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Abstract: A three dimensional micromechan-
ically motivated model is proposed here based
on firm thermodynamics principles to capture the
nonlinear dissipative effects in the polycrystal fer-
roelectrics. The constraint imposed by the sur-
rounding grains on a subgrain at its boundary dur-
ing domain switching is modeled by a suitable
modification of the switching threshold in a sub-
grain. The effect of this modification in the dissi-
pation threshold is studied in the polycrystal be-
havior after due correlation of the subgrain be-
havior with the single crystal experimental results
found in literature. Taking into consideration,
all the domain switching possibilities, the volume
fractions of each of the variants in a sub-grain is
tracked and homogenized for polycrystal behav-
ior. The results show appreciable improvement
in modeling the response of the polycrystal ferro-
electrics under electromechanical loading condi-
tions.
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1 Introduction

Ferroelectrics are materials that behave like
piezoelectric materials under low electrical and
mechanical loads and undergo a unique phe-
nomenon called domain switching under higher
loads. The various functional applications of
the ferroelectrics due to their electromechanical
coupling behavior include sensors, actuators, and
MEMS devices. In general, all these devices func-
tion within the linear coupling limit forcing the
device designers to work within a small region
of a greater potential. In addition, present day
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devices have complex geometries upon demand
from the device design. When subjected to severe
electromechanical loading, they develop concen-
trations of electric and mechanical field within
their domain. This causes the material to undergo
domain switching and associated nonlinearity that
may affect the performance of the ferroelectric de-
vices. Hence, developing a nonlinear constitutive
model that will characterize the material behavior
in a better way can address the above problems
and improve the design of devices.

Ferroelectric constitutive models can be, in gen-
eral, classified as phenomenological models and
micromechanical models. Phenomenological
models are commonly derived from a thermo-
dynamic framework and use evolving functions
that need a lot of curve fitting based on ex-
perimental observations (Cocks and McMeek-
ing (1999); Kamlah and Jiang (1999); Landis
and McMeeking (2000); McMeeking and Landis
(2002); Shieh, Huber, and Fleck (2003)). These
models give a purely phenomenological picture,
and do not describe the microstructural changes
that accompany the processes of polarization and
switching from a physical angle. The develop-
ment of phenomenological models, their formula-
tions and recent advances, and, their applications
are in detail reported by Kamlah (2001); Lan-
dis (2004). Micromechanical models are based
on a description of the material at the domain or
single crystal level and a homogenization is ap-
plied to reproduce the polycrystal behavior. The
increasing need for numerical constitutive exper-
iments with complex electromechanical loading
histories, difficult to conduct in lab, demands the
use of micromechanical models to fix the trends.
Nowadays, micromechanical models are applied
to design and development of piezoelectric trans-
ducers of small length scales and in thin film de-
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vices.

A detailed review on recent developments on
micromechanical models is discussed by Huber
(2005). A domain switching micromechanical
model was proposed that assumes that each grain
contains a single domain and the switching occurs
instantly as the critical energy criterion is met
(Hwang, Lynch, and McMeeking (1995)). Later
modifications were done to simplify or to broaden
the applicability of these models (Michelitsch and
Kreher (1998); Lu, Fang, Li, and Hwang (1999)).
Nevertheless, these models do not consider
the interaction effects due to the surrounding
crystallites and the presence of distinct domains
in each grain at a given time. The interaction
effect is taken into the switching criterion by
modifying the loads (Chen and Lynch (1998);
Hwang, Huber, McMeeking, and Fleck (1998))
or using self consistent homogenization methods
by appropriate averaging of the grain responses
(Huber, Fleck, Landis, and McMeeking (1999)).
Many finite element based models were devel-
oped in the past and recently, a three dimensional
finite element based micromechanical model
was proposed to capture the nonlinear behavior
of ferroelectrics, wherein the grain boundary
effects are incorporated via a macromechanically
motivated probabilistic approach and via element
to element displacement continuity constraints
(Arockiarajan, Menzel, Delibas, and Seemann
(2006); Arockiarajan and Menzel (2007)). In
order to truly capture the meanfield effects, the
number of elements considered is to be very
large and certain periodic boundary conditions
are to be assumed. To avoid such difficulties
and the complexity of using Eshelby inclusion
models, we consider in this work the interaction
effects due to grain boundary in a simple way
that is directly brought into the formulation.
For simplicity, Reuss approximation, where
the stress and electric field are considered to
be uniform throughout the material, is used to
obtain the macroscopic response by averaging
microscopic responses. The advantage is im-
mense considering that the computational effort
is drastically reduced in this exercise. Also, flexi-
bility exists in terms of adjusting these variables

