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Time Variant Reliability Analysis of Nonlinear Structural Dynamical
Systems using combined Monte Carlo Simulations and Asymptotic Extreme

Value Theory

B Radhika1, S S Panda1 and C S Manohar1,2

Abstract: Reliability of nonlinear vibrating
systems under stochastic excitations is investi-
gated using a two-stage Monte Carlo simulation
strategy. For systems with white noise excitation,
the governing equations of motion are interpreted
as a set of Ito stochastic differential equations.
It is assumed that the probability distribution of
the maximum in the steady state response belongs
to the basin of attraction of one of the classical
asymptotic extreme value distributions. The first
stage of the solution strategy consists of selec-
tion of the form of the extreme value distribution
based on hypothesis tests, and the next stage in-
volves the estimation of parameters of the rele-
vant extreme value distribution. Both these stages
are implemented using data from limited Monte
Carlo simulations of the system response. The
proposed procedure is illustrated with examples
of linear/nonlinear systems with single/multiple
degrees of freedom, driven by random excitations.
The predictions from the proposed method are
compared with the results from large-scale Monte
Carlo simulations, and also with the classical an-
alytical results, when available, from the theory
of out-crossing statistics. Applications of the pro-
posed method for large-scale problems and for vi-
bration data obtained from field/laboratory condi-
tions, are also discussed.

1 Introduction

Reliability analysis of nonlinear structural dy-
namical systems under random excitation has
remained one of the most difficult problems
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in structural safety analysis. These problems
lie at the heart of structural design against ex-
treme loads such as those due to earthquakes
and extreme winds. In these problems one
seeks to evaluate the probability that a speci-
fied response quantity remains below a speci-
fied level in a given time duration. Thus, if
X(t) is the response of the random process of
interest, α is the acceptable limit and (0,T)
is the given time duration, we seek to evalu-
ate the probability P [X(t) < α ∀t ∈ (0,T)]. This
time variant form of reliability evaluation could
be replaced by a time invariant form given by

P

[
max

t∈(0,T )
{X(t)} < α

]
= P [Xm < α] where Xm =

max
t∈(0,T )

X(t) is the extreme value of the process

X(t) over (0,T). The determination of the prob-
ability distribution function (PDF) of Xm consti-
tutes an important step. Exact analytical solu-
tions to determine PDF of Xm are rarely possi-
ble even for problems in linear mechanics. The
main sources of difficulty associated with deter-
mination of the probability of failure of dynamical
systems are the following:

• X(t) could be non-Gaussian in nature (be-
cause of non-Gaussian nature of the inputs,
nonlinearity in the behaviour of structural
mechanics, response being nonlinear func-
tion of Gaussian processes as in evaluation of
principal stresses or von Mises’ stress met-
ric, and/or due to randomness in structural
parameters),

• inability to completely characterize the prop-
erties of X(t),

• relatively large size in terms of degrees
of freedom of the dynamical system under
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study which demand significant computa-
tional effort, and

• the desired probability

P

[
max

t∈(0,T )
{X(t)} < α

]
is most often a

small number of the order of 10−5 or even
less.

The problem gets further complicated if more
than one performance function is considered, or
when issues related to epistemic uncertainties are
also to be tackled. Methods of reliability anal-
ysis reported in the literature could be grouped
into the following categories (Manohar and Gupta
2005): (a) methods based on Markov property of
response processes, (b) out-crossing approaches
combined with approximate strategies such as
equivalent linearization, and (c) Monte Carlo sim-
ulations and possible refinements to achieve vari-
ance reduction.

For a white Gaussian noise input process, the re-
sponse will be a diffusion process, and the associ-
ated transitional probability density function (pdf)
will satisfy the well known Kolmogorov equa-
tions (Lin and Cai 1995). The formulation of
these equations leads to the exact characteriza-
tion of the response for a limited class of prob-
lems, which helps in formulating strategies for
approximate analysis for a wider class of prob-
lems. The Markov property of the response can be
used in the study of the first passage probabilities.
Here, either the forward or the backward Kol-
mogorov equation is solved in conjunction with
appropriate boundary conditions imposed along
the critical barriers. Alternatively, starting from
the backward Kolmogorov equation, one can also
derive equations for moments of the first pas-
sage time (the generalized Pontraigin Vitt equa-
tions), which, in principle, can be solved recur-
sively (Roberts 1986, Lin and Cai 1995). For sys-
tems that are driven by broadband random exci-
tations, the method of stochastic averaging pro-
vides a means to approximate the response as a
Markov process (Manohar 1995). Subsequently,
Markovian methods can be used to study the first
passage failures of such systems. This approach
has been adopted in several studies (Noori et al.,

1995, Cai and Lin 1998 and Gan and Zhu 2001).
A recursive scheme that uses the Green’s func-
tion of the forward Kolmogorov equation for the
study of the first passage failure has been outlined
by Sharp and Allen (1998).

