the MFS
in our implementation [Kupradze and Aleksidze
(1964); Bogomolny (1985); Tsai, Young, Cheng
(2002); Smyrlis, Karageorghis (2003); Chen,
Fan, Young, Murugesan, Tsai (2005); Young,
Ruan (2005); Young, Chen, Chen, Kao (2007);
Hu, Young, Fan (2008)]. This two-stage pro-
cedure forms a boundary-type meshless numer-
ical method, which is opposite to domain-type
meshless numerical methods solving PDEs in one
stage, such as Kansa’s method [Emdadi, Kansa,
Libre, Rahimian, Shekarchi (2008); Kosec, Šar-
ler (2008); Libre, Emdadi, Kansa, Rahimian,
Shekarchi (2008)] and the meshless local Petrov-
Galerkin method [Gao, Liu, Liu (2006); Han, Liu,
Rajendran, Atluri (2006); Sladek, Sladek, Wen,
Aliabadi (2006); Sladek, Sladek, Zhang, Solek
(2007); Wu, Shen, Tao (2007)] and et al. Our nu-
merical results are very accurate even for eighth

order PDEs and three dimensions due to the ex-
ponential convergence of the Chebyshev interpo-
lation and the MFS.

In order to complete the mathematical considera-
tion, we also illustrate by an example for obtain-
ing explicit particular solutions with Chebyshev
polynomials at right hand side

Λ ∑
i, j,k

βi jkTi(x)Tj(y)Tk(z) = Tm(x)Tn(y)Tl(z) (14)

Λ ∑
i, j,k

γi jkxiy jzk = Tm(x)Tn(y)Tl(z) (15)

by using the explicit formulas between mono-
mials and Chebyshev polynomials [Mason and
Handscomb (2003)]. We do not suggest direct im-
plementations of Eqs. (14) and (15) because they
are less efficient.

2 Chebyshev interpolation

We begin with the trivariate Chebyshev poly-
nomial interpolation f̃ (x,y, z) for a function
f (x,y, z), in which lower dimensional situations
are included. The Chebyshev interpolant using
Gauss-Lobatto nodes for cubic domain [xa, xb]×
[ya, yb]× [za, zb] takes the form:

f̃ (x,y, z) =
l

∑
i

m

∑
j

n

∑
k

ai jkTi

(
2x−xb −xa

xb −xa

)

Tj

(
2y−yb −ya

yb −ya

)
Tk

(
2z− zb − za

zb − za

)
(16)

where

ai jk =
8

lmncl,icm, jcn,k

l

∑
i

m

∑
j

n

∑
k

f (xi,x j,xk)
cl,icm, jcn,k

cos
iπ i
l

cos
jπ j
m

cos
kπk

n
(17)

with

cl,0 = cl,l = 2, cl,i = 1, 1 ≤ i ≤ l−1 (18a)

xi =
(xb −xa)

2
cos

iπ
l

+
xb +xa

2
(18b)

y j =
(yb −ya)

2
cos

jπ
m

+
yb +ya

2
(18c)
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zk =
(zb− za)

2
cos

kπ
n

+
zb + za

2
(18d)

Note that l, m and n are the numbers of Gauss-
Lobatto nodes in the x, y and z directions, re-
spectively. Also, it is well known that the use
of Gauss-Lobatto nodes ensure the spectral con-
vergence for Chebyshev interpolation. Details of
Chebyshev interpolation can be found in a recent
excellent review book of Mason and Handscomb
(2003).