that are to be determined phenomenologically
using experimental observations. Obtaining a
reasonably good expression to indicate when the
domain switching takes place in ferroelectrics is
a significant task in micromechanical modeling.
Various energy criteria for domain switching
have been proposed in the past based on total
work done (Hwang, Lynch, and McMeeking
(1995); Sun and Jiang (1998)), Gibbs energy
(Lu, Fang, Li, and Hwang (1999)), total potential
(Hwang and McMeeking (2000)), and internal
energy density (Sun and Achuthan (2001)). An
energy criterion, utilizing both Gibbs energy
and internal energy, assigning importance to
loading sequence, was also proposed earlier
after testing switch-worthiness (Shaikh, Phanish,
and Sivakumar (2006)). Simple and elegant
micromechanical models with more physical
insight brought into it, which can predict the
response of polycrystal well, are the need of the
hour.

The work presented here deals with a thermo-
dynamically consistent micromechanical model
using a new domain switching criterion that in-
cludes pressure dependent boundary effects. The
paper highlights the following that form the main
features of the work:

• A thermodynamically consistent, dissipation
maximization based formulation that consid-
ers domain switching under electromechani-
cal loading conditions is proposed and for-
mulated.

• A crystallographic theory has been used to
obtain the domain switching criterion that is
consistent with compatibility at the variant
interfaces.

• The boundary effects are incorporated by
a suitable modification of the switching
threshold function at the subgrain level. This
is initially verified for a constrained single
crystal and later used in the simulation of a
polycrystal ferroelectric.

The results show appreciable improvement in
modeling the response of the polycrystal ferro-
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electrics under electromechanical loading condi-
tions.

2 Theoretical preliminaries

2.1 Electrostatics and thermodynamics

In this section, the governing field equations rel-
evant for the behavior of ferroelectrics are dis-
cussed. This includes static mechanical equilib-
rium, static electrical equilibrium, kinematic rela-
tions, and first and second law of thermodynam-
ics.

For a ferroelectric body in static mechanical equi-
librium, the stress σσσ is in balance with the exter-
nal body forces �b satisfying the following equa-
tion:

∇ ·σσσ +ρ�b = 0. (1)

Similarly, for electric equilibrium, the electric dis-
placement �D is in balance with the external elec-
tric charge q through,

∇ ·�D−q = 0. (2)

Considering quasi-static conditions, electric field
�E and electric potential φ are related through,

�E = −∇φ (3)

and on the surface of the body, the stress and trac-
tion�T are related through the unit outward normal
�n by,

�T = σσσ ·�n (4)

In this work, we assume that the strain is suffi-
ciently small so that we can apply infinitesimal
theory, with the total strain derived from displace-
ment field�u as

εεε i j =
1
2

(ui, j +u j,i) . (5)

To lay the ground for developing the constitutive
description for multi domain crystallite, we recall
the first and second laws of thermodynamics for
deformable dielectric materials.