In the studies based on the out-crossing approach,
one begins by modeling the process that counts
the number of times the response trajectory ex-
its the safe domain, based on which the aver-
age rate of crossing of the safe domain is deter-
mined. The Poisson model is often used for this
counting process. Based on this, the probabil-
ity that the response remains within safe domain,
within a given time duration, is established. The
problem of out-crossing of scalar and vector ran-
dom processes across deterministic thresholds has
been widely studied in the literature. The aver-
age number of out-crossings from safe to unsafe
region for a scalar random process x(t) across a
time varying boundary can be derived based on
the well known Rice’s formula (1956). Studies
on out-crossing of vector random processes from
safe regions have also been made. As might be
expected, exact solutions with vector random pro-
cesses are possible only for limited class of prob-
lems: see, for instance, the work of Veneziano
et al., (1979) on vector Gaussian random process
out-crossing of elliptic, spherical and polyhedral
safe regions. In the context of studies on out-
crossing of vector random processes, Hagen and
Tvedt (1991) and Hagen (1992) explored an ear-
lier proposition by Madsen (unpublished) that the
up-crossing rate of scalar stochastic processes as a
particular sensitivity measure of the failure prob-
ability associated with a suitably defined paral-
lel system. The paper by Rackwitz (1998) doc-
uments the results available on mean rates for a
set of random processes that include rectangular
wave vector process, scalar and vector Gaussian
random processes, and Nataf and Hermite ran-
dom processes. Further details are also available
in the book by Melchers (1999). The paper by Li
and Ghanem (1998) employs an approximate an-
alytical solution technique based on polynomial
chaos expansion to investigate the statistics of ex-
tremes of response of a nonlinear system to ran-
dom excitations. The study by Der Kiureghian
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(2000) offers a new perspective to problems of
random vibration involving linear/nonlinear oscil-
lators under Gaussian/non-Gaussian random exci-
tations. Here, the excitation process is discretized
using a series representation, such as, Karhunen-
Loeve expansion or stochastic Fourier series. The
geometric forms of the system response in the
space spanned by these discretized random vari-
ables are explored. In doing so, various forms
such as vectors, planes, half-spaces, wedges and
ellipsoids, are encountered depending upon the
response variable studied. Application of the first
order and second order reliability methods is ex-
plored in this context. The works of Leira (1994,
2004), Gupta and Manohar (2005, 2006), and
Song and Der Kiureghian (2006) represent efforts
to develop multivariate extreme value distribu-
tions with a view for applications in the reliability
of structural systems.

Brute force Monte Carlo simulation studies are
increasingly infeasible to apply, as the structural
models become large and nonlinear, and also
as the probability of failure becomes smaller.
The idea of using simulations based on impor-
tance sampling has been explored by some au-
thors (Pradlwarter and Schueller 1999, Bayer and
Bucher 1999, Au and Beck 2001). The idea of
employing response surface models has also been
explored (Brenner and Bucher 1995, Yao and Wen
1996, Zhao et al., 1999, Gupta and Manohar
2003, 2005). The works of Macke and Bucher
(2003) and Olsen and Naess (2006) explore the
use of mathematical theorems on the change of
probability measure based on Girsanov theorem,
and on the results from stochastic control theory
for estimation of reliability of dynamical systems.
Dunne and Ghanbari (2001) have studied the ex-
treme value distribution of the dynamic response
of a clamped beam subjected to band limited ran-
dom noise excitation by comparing solutions from
Fokker Planck equations and from the data based
extreme value analysis.

In the present study we explore the possibility
of combining Monte Carlo simulation with ap-
plication of asymptotic theory of extreme value
distributions for time variant reliability analysis
of dynamical systems. The basic idea here is to

carry out a limited number of Monte Carlo sim-
ulations of response processes, and based on the
data so available, to select objectively an appro-
priate form of the asymptotic PDF of the highest
response in a given time duration. Once the form
of this PDF is identified, further (limited) simu-
lations are carried out, based on which, the pa-
rameters of the PDF are identified. This enables
the evaluation of the probability that the response
stays within safe regions in a given time duration.
The potential advantage of this approach is the
ability to estimate the structural reliability with
relatively small number of Monte Carlo runs. The
proposed method is illustrated for oscillators with
a single degree of freedom (sdof) and with mul-
tiple degrees of freedom (mdof), driven by white
Gaussian noise. The reliability of a wind turbine
structure subjected to dynamic effects of wind is
also studied. Questions on applications of the pro-
posed strategy when vibration data is measured
in laboratory/field conditions are also addressed.
The results indicate the potential of the proposed
method for engineering applications. To under-
stand the context of the present study, we first
present a brief overview of the classical extreme
value theory.

2 Extreme value theory

The classical extreme value theory of random
variables considers the problem of determination
of PDF of extremes of a sequence of indepen-
dent identically distributed (iid) random variables
{Xi}n

i=1 as n → ∞. Here it is established that there
exists only three types of non-degenerate proba-
bility distributions for Xm = max

n→∞
{Xi}n

i=1 given by

(Castillo 1988).

H1,γ(x) = exp(−x−γ ) forx > 0

= 0 otherwise

H2,γ(x) = 1 forx ≥ 0

= exp
[−(−x)γ] otherwise

H3,0(x) = exp [−exp(−x)] −∞ < x < ∞

(1)

These distributions are, respectively, the Frechet,
Weibull and Gumbel distributions for the maxima.
Similarly, for Ym = min

n→∞
{Xi}n

i=1, the three possi-

ble degenerate distributions are given by (Castillo
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1988).