In the application of MPS, the right hand side
f (x,y, z) in Eq. (4) is first approximated by the
Chebyshev interpolation. In the following deriva-
tions, we assume xa = ya = za = −1, xb = yb =
zb = 1, and [−1, 1]×[−1, 1]×[−1, 1] big enough
to enclose Ω. These assumptions do not lose the
generality. Then, Eq. (16) reduces to the follow-
ing form:

f̃ (x,y, z) =
l

∑
i

m

∑
j

n

∑
k

ai jkTiTjTk (19)

Eq. (19) can also be rewritten in terms of
monomial basis by using [Mason and Handscomb
(2003)]

Tn(x) =
[n/2]

∑
k=0

c(n)
k xn−2k (20)

with

c(n)
k = (−1)k2n−2k−1 n(n−k−1)!

k!(n−2k)!
, n > 2k

(21a)

c(2k)
k = (−1)k, k ≥ 0 (21b)

In Eq. (20), the brackets [ ] in the summation lim-
its indicate taking the integer part of the argument.
Using Eqs. (19) and (20) it is enough to obtain

f̃ (x,y, z) =
l

∑
i

m

∑
j

n

∑
k

bi jkxiy jzk (22)

It should be noted that, we can actually write bi jk

explicitly, however that is not the best way for im-
plementations. We will return to this issue in Sec-
tion 6.

3 Particular solutions of monomials – poly-
Helmholtz equation

Since we have the approximated right hand side in
terms of monomials, we should find the particular
solutions defined by Eq. (12) in order to apply
the MPS. In this section, we consider Λ = (Δ−
λ )L first. In other words, we are going to seek

P(L,l,m,n)
λ (x,y, z) so that

(Δ−λ )LP(L,l,m,n)
λ (x,y, z) = xlymzn (23)

Golberg, Muleshkov, Chen, and Cheng (2003)
had found the solution for L = 1, λ �= 0

P(1,l,m,n)
λ (x,y, z) =

[ l
2 ]

∑
i=0

[m
2 ]

∑
j=0

[ n
2 ]

∑
k=0

−(i+ j +k)!l!m!n!xl−2iym−2 jzn−2k

λ i+ j+k+1i! j!k!(l−2i)!(m−2 j)!(n−2k)!
(24)

or

ΔP(1,l,m,n)
λ −λ P(1,l,m,n)

λ = xlymzn (25)

Taking partial derivative with respect λ , we have

Δ
∂P(1,l,m,n)

λ
∂λ

−P(1,l,m,n)
λ −λ

∂P(1,l,m,n)
λ
∂λ

= 0

⇒ (Δ−λ )
∂P(1,l,m,n)

λ
∂λ

= P(1,l,m,n)
λ

⇒ (Δ−λ )2 ∂P(1,l,m,n)
λ
∂λ

= xlymzn

(26)

From Eq. (26), it is clear that

P(2,l,m,n)
λ =

∂P(1,l,m,n)
λ
∂λ

(27)

Repeating the above derivations we can obtain

P(L,l,m,n)
λ =

1
(L−1)!

∂ L−1P(1,l,m,n)
λ

∂λ L−1 (28)

Using Eqs. (24) and (28) we can have the desired
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particular solution for λ �= 0 as follows

P(L,l,m,n)
λ (x1,x2,x3) =

[ l
2 ]

∑
i=0

[m
2 ]

∑
j=0

[ n
2 ]

∑
k=0[

(−1)L(i+ j +k +L−1)!l!m!n!xl−2i ym−2 jzn−2k
]

/[
(L−1)!λ i+ j+k+Li! j!k!(l−2i)!(m−2 j)!

(n−2k)!
]

(29)

It should be noticed that Eq. (29) reduce to two-
dimensional solutions by setting n = 0. Also, Eq.
(29) can be implemented very easily by multiple
loops. If we compare our formula with the re-
cursive formulation introduced by Ding and Chen
(2007), it is clear that our formula is easier for im-
plementation for higher order PDEs and three di-
mensions which is often occurred in engineering
applications.