ρU̇ = σσσ : ε̇εε +�E · �̇D−∇ ·�q (6)

ρη̇ −∇ ·
(

�q
θ

)
≥ 0 (7)

where, U denotes internal energy density, σσσ , ap-
plied stress tensor, εεε , total strain tensor, �E, ap-
plied electric field, η , entropy density, �q, heat
flux, and θ , absolute temperature of the mate-
rial, respectively. A superscribed dot indicates the
time derivatives of that particular quantity. Using
the Legendre transform, Gibbs energy G can be
expressed as

G = u−σσσ : εεε −�E ·�D−ηθ (8)

2.2 Ferroelectrics

Here, we discuss a few points, related to the
physics involved in the microstructure of ferro-
electrics that will form the basis for developing
the proposed model. A ferroelectric ceramic con-
tains many grains and each grain consists of many
domains that are a group of unit cells, oriented
in a particular direction determined by the crys-
tallographic structure of the material. Each unit
cell exhibits polarization and an associated strain
with respect to the reference state defined above
Curie temperature and these are called sponta-
neous strain and spontaneous polarization. In a
depoled state, the ferroelectrics do not have a net
strain and net polarization since the domains are
randomly oriented in the material true to its con-
figurationally maximum entropic state.

On application of external loads, either electri-
cal or mechanical, initially, the ferroelectric unit
cell undergoes a recoverable change in polariza-
tion and strain in the same domain type. When
the loads exceed a certain limit, the unit cell may
reorient its polarization direction itself that is fa-
vorable to the external loads. This change in do-
main type in ferroelectrics is referred as domain
switching and is irrecoverable in nature. As the
external loads increases, a specific domain type is
favored at the expense of others. Domain switch-
ing may originate at a boundary, in general on the
surface, and progress inside or it may nucleate at
various regions in the material and move toward
each other. The sharp interface that separates dis-
tinct domains is called domain wall. At any in-
stant, a specific domain type in a crystal can be
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represented by its volume fraction, which is con-
sidered as an internal variable in micromechani-
cal models. A domain type can be represented by
a unit cell that it belongs to.

In paraelectric state, above Curie temperature,
the unit cell assumes a cubic structure and in
ferroelectric state, below Curie temperature, the
unit cell may assume other crystal structures like
tetragonal, rhombohedral, depending upon the
composition of ferroelectrics. Here, we confine
our discussion to a tetragonal structure though the
concept can be conveniently extended to any other
crystal structure. Spontaneous strain of a unit cell
with its polarization along x3 direction can be ex-
pressed in terms of its lattice parameters as

εεε i =

⎡
⎢⎣

a−a0
a0

0 0
0 a−a0

a0
0

0 0 c−a0
a0

⎤
⎥⎦ (9)

while a0 defines the cubic structure in paraelectric
phase, a and c define the tetragonal structure in
ferroelectric phase.

The total strain and electric displacement of a unit
cell can be assumed to be decomposable as a re-
coverable part with a subscript r and an irrecover-
able part with a subscript i as

εεε = εεε r +εεε i (10)

�D = �Dr +�Di (11)

The volume fraction of a domain type α , ξ α ,
will have to satisfy the following conditions for
a tetragonal perovskite material consisting of six
distinct domains,

ξ α ≥ 0 ;
6

∑
α=1

ξ α = 1 &
6

∑
α=1

ξ̇ α = 0. (12)

The total strain and total electric displacement of
the crystal can be obtained in terms of volume
fractions as,

εεε =
6

∑
α=1

εεεα ξ α (13)

�D =
6

∑
α=1

�Dαξ α (14)

Similarly, Gibbs energy for the total crystallite,
assuming that the interface contributions are neg-
ligible compared to that of bulk, can be obtained
by the sum of individual domains,

G(σσσ ,�E,θ ,ξ α) =
6

∑
α=1

ξ α Gα (15)

Assuming isothermal processes and homoge-
neous temperature fields, the heat flux term can be
eliminated and the resulting dissipation inequal-
ity can be derived using eqs.((6) to (8) and (10) to
(15)),