L1,γ (x) = 1−exp
[−(−x)−γ] for x < 0

= 1 otherwise

L2,γ (x) = 1−exp(−xγ) for x > 0

= 0 otherwise

L3,0(x) = 1−exp [−exp(x)] −∞ < x < ∞
(2)

These distributions are, again, respectively, the
Frechet, Weibull and Gumbel distributions for the
minima. In general, any iid sequence {Xi}n

i=1 with
a common PDF F(x) can be viewed as belong-
ing to the basin of attraction of one of the three
extreme value distributions listed above. The-
orems for determining the domain of attraction
to which a given F(x) belongs have been estab-
lished. The tails of F(x) play a central role in this
determination. Thus, the extreme value distribu-
tion from an initial density function, with expo-
nentially decaying tail in the direction of extreme,
converges asymptotically to Gumbel model (e.g.,
normal, log-normal, Rayleigh random variables),
similarly, if the tails of the density function de-
cay as a polynomial, then the extremes converge
to the Frechet distribution (e.g., Cauchy random
variable), and finally, if the tail is limited in the di-
rection of the extremes, then the limiting extreme
value distribution would be of the Weibull type
(e.g., uniformly distributed random variable).

Efforts have also been made in recent years
to generalize the classical extreme value the-
ory to consider situations when the random vari-
ables do not form iid sequences. The works of
Gumbel (1958), Galambos (1978), Leadbetter et
al., (1983), Castillo (1988), Kotz and Nadarajah
(2000), and Coles (2001) provide extensive ac-
counts of the relevant studies.

The book by Leadbetter et al., (1983) documents
the progress in extending the classical extreme
value theory to the cases of dependent random
variable and stationary sequences and continuous
parameter processes for the case of Gaussian ran-
dom processes. The book unifies these two de-
velopments and provides a general account on the
theory of extremes from which the known results
for stationary normal sequences and processes are

obtained as special cases.

The book by Castillo (1988) considers the sit-
uation when the knowledge of common PDF is
lacking, but instead the analyst has access to only
sample of observations. The theorems that enable
the identification of basin of attraction to which
a given random variable belongs to, cannot be
used in this context. Consequently, alternate set
of tools for the determination of domains of at-
traction of the parent distribution from observed
samples are needed. Before we proceed to discuss
the possible manner in which this problem could
be handled, it is important to emphasize the rel-
evance of this problem to time variant reliability
analysis of randomly excited vibrating systems:

1. In the context of structural reliability anal-
ysis, one needs to often deal with non-
linear dynamical systems responding to
Gaussian/non-Gaussian random excitations.
The response processes are often non-
Gaussian in nature. The theory of ex-
tremes of non-Gaussian random processes
over specified duration is not well developed.

2. Analysis of reliability of nonlinear struc-
tural system to random excitations using
Monte Carlo simulations pose serious com-
putational difficulties, especially if the prob-
ability of failure is of the order of 10−5or
even less. This is all the more true for large-
scale systems in which solution for a single
sample problem could itself be time consum-
ing.

The problem could be tackled by using Monte
Carlo simulations with in-built variance reduction
capabilities. In recent years, the use of mathemat-
ical theorems on change of probability measure
based on Girsanov theorem and the results from
stochastic control theory, have been explored to
deal with this problem (Macke and Bucher 2003,
Olsen and Naess 2006). This line of work is not
yet fully explored in the context of time variant
reliability of structural dynamical systems. We
propose in this study an alternative strategy that
has potential to lead to estimation of probabil-
ity of structural failure with relatively less num-
ber of samples than what is needed for a brute
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force Monte Carlo simulation technique. The
strategy consists of simulating limited number of
time histories of the system response process, and
making an objective choice of the appropriate ex-
treme value distribution based on this data. Once
the choice is made, the parameters of the limit-
ing form of the extreme value distribution can be
estimated using a reasonably small sample size.
Following this, estimates on probability of fail-
ure, even when the probability is small, could be
made. The present study explores this possibility
and presents a procedure for achieving this.

3 Selection of limiting distribution of ex-
tremes based on limited data

The problem of identifying the asymptotic form
of the distribution of the extremes of the outcome
of a sequence of random variables based on lim-
ited observations of the underlying random phe-
nomena lies at the heart of the study of extremes
of environmental processes. The limitations on
the extent of the available data in this context are
natural, given the constraints on the availability of
the past recorded data. In the context of structural
reliability of time varying systems we could arti-
ficially enforce the restriction that the asymptotic
form of the extreme value distribution be estab-
lished based on limited simulation data. If this
is considered acceptable, we could treat the prob-
lem of reliability assessment using the same meth-
ods as are used in the study of limited data re-
sulting from observations of environmental pro-
cesses. Following Castillo (1988) and Hasofer
and Wang (1992), we consider three alternative
methods to deal with this problem: one is due to
the work of Pickands (1975), the next is due to
Galambos (1980, as cited in the book by Castillo
1988), and the third is due to Hasofer and Wang
(1992). A brief description of these methods is
provided in the following subsections.