4 Particular solutions of monomials – poly-
harmonic equation

Then, we consider the particular solutions corre-
sponding to polyharmonic operators as follows:

ΔLP(L,l,m,n)
0 (x,y, z) = xlymzn (30)

In order to find the solutions,we consider Eq. (29)
with l = 0

P(L,0,m,n)
λ (x2,x3) =

[ m
2 ]

∑
j=0

[ n
2 ]

∑
k=0

(−1)L( j +k +L−1)!m!n!ym−2 jzn−2k

(L−1)!λ j+k+L j!k!(m−2 j)!(n−2k)!
(31)

Then substitute λ = − ∂2

∂x2 to Eq. (31) and multi-
ply xl , we can obtain

ΔL
[m

2 ]
∑
j=0

[ n
2 ]

∑
k=0

(−1) j+k( j +k +L−1)!m!n!xl ym−2 jzn−2k

(L−1)!
(

∂2

∂x2

) j+k+L
j!k!(m−2 j)!(n−2k)!

= xlymzn (32)

It is easy to show that

(
∂ 2

∂x2

) j+k+L [
l!

(l +2 j +2k +2L)!
xl+2 j+2k+2L

]
= xl (33)

Using Eq. (33) to eliminate the
(

∂2

∂x2

) j+k+L
oper-

ator in Eq. (32), we obtain the particular solution
for polyharmonic operator given as

P(L,l,m,n)
0 (x,y, z)=

[m
2 ]

∑
j=0

[ n
2 ]

∑
k=0

[
(−1) j+k( j+k+L−1)!

l!m!n!xl+2 j+2k+2Lym−2 jzn−2k
]/[

(L−1)!

j!k!(l +2 j +2k +2L)!(m−2 j)!(n−2k)!
]

(34)

For L = 1, the result obtained in Eq. (34) ap-
pears to be simpler as compared to those found in
Golberg, Muleshkov, Chen, and Cheng (2003) for
3D Laplacian operator with monomial right hand
side.

5 Particular solutions of monomials – Λ =
σ
∏
i=1

(Δ−λi)Ai

As we have mentioned that many problems in
engineering and science involve the product of
Helmholtz-type and harmonic operators. There-
fore we are going to derive particular solutions in

Eq. (12) with Λ =
σ
∏
i=1

(Δ−λi)Ai .

Banerjee (1994) introduced the difference trick to
find the fundamental solution for the product of
Helmholtz and harmonic operators. Here we find
the difference trick can be linked to the partial
fraction [O’Neil (2002)]. Therefore we use the
particular solutions of poly-Helmholtz and poly-
harmonic operators, Eqs. (29) & (34), as well as
the partial fraction to derive the desired particular
solution. Consider we have the following partial
fraction

σ

∏
i=1

1
(ξ −λi)Ai

=
σ

∑
j=1

A j−1

∑
k=0

Θ jk

(ξ −λ j)A j−k (35)

where the coefficients Θ jk can be find formally
by the decomposition of partial fraction [O’Neil
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(2002)]. Then, the particular solution correspond-
ing to[

σ

∏
i=1

(Δ−λi)Ai

]
P(l,m,n)(x,y, z) = xlymzn (36)

is

P(l,m,n)(x,y, z) =
σ

∑
i=1

Ai−1

∑
j=0

Θi jP
(Ai− j,l,m,n)
λi

(37)

where P(Ai− j,l,m,n)
λi

are given in Eqs. (29) and (34).

To complete the derivation we first compare Eqs.
(23), (30), and (36) to obtain

σ

∏
i=1

(Δ−λi)AiP(l,m,n)(x,y, z)

= (Δ−λ )LP(L,l,m,n)
λ (x,y, z)

⇒

σ
∏
i=1

(Δ−λi)AiP(l,m,n)(x,y, z)

(Δ−λ )L = P(L,l,m,n)
λ (x,y, z)

(38)

Then, we substitute ξ = Δ to Eq. (35), multiply

both side by

[
σ
∏
i=1

(Δ−λi)Ai

]
P(l,m,n)(x,y, z), and

use Eq. (38) to obtain

σ

∏
i=1

1
(Δ−λi)Ai

=
σ

∑
j=0

A j−1

∑
k=0

Θ jk

(Δ−λ j)A j−k

⇒P(l,m,n)(x,y, z)

=
σ

∑
j=0

A j−1

∑
k=0

Θ jk

[
σ
∏
i=1

(Δ−λi)Ai

]
(Δ−λ j)A j−k P(l,m,n)(x,y, z)

⇒P(l,m,n)(x,y, z)

=
σ

∑
j=0

A j−1

∑
k=0

Θ jkP
(A j−k,l,m,n)
λ j

(x,y, z)

(39)

These finish our derivations.