−
[

ρ
∂G
∂σσσ

+
6

∑
α=1

εεεα
r

]
σ̇σσ −

[
ρ

∂G

∂�E
+

6

∑
α=1

�Dα
r

]
�̇E

+
6

∑
α=1

[
σσσ : Δε̇εεα

i +�E ·Δ�̇Dα
i

]

−
6

∑
α=1

[
ρ ∂G

∂ξ α

]
ξ̇ α ≥ 0

(16)

where Δε̇εεα and Δ�̇Dα represent respectively, the
rate at which the change in spontaneous strain and
spontaneous polarization occurs in favor of α type
domains from any other domains.

Δε̇εεα
i =

6

∑
β=1

Δεεεβ→α
i ξ̇ β→α ; α �= β (17)

Δ�̇Dα
i =

6

∑
β=1

Δ�Dβ→α
i ξ̇ β→α ; α �= β (18)

and,

ξ̇ α =
6

∑
β=1

ξ̇ β→α ; α �= β (19)

where,

Δεεεβ→α
i = εεεα

i −εεεβ
i (20)

Δ�Dβ→α
i = �Dα

i −�Dβ
i (21)

Applying enforced conditions on controllable
state variables σσσ and �E in eq.(16), and using
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eqs.((17),(18), and (19)), the dissipation potential
for the material is obtained as

6

∑
α=1

6

∑
β=1

(
σσσ : Δεεεβ→α

i +�E ·Δ�Dβ→α
i −ρ

∂G

∂ξ β→α

)

· ξ̇ β→α ≥ 0 ; α �= β (22)

which is the product of driving force, (shown
within the parenthesis in the above equation), and
the rate at which the volume fraction of a partic-
ular domain type evolves. The above inequality
is valid subject to the constraints given in eq.(12).
The first two terms in the driving force appearing
in eq.(22) concern the external stress and electric
fields while the third term concerns the driving
forces attributed to domain to domain interactions
at the subgrain level and grain to grain interac-
tions at the polycrystal level.

As mentioned earlier, there exist six different
types of domains in a tetragonal perovskite struc-
ture. Externally applied loads, on reaching a crit-
ical value, induce domain switching among vari-
ous domains. Referring a transformation system
to each domain switching process involving two
different domains, it becomes clear from eq.(22)
that there are as many as 30 transformation sys-
tems possible (in this, β → α switching is taken
to be different from α → β ). For clarity, let us
suppose that there exist only two types of domains
α and β in the crystal at a given time and the re-
coverable Gibb’s energy of the crystal can be ex-
pressed as

G = ξ α Gα +ξ β Gβ = Gβ +ΔGα−β ξ α (23)

where

ΔGα−β =Gα −Gβ

=− 1
2

σσσ :
(

CCCα −CCCβ
)

: σσσ

− 1
2
�E ·

(
κκκα −κκκβ

)
·�E

−�E ·
(

dddα −dddβ
)

: σσσ

(24)

The above expression eq.(24) can be used to ob-
tain the third term of the driving force in the
eq.(22). Here, ξ α and ξ β refer to the volume frac-
tions of domains α and β respectively. In arriving

second part of eq.(23), the constraint ξ α +ξ β = 1
is used. Also, CCC denotes the compliance tensor,
κκκ , the dielectric susceptibility tensor, and ddd, the
piezoelectric tensor. Let the external loading in-
duces domain switching that transforms domains
from β type to α type. The dissipation potential
for this transformation from eq.(22),

Fdrive ξ̇ α ≥ 0 (25)

where

Fdrive = σσσ : Δεεε i +�E ·Δ�Di −ΔGα−β (26)

For the transformation system considered above
to be active, i.e., for domains to start switching
from β type to α type in the crystal, during the
impending material energy dissipation, the driv-
ing force in eq.(26) must satisfy the following in-
equality at all times:

Fdrive ξ̇ α ≤ Fc ξ̇ α (27)

where, Fc denotes a critical value, the driving
force should attain for domain switching. It is as-
sumed here that the transformation is stable, i.e.
the rate of resistance to transformation is higher
than the rate of driving force. In general, we
don’t know a priori whether switching will take
place from β to α or vice versa. Hence, the driv-
ing force for both the transformation systems are
calculated separately for the given loading and
multiplied with the corresponding volume frac-
tion rates. It is to be noted, here, that the rates
of volume fractions are assumed to be positive in
both the transformations, and, hence, the switch-
ing process is decided strictly by driving forces.