3.1 Pickands III method

We begin by considering a random variable X
with PDF F(x). According to Pickands (1975),
the assumption that F(x) lies in the domain of at-
traction of an extreme value distribution is equiv-

alent to the statement

lim
u→ω(F)

P [X > x+u|X > u]

=
F(u+x)
1−F(u)

=
(

1+
cx
a

)−1/c

a > 0; −∞ < c < ∞; 1+
cx
a

≥ 0 (3)

where u is an event in the event space ω (F) , and
c and a are parameters of the distribution. For
c = 0, the right hand side is given in a limiting
sense, as

lim
u→ω(F)

P [X > x+u|X > u] = exp
(
−x

a

)
, (4)

where for c > 0, c < 0, and c = 0, F(x) lies in the
domain of attraction for maxima of the Frechet,
Weibull, and Gumbel distributions, respectively.
Equation 3 shows that the conditional PDF G(x)
of X − u, given X ≥ u for u large enough, is ap-
proximately of the form

G(x) = 1−
(

1+
cx
a

)−1/c
(5)

This fact allows the estimation of c from a sam-
ple. Based on the estimated value, a decision
on the domain of attraction could be made. Let
X(1),X(2), · · · ,X(n) denote the descending order
statistics of a sample size n. For s = 1,2, · · ·[n/4],
where [x] refers to the integer part of x, we com-
pute

ds = max
x

|Fs(x)−Gs(x)| (6)

where Fs(x) is the empirical distribution of X −
X(4s), given that X ≥ X(4s),and Gs(x) is the distri-
bution as given in equation 5 with a and c replaced
by the estimators

c =
log

((
X(s)−X(2s)

)/(
X(2s)−X(4s)

))
log(2)

(7a)

a =
c
(
X(2s)−X(4s)

)
2c−1

(7b)

We choose M to be the smallest integer solution
of the equation

dM = min
1≤s≤[ n

4 ]
ds (8)
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Table 1: Sampling distribution of c for a sample size of 100 to be used in Pickands’ method

CDF 0.01 0.02 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95 0.98 0.99
c -0.520 -0.452 -0.404 -0.340 -0.260 -0.209 -0.112 -0.038 0.156 0.330 0.544 0.760 0.916

and take the values of c and a as those associ-
ated with s = M in equations 7a and 7b. It has
been shown by Pickands that the estimation of
tail probabilities of Fs(x) by Gs(x) leads to consis-
tent estimates. Based on the estimate of c as ob-
tained above, a decision on the domain of attrac-
tion could be made. Castillo (1988) has consid-
ered the problem of determination of significance
levels for testing the hypothesis that F(x) belongs
to a Gumbel-type domain of attraction rather than
a Weibull or Frechet type, based on simulation
studies on the PDF of parameter c. This allows
approximating the critical values of c for selected
values of type I error probability, or approximate
significance level to be obtained. The PDF of es-
timate of c determined for a sample size of 100 is
reproduced in Table 1.

3.2 Galambos method

This method tests if a given F(x) belongs to the
basin of attraction of Gumbel distribution for the
largest values. This is based on the result that the
random variable

Z =
X −u

E [X −u|X > u]
(9)

is unit exponential. That is,

lim
u→ω(F)

P [X > x+u|X > u]
E [X −u|X > u]

= exp(−x) (10)

Thus to test if a given sample of X emanates from
a random variable which belongs to the basin of
attraction of Gumbel PDF or not, we adopt the
following steps:

(a) Choose a number u (Galambos 1987).

(b) Select those Xj from the sample that exceed
u.

(c) For each Xj > u, compute the transformed

value

Yj =
Xj −u

E [Xj −u|Xj > u]

=
Xj −u

∑
Xj>u

(
(Xj −u)

/
m(u)

) (11)

where m(u) is the number of Xj which exceed
u.

(d) Employ Kolmogorov Smirnov test to test the
hypothesis that Yj follows a unit exponential
law. This involves the formation of the test
statistic

max
y

|Fm(u)(y)−1+exp(−y)| (12)

where Fm(u)(y) is the empirical PDF associ-
ated with the exceedances of the level u in the
sample. In order to calculate the significance
level, we must take into account that the mean
value of the exponential law was estimated
from the sample by using equation 11. The
book by Castillo (1988) provides the tables
[originally due to Lillefors (1969)] to facili-
tate this.

3.3 Hasofer-Wang hypothesis test

Consider x(t) to be a realization of a stationary
random process. The null hypothesis here is the
statement that the domain of attraction of the data
on extremes is the Gumbel probability distribu-
tion. The following are the steps in the Hasofer-
Wang hypothesis test (Hasofer and Wang 1992)

1. Determine the number of extremes (N) in the
given sample x(t)corresponding to time du-
ration T . Arrange the extremes in descend-
ing order x1:N ≥ x2:N ≥ ·· · ≥ xN:N .

2. Select the top k values x1:N ≥ x2:N ≥ ·· · ≥
xk:N with k = 1.5

√
N, and determine the test

statistic W̃ using the following formula
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W̃ =
k(X −Xk:N)2

(k−1)
[

k
∑

i=1

(
Xi:N −X

)2
] ,

where X =

(
k
∑

i=1
Xi:N

)
k

(13)

3. The value of the test statistic W = 104W̃ is
compared with the upper and lower percent-
age points (WU and WL) given in Table 2 for
different significance levels.

4. The domain of attraction is ascertained to be
Gumbel or Weibull or Frechet as follows:

a. W > WU : accept the hypothesis that the
data belongs to the domain of attraction
of Weibull distribution.

b. WU > W > WL : accept the null hypothe-
sis that the data belongs to the domain of
attraction of Gumbel distribution.

c. W < WL : accept the hypothesis that the
data belongs to the domain of attraction
of Frechet distribution.