Since we have the particular solution in Eq. (12)
we are ready to apply the MPS. We can use Eqs.
(29), (34), and (37) with Eq. (22) to get the ap-
proximated particular solution corresponding to[

σ

∏
i=1

(Δ−λi)Ai

]
F̃(x,y, z) = f̃ (x,y, z) (40)

as follows

F̃(x,y, z) =
l

∑
i

m

∑
j

n

∑
k

bi jkP(i, j,k)(x,y, z) (41)

These complete the MPS formulations.

Example 1: Let’s find the particular solutions of

Δ2(Δ−4)(Δ+9)2P(x,y, z) = xlymzn (42)

We first consider the following partial fraction by
the method of undetermined coefficient [O’Neil
(2002)]:

1
ξ 2(ξ −4)(ξ +9)2 = − 1

324ξ 2 −
1

11664ξ

+
1

2704(ξ −4)
− 1

1053(ξ +9)2

− 35
123201(ξ +9)

(43)

Then we have the particular solution as follows

P = −P(2,l,m,n)
0

324
− P(1,l,m,n)

0

11644
+

P(1,l,m,n)
4

2704

− P(2,l,m,n)
−9

1053
− 35P(1,l,m,n)

−9

123201
(44)

where P(2,l,m,n)
0 and P(1,l,m,n)

0 are given in Eq. (34)

as well as P(1,l,m,n)
4 , P(2,l,m,n)

−9 , and P(1,l,m,n)
−9 are ad-

dressed in Eq. (29).

Example 2: Then we try to find the particular so-
lutions of

(Δ2 +1)P̂(x,y, z) = xlymzn (45)

We first consider the following partial fraction:

1
ξ 2 +1

=
1

(ξ + i)(ξ − i)
=

1
2i(ξ − i)

− 1
2i(ξ + i)

(46)

Then we have the particular solution as follows

P̂ =
P(1,l,m,n)

i

2i
− P(1,l,m,n)

−i

2i
(47)

where P(1,l,m,n)
i and P(1,l,m,n)

−i are given in Eq. (29).
It is interesting to note that P̂ is a real valued func-
tion although we are working in complex num-
bers. This is another advantage over Ding and
Chen (2007).
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6 Particular solutions of Chebyshev polyno-
mials

In order to complete the mathematical considera-
tion, we also illustrate by an example about how
to obtain explicit particular solutions with Cheby-
shev polynomials at right hand side as defined in
Eqs. (14) and (15). Consider particular solutions
of two-dimensional polyharmonic operator as

ΔLP̃(x,y) = Th(x)Ti(y) (48)

By using Eq. (20) we have

Th(x)Ti(y) =
[h/2]

∑
j=0

[i/2]

∑
k=0

c(h)
j c(i)

k xh−2 jyi−2k (49)

Then we can utilize Eq. (34) with n = 0 to have

ΔLP(L,l,m,0)
0 (x,y, z) = xlym (50)

with

P(L,l,m,0)
0 (x,y, z) =

[ m
2 ]

∑
j=0

eL,l,m
j xl+2 j+2Lym−2 j (51a)

e(L,l,m)
j =

(−1) j( j +L−1)!l!m!
(L−1)! j!(l +2 j +2L)!(m−2 j)!