3 Switching criterion

After deriving the driving force for transformation
systems, we proceed further to obtain the criti-
cal value for driving force in order to check for
domain switching. Many switching criteria have
been developed in the past, incorporating work
done, Gibb’s energy, total potential and internal
energy density. A new criterion is proposed in this
model for 900 switching, drawing analogy from
plasticity on the fact that the resolved shear stress
determines yielding.
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Figure 1: 900 domain switching (a) and (b), and
1800 domain switching (c) and (d).

A domain can undertake an 1800 switching
(Fig.1.(c) and (d)) or any of four 900 switching
(Fig.1.(a) and (b)) due to externally applied loads.
Since the underlying mechanism for 900 switch-
ing and 1800 switching are different, the criti-
cal values for their occurrence are also different.
Domains are randomly scattered in ferroelectric
polycrystals, and the external electric field act on
them along different angles with respect to the
crystal axes depending upon their orientation. It
is assumed, here, that 900 domain switching takes
place in ferroelectrics in the same way, the yield-
ing occurs in materials. Hence, when the applied
electric field reaches the coercive electric field in
a unit cell on a critical plane that is oriented at an
angle of 450 with the polarization direction, 900

domain switching occurs. For instance, consider
a domain that is oriented along positive e2 direc-
tion that is named as domain type 2 (Fig.1.(a)). It
has four critical planes with respect to 900 switch-
ing and they are aligned towards positive and neg-
ative directions of e1 and e3. The magnitude of
increasing electric field is resolved on these four
planes and when it reaches the coercive field in
any of these planes, 900 switching occurs towards
that plane. Let us suppose that the electric field
induces switching from domain type 2 to domain
type 3, which is oriented in the negative e1 direc-
tion. Using eqs.(25) and (26), the driving force
for 900 switching can be obtained as,

F90
c = �E · (�P3

0 −�P2
0 )+

1
2
�E · (κκκ3 −κκκ2) ·�E (28)

F90
c =

√
2E90

c P0 (29)

Here, E90
c refers to the magnitude of coercive

electric field for 900 switching and, P0, the mag-
nitude of the spontaneous polarization. �P2

0 and

�P3
0 represent the spontaneous polarization vectors

and, κκκ2 and κκκ3 represent the dielectric permit-
tivity tensors for domain types 2 and 3 respec-
tively. Polarization and electric displacements are
interchangeably used for materials with high di-
electric constants. When the applied electric field
in the opposite direction of polarization reaches
the coercive electric field, 1800 switching occurs.
For instance, consider the switching from do-
main type 2 to domain type 4 (Fig.1.(c) and (d)).
From eqs.(25) and (26), the driving force for 1800

switching can be obtained as,

F180
c = �E · (�P4

0 −�P2
0 )+

1
2
�E · (κκκ4 −κκκ2) ·�E (30)

F180
c = 2E180

c P0 (31)

It is to be noted that the coercive electric field for
1800 switching, E180

c , is different from that of 900

switching, E90
c . Eqs.(29) and (31) give the expres-

sions for critical values that should be overcome
by the driving forces to induce domain switching
without considering grain boundary effects. How-
ever, these effects are to be included in the model
in order to predict the material response in a more
realistic way. To include the crystal boundary ef-
fects in the model, the critical values are modified
appropriately in the following section.