The papers by Dunne and Ghanbari (2001) and
Alves and Neves (2006) contain discussions on
the details of the Hasofer-Wang test.

4 Stochastic dynamical systems

4.1 Identification of basin of attraction based
on data

Attention in this study is focused on the extremes
of response of a dynamical system driven by
white Gaussian noise or by filtered white noise.
The governing equations could be written in the
form

dx(t) = a[x(t), t]dt+b[x(t), t]dw(t),
for x(t0) = x0 (14)

Here x(t), x0 and a[x(t), t] are d × 1 vectors,
b[x(t), t] is a d ×m matrix and dw(t) is a m× 1
vector of increments of the standard Brownian
motion process. The problem on hand consists
of determining the probability

lim
tI→∞

P [xk(t) < αk∀t ∈ (tI, tI +T )]

= lim
tI→∞

P

[
max

t∈(tI ,tI+T )
xk(t) < αk

]
= P [xk max < αk] (15)

in the time interval (tI, tI +T ), where xk max =
lim

tI→∞
max

t∈(tI ,tI+T)
xk(t)and αk is the threshold below

which the response is considered. The steps to
evaluate the above probability are as follows:

(a) Simulate N samples of {xki(t)}N
i=1 over the

interval (tI , tI +T ) with tI → ∞ using Monte
Carlo simulation technique.

(b) Assemble all the extremes in {xki(t)}N
i=1 into

a single array θ . The size of this array would
vary from one simulation run to the other.

(c) Apply the Pickands, Galambos and (or)
Hasofer-Wang test to decide upon the asymp-
totic form of the extreme value distribution to
whose basin of attraction the data θ belongs
to.

(d) Simulate Ñ samples of {xki(t)}Ñ
i=1 and deter-

mine xkmi = max
t∈(tI ,tI+T )

tI→∞

xki(t); i = 1, · · · , Ñ.

(e) Estimate parameters of PDF of xkm identified
in step (c) above.

(f) Estimate the required probability
P [xk max < αk] using this PDF.

It is expected that N 	 Ñ. Also Ñ itself is large
enough to provide estimate of parameters of the
extreme value distribution, and does not depend
upon the value of P [xk max < αk]. This implies that
P [xk max < αk] could be evaluated with relatively
small sample size than what is typically required
in a brute force Monte Carlo simulation strategy.

4.2 Simulation of samples of system response

To implement the steps outlined in the previous
subsection, we need to simulate sample solutions
of equation 14. The method for numerical solu-
tion of this type of equations differs significantly
from that of ordinary differential equations due
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Table 2: Upper and lower percentage points for W in the Hasofer-Wang test.

Sample size
Percentage level

k Lower tail (WL) Upper tail (WU)
0.01 0.025 0.05 0.10 0.10 0.05 0.025 0.01

13 333.8 395.6 457.7 538.4 1599.5 1827.5 1998.5 2204.6
14 305.6 361.2 416.3 489.6 1406.3 1589.4 1749.6 1934.4
15 288.1 339.4 389.3 456.5 1275.6 1450.4 1596.2 1768.1
16 272.8 321.3 368.8 431.5 1183.3 1334.9 1469.4 1629.5
17 258.6 306.0 349.6 407.7 1095.0 1234.7 1357.9 1508.3
18 247.4 290.2 332.0 386.5 1017.1 1143.9 1259.7 1397.7
19 237.1 277.6 316.6 368.5 950.4 1064.5 1171.1 1301.4
20 226.9 265.4 302.5 350.7 888.8 997.3 1096.5 1220.9
21 217.7 255.0 289.1 333.6 836.0 938.1 1027.2 1145.8
22 210.1 244.9 278.3 321.0 787.3 881.9 968.7 1077.2
25 189.4 219.3 248.8 285.4 672.1 747.4 821.1 910.8
30 165.0 189.2 212.6 241.7 535.5 593.6 650.7 719.9
40 131.7 149.5 166.1 186.4 377.1 413.6 451.5 497.0
50 110.4 124.1 136.6 151.8 289.5 316.5 340.2 371.1
60 96.4 106.9 116.6 128.8 232.9 253.8 270.8 293.3
80 76.5 84.2 91.0 98.9 168.4 179.9 190.7 205.5

100 63.6 69.2 74.3 80.2 129.6 138.4 146.4 155.5
200 35.4 37.6 39.9 41.9 59.4 62.2 64.8 68.1
500 16.3 16.9 17.4 18.0 22.6 23.2 23.8 24.5

to the peculiar nature of the underlying calcu-
lus. These aspects have been discussed in liter-
ature. The book by Kloeden and Platen (1995)
provides a comprehensive account of the develop-
ment of numerical methods for solution of initial
value problems as in equation 14. In our study
we employ the order 1.5 strong Taylor scheme
as outlined by Kloeden and Platen (1995). We
consider the time descretization of equation 14
with 0 = t0 < t1 < · · · < tN = T in the time in-
terval [0,T ]. Furthermore, we take the time steps
to be uniform with Δ = T/N. The discretization
scheme is given by (Kloeden and Platen 1995)