(51b)

Combining Eqs. (48)–(50) we can obtain

P̃(x,y) =
[ h

2 ]
∑
j=0

[ i
2 ]

∑
k=0

[ i
2 ]−k

∑
l=0

c(h)
j c(i)

k eL,h−2 j,i−2k
l xh−2 j+2l+2Lyi−2k−2l (52)

Eq. (52) is just the desired particular solution in
terms of monomials. The particular solution can
also be rewritten in terms of Chebyshev polyno-
mials. We first introduce the explicit formula to
express monomials in terms of Chebyshev poly-
nomials introduced by Mason and Handscomb
(2003) as follows:

xn =
[n/2]

∑
k=0

d(n)
k Tn−2k(x) (53)

with

d(n)
k = 21−n n!

k!(n−k)!
(54)

Substituting Eq. (53) to Eq. (52) we have

P̃(x,y) =
[ h

2 ]
∑
j=0

[ i
2 ]

∑
k=0

[ i
2 ]−k

∑
l=0

[ h
2 ]− j+2l+2L

∑
m=0

[ i
2 ]−k−l

∑
n=0

c(h)
j c(i)

k eL,h−2 j,i−2k
l dh−2 j+2l+2L

m di−2k−2l
n

Th−2 j+2l+2L−2m(x)Ti−2k−2l−2n(x) (55)

Eq. (55) is just the explicit particular solutions in
terms of Chebyshev polynomials. These deriva-
tions can be extended to poly-Helmholtz equa-
tions and three dimensions. Also, the particular
solutions can be considered as an alternative to the
formulations derived by Karageorghis, and Kyza
(2007), in which they had to solve systems of lin-
ear equations.

Here we provide these formulas in order to show
the mathematical possibility of obtaining explicit
particular solutions with Chebyshev polynomials
at right hand side. In this paper, we suggest to im-
plement the MPS by using Eqs. (16), (22), and
(37) in three stages instead of direct utilizing Eqs.
(16) & (52) or Eq. (16) & (55) due to the compu-
tational efficiency. We can state the reason clearer
that Eqs. (16) and (22) have to be executed once
for a given f (x,y, z) but the modified boundary
condition in Eq. (6) should be calculated at all
the discrete points by using Eq. (37). Thus the
three-stage implementation is more efficient.

7 Numerical results

Once we find an approximate particular solution,
we can solve the homogeneous problem (5) with
given modified boundary data (6) by the MFS.
Consider[

σ

∏
i=1

(Δ−λi)Ai

]
uh = 0 (56)

Then we can approximate uh(x) by the MFS as

uh(x) ∼=
σ

∑
i=1

Ai−1

∑
j=0

K

∑
k=1

γi jkG(Ai− j)
λi

(x− sk) (57)
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where GL
λ (x) is the fundamental solution defined

by

(Δ−λ )LGL
λ (x) = δ (x) (58)

which can be found in Cheng, Antes, and Ortner
(1994). And sk are K prescribed source points

outside the computation domains. The K
σ
∑

i=1
Ai

unknown coefficient γi jk can be found by en-
forcing the boundary conditions (6) at K bound-
ary field points. It is clear that the order of
σ
∏
i=1

(Δ−λi)Ai is 2
σ
∑

i=1
Ai. Therefore we need

σ
∑

i=1
Ai

boundary conditions which are just the ranks of
the vectored valued partial differential operator B
in Eq. (6). In other words, the enforcement of
boundary conditions at K boundary field points

results in K
σ
∑

i=1
Ai linear equations, which can be

used to solve the K
σ
∑

i=1
Ai unknown coefficients

γi jk. Details of the MFS can be found in theoret-
ical work of Bogomolny (1985). Also Tsai, Lin,
Young, and Atluri (2006) discussed the locations
of source and boundary field points.

Example 3: Let’s solve two-dimensional modi-
fied Helmholtz equation

(Δ−900)u = −899(e−x +e−y) (59)

in [−1, 1]× [−1, 1], Dirichlet boundary condition
is set up corresponding to exact solution

u = e−x +e−y (60)

40 source points are selected in the MFS. Table
I gives the root mean square errors (RMSEs) for
different l and m in which excellent accuracy can
be observed. Here l and m are the numbers of
Gauss-Lobatto nodes in the x and y directions, re-
spectively.