4 Grain boundary effects

A ferroelectric single crystal in a depoled state
may possess all different types of domains pos-
sible and, with external load, all domains can be
transformed into a single domain type. Since
there are no grain boundaries inside a single
crystal, domains experience negligible resistance
(that arise from domain-domain interfaces), while
switching. But in polycrystals, there exist a num-
ber of grains and each of them is separated from
the others by grain boundaries. Grain boundaries
are generated in the crystal due to variation in
the crystallographic orientations of unit cells in
grains. The presence of these crystal boundaries
may resist the motion of the interface between
the original and the switched domains during do-
main switching under an external loading condi-
tion. This increases the driving force necessary



Studies on Boundary Effects 117

for the progress of switching. During the progress
of switching, some part of the resistance goes to-
wards the increased stored energy while some part
of it is dissipated.

The dissipative part of the resistance to overcome
the grain boundary constraints by a switching sub-
grain in a ferroelectric polycrystal is taken to be
a function of the applied stress in addition to the
threshold discussed in the previous section. Thus,
this resistance experienced by the driving force
due to the presence of the neighboring grains in a
polycrystal during a 900 switching is, thus, taken
to be,

F90
drive = F90

c +K2 < −σ > ξ α (32)

Here, ξ α denotes the volume fraction of a do-
main at a given state, while incremental switch-
ing takes place in favor of α domain from other
domains. It should be pointed out that the stress
considered here is always compressive in nature
and σ represents the compressive applied pres-
sure (the trace of the applied stress). A positive σσσ
is assumed to have no effect as is expressed in the
above equation using a Macaulay bracket, < · >
which is zero when · is negative. Therefore, sec-
ond expression on the right hand side of eq.(32)
is taken to be zero when σσσ is positive. K2 is a
material constant that is determined from experi-
ments. The stored energy part of the grain bound-
ary interaction forms a part of the driving force
given in equation (22). Specifically, an additional
term, K1ξ α is introduced into the third term of
driving force expression in equation (22) that con-
cerns grain to grain interactions. K1 is a material
constant that is determined from experiments. An
assumption that the boundary effects during 1800

switching, does not play a major role in additional
dissipation and thus, the driving force can be ex-
pressed, as in eq.(31), as

F180
drive = F180

c (33)

5 Simulation procedure

In this model, a grain containing all distinct types
of domains with equal probability at the begin-
ning is considered for simulations. Hence, ini-
tially, the net strain and polarization of the grain

is zero, because the spontaneous strain and spon-
taneous polarization of individual domains in the
grain will cancel each other on averaging. Two
types of coordinate systems are used in the simu-
lation to refer to the material properties and exter-
nal loadings; one is the global coordinate system
with respect to the bulk material and the other is
a local coordinate system with respect to the indi-
vidual grains. These two coordinate systems are
related through a rotation tensor, RRR, through

�e = RRR ·�e (34)

where, �e and �e are the base vectors of local and
global coordinate systems respectively. Local co-
ordinate system representing the grain orientation
is generated using Euler angles and the domain
type 1 is assumed to align with x3 axis of the co-
ordinate system. The other five domains are posi-
tioned in the local coordinate system with respect
to domain type 1. Once the local coordinate sys-
tem is generated in space for a grain, then, it is
considered to be fixed with respect to that grain
as it does not change with domain switching. The
elastic, dielectric and piezoelectric properties of
other domains are obtained by transforming the
material properties of domain 1 using transforma-
tion law. The macroscopic response of the ma-
terial is obtained by averaging the microscopic
responses of individual grains. Since the inter-
granular effects are included within the switching
criterion, a simple Reuss approximation is found
sufficient for averaging purposes. Under Reuss
approximation, the electric and stress fields are
uniform inside the material and they equal the ex-
ternal applied fields.