Yk(n+1) = Yk(n)+ak(n)Δ+bk(n)ΔW

+
1
2

L1bk(n)
{
(ΔW)2 −Δ

}
+L1ak(n)ΔZ +L0bk(n){ΔWΔ−ΔZ}
+

1
2

L0ak(n)Δ2

+
1
2

L1L1bk(n)
{

1
3

(ΔW)2 −Δ
}

ΔW

(16)

for n = 0,1,2, · · · ,N − 1 and k = 1,2, ...,d with
Y0 = x0. In the above equation

L0 =
∂
∂ t

+
d

∑
k=1

ak
∂

∂xk
+

1
2

d

∑
k=1

d

∑
l=1

bkbl
∂ 2

∂xk∂xl

L1 =
d

∑
k=1

bk
∂

∂xk

(17)

and ΔW and ΔZ are normal random variables
given by

{
ΔW
ΔZ

}
=

[ √
Δ 0

0.5Δ1.5 0.5Δ1.5√
3

]{
U1

U2

}
(18)

where U1 and U2 being the standard normal ran-
dom variables having the properties{

U1

U2

}
≡ N

({
0
0

}
,

[
1 0
0 1

])
(19)
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4.3 Out-crossing rate based on solution of
Fokker-Planck-Kolmogorov equation

The d-dimensional transition probability density
function p(x, t|x0, t0) associated with solutions
of equation 14 is known to satisfy the Kol-
mogorov forward and backward equations. The
forward equation, also known as the Fokker-
Planck-Kolmogorov (FPK) equation, is given by

∂ p(x, t|x0, t0)
∂ t

= −
d

∑
j=1

∂
∂x j

[a j(x, t)p(x, t|x0, t0]

+
1
2

d

∑
i=1

d

∑
j=1

∂ 2

∂xi∂x j

[(
bΞbt) p(x, t|x0, t0

]
(20)

Here Ξ is the covariance matrix of the driving
noise process vector. When a steady state is pos-
sible it turns out that ∂ p(x,t|x0,t0)

∂t = 0, and conse-
quently the governing equation is given by

−
d

∑
j=1

∂
∂x j

[a j(x, t)p(x, t)]

+
1
2

d

∑
i=1

d

∑
j=1

∂ 2

∂xi∂x j

[(
bΞbt) p(x, t)

]
= 0 (21)

This reduced form of the FPK equation is exactly
solvable for a class of problems. This class in-
cludes a class of nonlinear oscillators with a sin-
gle degree of freedom, and the governing equa-
tions are of the form

ÿ+β ẏ + f (y) = w(t) (22)

where β is a system parameter, f (y) is a function
of system response y and w(t) is a stationary ran-
dom process with 〈w(t)〉 = 0 and 〈w(t1)w(t2)〉 =
2π Φδ (t1−t2). Here Φ is the constant of the spec-
tral density of w(t), 〈•〉 denotes the mathematical
expectation operator and δ (•) is the Dirac delta
function. In the steady state it can be shown that

p(y, ẏ) = Cexp

⎡
⎣− β

π Φ

⎧⎨
⎩ ẏ2

2
+

y∫
0

f (s)ds

⎫⎬
⎭
⎤
⎦ (23)

where C is the normalization constant to be cho-

sen such that
∞∫

−∞

∞∫
−∞

p(y, ẏ)dydẏ = 1. It is of in-

terest to note that y(t) and ẏ(t)are stochastically

independent so that p(y, ẏ) = pY (y)pẎ (ẏ). Table
3 provides details of this pdf for a few choices of
f (y).
Once the knowledge of p(y, ẏ) is available, one
can compute the average rate of up-crossing of a
specified level αusing the Rice’s formulation:

ν+(α) =
∞∫

−∞

∞∫
−∞

|ẏ|δ [y−α ]p(y, ẏ)dydẏ (24)

For the problem on hand, this reduces to

ν+(α) = pY (α)
∞∫

−∞

pẎ (ẏ)dẏ = pY (α)
σ2

Ẏ√
2π

(25)

Table 3 provides details of this out-crossing rate
as well. Assuming that level α is high and that
the number of crossings of level α in the dura-
tion (t0, t0 +T) with t0 →∞ could be modeled as a
Poisson random variable, a model for the extreme
Ym = max

(t0,t0+T )
t0→∞

y(t) is obtained as

PYm(α) = exp
[−ν+(α)T

]
(26)

In the numerical studies we compare the models
for extremes from the proposed approach with the
analytical models as given by equation 26.

5 Numerical examples

In this section, the proposed method is demon-
strated for dynamical systems subjected to exter-
nal random excitation (white Gaussian noise) f (t)
of zero mean and constant standard deviation σ .
In this section η is used to denote the damping
coefficient and ω for the natural frequency of the
system.

5.1 Linear SDOF systems

We begin by considering the response of an
sdof system with white Gaussian noise excitation
given by

ẍ +2ηω ẋ +ω2x = f (t)
for x(0) = x0, ẋ(0) = ẋ0

and 〈 f (t1) f (t2)〉 = σ2δ (t1− t2)

(27)



88 Copyright c© 2008 Tech Science Press CMES, vol.27, no.2, pp.79-109, 2008

Table 3: Properties of steady state solutions of sdof systems considered in section 4.3
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This equation can be recast into the Ito stochastic
differential equation form as

dx1 = x2dt

dx2 =
{−ω2x1 −2ηωx2

}
dt +σdw(t)

(28)

For the purpose of numerical simulation of the
solution path we use the discretization given in
equations 16-19.