4l m 8l m 12l m 16l m 20l m

Example 4: Then we solve two-dimensional
Poisson’s equation

Δu = e−x +e−y (61)

also in [−1, 1]× [−1, 1] with Dirichlet boundary
condition. The exact solution is also

u = e−x +e−y (62)

Table II gives the RMSEs. The accuracy is also
great.

4l m 8l m 12l m 16l m 20l m

Example 5: Our explicit particular solutions
enable us to solve three-dimensional problems
very easily. Consider three-dimensional modified
Helmholtz equation

(Δ−900)u = −899(e−x +e−y +e−z) (63)

in [−1, 1]× [−1, 1]× [−1, 1]. Dirichlet boundary
condition is set up by using the exact solution

u = e−x +e−y +e−z (64)

386 source points are selected in the MFS for this
three-dimensional case. Table III gives the RM-
SEs for different l, m and n. The results also per-
form well. Here l, m and n are the numbers of
Gauss-Lobatto nodes in the x, y and z directions,
respectively.

4l m n 8l m n 12l m n 16l m n 20l m n

Example 6: Also, we can solve three-
dimensional Poisson’s equation

Δu = e−x +e−y +e−z (65)

with Dirichlet boundary condition. The exact so-
lution is also

u = e−x +e−y +e−z (66)

Table IV gives the RMSEs in which excellent re-
sults can also be observed.
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4l m n 8l m n 12l m n 16l m n 20l m n

Example 7: As we have mentioned that our
formulation can be extended to higher order
PDEs. We consider polyharmonic equation in
two-dimensional domain [−1, 1]× [−1, 1] as

Δ4u = e−x +e−y (67)

The exact solution of the problem is set up as

u = e−x +e−y (68)

In this problem, we have to set up four boundary
conditions in Eq. (6) as

B =
[
1 ∂

∂n
∂2

∂n2
∂3

∂n3

]T
(69)

The MFS equation in Eq. (57) in this case reads

uh(x) ∼=
K

∑
k=1

(
γ1kr6

k lnrk + γ2kr4
k lnrk + γ3kr2

k lnrk

+ γ4k lnrk
)

(70)

where rk = |x− sk|.
Table V gives the RMSEs where nice results are
also found.

4l m 8l m 12l m 16l m 20l m

Example 8: Then let’s consider a two-
dimensional problem in [−1, 1]× [−1, 1] as

Δ2(Δ−900)(Δ−100)u= 89001(e−x +e−y) (71)

The same four types of boundary conditions are
set up corresponding to exact solution

u = e−x +e−y (72)

In this case, the MFS equation becomes

uh(x) ∼=
K

∑
k=1

(
γ1kK0(30rk)+ γ2kK0(10rk)

+ γ3kr
2
k lnrk + γ4k lnrk

)
(73)

where K0() is the zero order modified Bessel func-
tion of second kind.

We also address the nice RMSEs in Table VI.

4l m 8l m 12l m 16l m 20l m

8 Discussions

Many problems in engineering and science are
governed by a system of coupled linear partial
differential equations. Through Hörmander lin-
ear partial differential operator theory and alge-
braic factorization, they can be reduced to a sin-
gle equation involving the products of Helmholtz-
type and polyharmonic operators. In this paper we
derived explicit closed-form particular solutions
for these operators with Chebyshev polynomials
at right-hand side. With these particular solutions
we can transform the inhomogeneous PDEs to ho-
mogeneous ones which can then be solved by the
MFS. Numerical experiments including eighth or-
der PDEs and three-dimensional cases are carried
out. Our numerical results are extremely accurate
due to the exponential convergence of both the
Chebyshev interpolation and the MFS. Applica-
tions of these formulations to problems governed
by a system of coupled linear partial differential
equations are currently under investigations.
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