The external electromechanical loading given in
the global coordinate system is resolved and ap-
plied to each grain, in its respective local coordi-
nate system. The response of all domains in that
grain is determined using eq.(32) and (33) under
the given loading. The strain, εεεg, and the polariza-
tion, �Pg, of each grain is obtained by summing up
the total strain and total polarization of individual
domains within the grain.

εεεg =
6

∑
α=1

(εεεα
i +CCCα : σσσ +dddT α ·�E)ξ α (35)
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�Pg =
6

∑
α=1

(�Pα
0 +dddα : σσσ +κκκα ·�E)ξ α (36)

The response of all grains in local coordinate sys-
tem is transformed into global coordinate system
using transformation laws. At the end of each
loading step, the volume fractions of the domains
are updated. The macroscopic material behav-
ior is obtained by averaging the response of all
the grains, i.e., the macroscopic strain, εεε, is ob-
tained as the average of strains of all the indi-
vidual grains, εεεg, while the macroscopic polariza-
tion, �P, is obtained as the average of polarizations
of all the individual grains, �Pg.

6 Results and discussions

Initially, to test the suitability of the developed
model, it was applied on a single crystal ferroelec-
tric to predict its response under different load-
ing conditions with the influence of constrained
boundary. Experiments conducted on a single
crystal barium titanate under constrained bound-
ary offered by a loading platen were considered
for simulations (Burcsu, Ravichandran, and Bhat-
tacharya (2004)). Keeping the magnitude of com-
pressive stresses constant at 0, 0.36, 0.72 and 1.07
MPa, the electric field was varied to obtain the
behavior of single crystal barium titanate. The
simulated response using the proposed model was
compared with the experimental results. The ma-
terial parameters used in the simulations were ob-
tained from literature (Burcsu, Ravichandran, and
Bhattacharya (2004); Shilo, Burcsu, Ravichan-
dran, and Bhattacharya (2007)). In the experi-
ment, actuation strain was used to plot the graphs,
which is the difference between the maximum and
minimum strains. In accordance with that, the
actuation strain was used here in plotting graphs
for single crystal barium titanate. Material con-
stants K1 and K2 were obtained by fitting the sim-
ulations on experimental graphs at a particular
constant compressive stress and varying electric
fields. With these values of the material constants,
polarization vs. electric field and strain vs. elec-
tric field graphs were plotted for other loading
conditions as shown in Fig.2 and Fig.3. The sim-
ulations are found to be comparable with the ex-

perimental results with respect to the magnitudes
of the strain and the polarization. The fact that the
crystal undergoes only 1800 switching under pure
electric loading is realized by the horizontal line
obtained in strain vs. electric field plot (Fig.2).
With increase in compressive stress, 1800 switch-
ing occurs through two consecutive 900 switching
and this gives rise to the actuation strain.

The model was then applied to a polycrystalline
ferroelectric to predict its response under vari-
ety of loading conditions. The results of various
experiments reported in literature (Fang and Li
(1999)), conducted on a soft PZT under electrical,
mechanical and electro-mechanical loading con-
ditions are used for comparison with the proposed
model predictions. The appropriate material prop-
erties of soft PZT were obtained from the litera-
ture (Lu, Fang, Li, and Hwang (1999)). The mate-
rials constants K1 and K2 were determined by cor-
relating simulations with experimental curves for
a certain set of electro-mechanical loading condi-
tions.

In the absence of electric field, i.e., in ferroelas-
tic case, the response of PZT was predicted and
compared with the experimental results in terms
of stress vs. strain and stress vs. electric displace-
ment as shown in Fig.4. In the experiment con-
ducted by Fang and Lu (1999), the PZT was fully
poled along positive x3 axis with the help of ex-
ternal electric field. Then, the compressive stress
was applied gradually along x3 axis, parallel to the
poled direction of ferroelectric. This caused 900

switching from positive x3 axis to any of the four
directions that are normal to x3 axis, i.e., positive
and negative axes of x1 and x2, in such a way that
their average polarization is almost zero. Hence,
at the end of the loading, the material reached a
mechanically depoled state, where, the net polar-
ization became zero and the strain along x1 and x2

axis were found to be about half of the strain along
x3 axis. The simulated response in Fig.4 indicate
a good match with the experimental results.