Y1(k +1) =Y1(k)+a1(k)Δ+L1a1(k)ΔZ

+
1
2

L0a1(k)Δ2

Y2(k +1) =Y2(k)+a2(k)Δ+b2(k)ΔW

+L1a2(k)ΔZ +
1
2

L0a2(k)Δ2

a1(k) =Y2(k);

a2(k) =−[
2ηωY2(k)+ω2Y1(k)

]
;

b2(k) =σ ;

L0a1(k) =a2(k);

L0a2(k) =a1(k)
(−ω2)+a2(k) (−2ηω) ;

L1a1(k) =σ ;

L1a2(k) =σ (−2ηω)

(29)

In the numerical work we take η = 0.08, ω =
2πrad/s, σ = 1.0 and T = 35s. Figures 1(a) and

1(b) show, respectively, the estimates of time his-
tories of the standard deviation of the displace-
ment and velocity processes obtained using 5000
samples of Monte Carlo simulations. The ex-
act solutions in the steady state are also shown
in this figure. Figure 1(c) compares the PDF
of displacement response obtained using simu-
lations with the exact solution. From these fig-
ures, it is evident that the simulation algorithm
employed in the study works satisfactorily. Fig-
ure 1(d) shows a typical time history of the sample
displacement process along with the extremes that
have been identified computationally. The results
on the Galambos test (with 245 samples and u=
0.1374) for identifying the domain of attraction
for extremes are shown in figures 1(e) and 1(f).
The Pickands method yielded with 100 samples a
value of c =1.2662. Similarly, with N= 245 and
k= 23, the W statistic in the Hasofer-Wang test
was obtained as 320.0. From these results we can
conclude that at 5% significance level the data can
be taken to belong to the domain of attraction of
Gumbel distribution for the extremes (see Table
2). Accordingly, the parameters of the Gumbel
PDF were estimated using 100 samples and an es-
timate for the PDF of extremes was obtained. Fig-
ure 1(g) shows this PDF along with the estimates
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Fig. 1 (a)

Fig. 1 (b)

Fig. 1 (c)

Fig. 1 (d)

Fig. 1 (e)

Fig. 1 (f)
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Fig. 1 (g)

Figure 1: Linear sdof system under white noise
excitations; η = 0.08;ω = 2πrad/s; (a) standard
deviation of displacement; (b) standard deviation
of velocity; (c) PDF of displacement; (d) sample
time histories with extremes marked; (e) unit ex-
ponential and the empirical PDF; (f) results of the
K-S test (u= 0.1374, sample size = 245); (g) PDF
models for extremes.

obtained using a 5000 sample simulation and ana-
lytical predictions on extremes using equation 26.
In this case it is noted that the analytical PDF for
extremes has the form

PXm(α) = exp

[
− σẋT

2πσx
exp

{
− α2

2σ2
x

}]
(30)

where α is the response threshold, T is the time
duration of interest and σẋ and σx are the stan-
dard deviations of the response processes ẋ and
x, respectively. In figure 1(g) the results ac-
cording to the above equation are termed as “ex-
act/analytical”. It may be noted that this PDF is
not in the Gumbel form. Introducing the notations

ζ =
α
σx

and N+
x (0) =

σẋ

2πσx
(31)

we write

exp(−α) = N+
x (0)T exp

(
−ζ 2

2

)
(32)

From this it follows

ζ =
[
2α +2ln

{
N+

x (0)T
}] 1

2 . (33)

By expanding the right hand side of equation 33
in Taylor’s expansion and retaining only the first
two terms, we get

ζ ∼= [
2ln

{
N+

x (0)T
}] 1

2 +
α[

2ln
{

N+
x (0)T

}] 1
2

(34)

Using the notation C1 = [2ln{N+
x (0)T}]1/2 , we

can write α = C1(ζ −C1). Then we obtain

PXm(α) = exp

[
−exp

{
−C1

(
α
σx

−C1

)}]
(35)

This form of the PDF conforms to the Gumbel
form. In figure 1(g) the results from this model
are designated as “Gumbel-analysis”.

From figure 1(g) it can be observed that the PDF
for the extremes obtained using the procedure
proposed in this work compares well with the sim-
ulation results than with the analytical predictions
based on equations 30 and 35.

5.2 Duffing-Van der Pol’s oscillator

Here we consider oscillators governed by equa-
tions of the form

ẍ +2ηω ẋ−υ ẋ(1−4x2)+ω2x+ μx3 = f (t)
for x(0) = x0, ẋ(0) = ẋ0

and 〈 f (t1) f (t2)〉= σ2δ (t1− t2)
(36)

where υ and μ are system parameters. In
the numerical work we take ω = 2πrad/s, η =
0.08, υ = 0.1, μ = 50 and σ = 1.0. The above
equation can be recast in a form compatible with
equation 14 as

dx1(t) =x2dt

dx2(t) =
{
−2ηωx2 +υx2(1−4x2

1)−ω2x1

−μx3
1

}
dt +σdw(t)

(37)

Thus we get

d = 2, m = 1,

a1 = x2

a2 = −2ηωx2 +υx2(1−4x2
1)−ω2x1 −μx3

1

b1 = 0; b2 = σ
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(38)

which, in conjunction with the discretization
scheme outlined in equations 16-19, lead to the
discrete set of equations that are used in the Monte
Carlo simulations.