Under electromechanical loading, the electric
field was varied with constant compressive
stresses at -20, -40 and -60 MPa respectively. The
predicted response and the experimental results
are compared in terms of polarization vs. elec-
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Figure 2: Hysteresis (left) and butterfly (right) curves of single crystal BaTiO3 under electromechanical
loading with axial compressive stresses, σσσ = 0,−0.36,−0.72 MPa; Solid-simulated, dashed-experiment
(Burcsu, Ravichandran, and Bhattacharya (2004))
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Figure 3: Hysteresis (left) and butterfly (right) curves of single crystal BaTiO3 under electromechani-
cal loading with axial compressive stress, σσσ = −1.07 MPa; Solid-simulated, dashed-experiment (Burcsu,
Ravichandran, and Bhattacharya (2004))
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Figure 4: Stress vs. strain (left) and stress vs. polarization (right) curves of polycrystal PZT under mechan-
ical loading; Solid-simulated, dashed-experiment (Fang and Li (1999))
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Figure 5: Hysteresis (left) and butterfly (right) curves of polycrystal PZT under electromechanical loading
with axial compressive stress, σσσ = 0 MPa; Solid-simulated, dashed-experiment (Fang and Li (1999))
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Figure 6: Hysteresis (left) and butterfly (right) curves of polycrystal PZT under electromechanical loading
with axial compressive stresses, σσσ = −20,−40,−60 MPa; Solid-simulated, dashed-experiment (Fang and
Li (1999))
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tric field and strain vs. electric field in Figs.
5 and 6. As the compressive stress magnitude
increases, the classic butterfly curve in strain-
electric field plot gets compressed and moves
downwards which is clearly captured by the pro-
posed model. The contraction in polarization-
electric field plot has also clearly reflected in the
model predictions. These are due to the increasing
resistance to 900 switching in the direction paral-
lel to the applied stress.

The significance of introducing grain boundary
resistance in the proposed model was verified by
plotting the graphs with and without the resistance
in the model. The simulated strain without includ-
ing additional resistance was found to be much
higher than the experimental strain in the single
ferroelectric, justifying the need for the introduc-
tion of boundary effects related additional resis-
tance. Besides, to support the contention that the
grain boundary resistance is predominantly due to
900 switching, 1800 switching was also assumed
to experience the boundary resistance in addition
to 900 switching and the simulations were per-
formed. No appreciable difference was observed.
This may be attributed to a weaker resistance due
to the electrical boundary effects compared to the
resistance due to the strain related boundary ef-
fects.

7 Conclusions

In this work, a three dimensional micromechan-
ical model for ferroelectrics has been developed
based on firm thermodynamics basis. The dis-
sipative mechanisms in the subgrain of a ferro-
electric polycrystal, due to the resistance offered
at its boundary by the adjacent grains during do-
main switching are identified and the dissipation
thresholds have been appropriately refined. The
consideration of the additional dependence of the
dissipation threshold on the applied stress corrob-
orates well with experimental results under com-
pressive loading conditions confirming the influ-
ence of resistance role played by the grain bound-
ary. Thus, backed by a physical motivation, a
firm thermodynamic basis and representative ex-
ample simulations, the model has the ability to
include dissipative grain boundary effects under

combined electromechanical loadings in the sim-
ulation of polycrystal ferroelectric behavior and,
at the same time, preserve the computational ad-
vantages. Since, the grain boundary size could
play a major role in the resistance, it is likely that
size effects may be observed in the polycrystal
ferroelectrics. It remains to be confirmed from the
future experiments on polycrystals with different
grain sizes whether such a size effect is observed.
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