We first consider the case of Duffing oscillator
(i.e., equation 38 with υ = 0). Analytical models
for the system response based on the exact solu-
tion of the governing FPK equation in the steady
state are summarized in Table 3 (Refer to equation
22 in section 4.3). Figures 2(a) and (b) show the
results of the Galambos test (u= 1.0943; sample
size = 235). The Pickands test with 100 samples
lead to a value of c= -1.1214. The Hasofer-Wang
statisticW was obtained as 511.1 (N= 235, k= 23),
which again confirms Gumbel basin of attraction
(at 5% significance level, Table 2). This leads to
the conclusion that the data belongs to the Gum-
bel’s basin of attraction for the extremes. The
results on PDF of extremes over 35s using 5000
sample simulations and a Gumbel model, whose
parameters are estimated using 100 samples, are
shown in figure 2(c).

We next consider the case of Van der Pol’s oscilla-
tor (i.e., equation 38 with μ = 0). This oscillator
is characterized by the presence of one stable limit
cycle with the origin being unstable. Furthermore,
the oscillator does not belong to the class of sys-
tems for which the exact steady state solution for
the governing FPK equation is obtainable. Figure
3(a) shows a sample realization of the response
vector in the form of a phase-plane plot. The tra-
jectory originates from rest, and the limit cycle ac-
tion forces the trajectory towards the stable limit
cycle. In figures 3(b) and 3(c) the PDFs of the dis-
placement and velocity (normalized with respect
to their standard deviations) are superimposed on
the PDF of standard normal random variable. The
departure from normality in the response is evi-
dent in these figures displaying the well known
bimodal character. Results from the Galambos
test (u= 0.6355 sample size = 581) are shown in
figures 3(d) and 3(e). This leads to the conclu-
sion that, at 5% significance level, the hypothesis
that the data belongs to the domain of attraction
of Gumbel for extremes should be accepted. On
the other hand, the Pickands test with 100 sam-

Fig. 2 (a)

Fig. 2 (b)

Fig. 2 (c)

Figure 2: The Duffing sdof system under white
noise excitations; η = 0.08;ω = 2π rad/s; μ = 50;
(a) unit exponential and the empirical PDF; (b)
results of the K-S test (u= 1.0943, sample size =
235); (c) PDF models for extremes.



92 Copyright c© 2008 Tech Science Press CMES, vol.27, no.2, pp.79-109, 2008

Fig. 3 (a) Fig. 3 (b)

Fig. 3 (c) Fig. 3 (d)

Fig. 3 (e) Fig. 3 (f)

Figure 3: The Van Der Pol sdof system under white noise excitations; η = 0.08;ω = 2π rad/s; υ = 0.10;
(a) Phase-plane plot; (b) PDF of displacement process; (c) PDF of velocity process; (d) unit exponential and
the empirical PDF; (e) results of the K-S test (u= 0.6355, sample size = 581); (f) PDF models for extremes.
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ples lead to the estimate of c= -0.4677. This leads
to the rejection of the hypothesis (at 5% signifi-
cance level) that the data belongs to the domain of
attraction of Gumbel. In this case the Galambos
and Pickands tests lead to contradictory conclu-
sions. Similar conclusion is also reached from the
Hasofer-Wang test in which W= 259.6 (N= 581,
k= 36) is obtained. Figure 3(f) compares the em-
pirical PDF for extremes with 5000 samples along
with a Gumbel model, whose parameters are esti-
mated using 100 samples. Figures 4(a)-(e) show
results of the Galambos test on data from Duffing-
Van der Pol oscillator for different combinations
of parameters μ and υ . The results presented
are of particular interest, since the Galambos test
indicates that the data belongs to the domain of
attraction of Gumbel extreme value distribution,
while the Pickands’ test reveals the opposite. It
may be noted that the value of c with 100 samples
as per Pickands’ method is provided in the caption
to the figures 4(a)-(e).

5.3 Tangent stiffness system

Here we consider systems governed by equations
of the form

ẍ +2η ẋ +
2dω2

π
tan

(π x
2d

)
= f (t)

for x(0) = x0, ẋ(0) = ẋ0

and 〈 f (t)〉= 0; 〈 f (t1) f (t2)〉 = σ2δ (t1− t2)

(39)

This type of oscillator has been studied earlier by
Klein (1964), and exact solutions for the steady
system response have been obtained from the gov-
erning FPK equations (see Table 3). The stiff-
ness characteristics of this system ensures that the
displacement process remains bounded between
(−d,d). Consequently, Gumbel models for ex-
tremes can be expected to be invalid for this class
of systems.

For the purpose of conducting Monte Carlo sim-
ulations we discretize the above governing equa-
tion using the algorithm outlined in equations 16-
19. For this purpose we write equation 39 in the
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Fig. 4 (a) μ = 50, υ = 0.1 Pickands’ c= -0.2542 (100 sam-
ples)
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Fig. 4 (b) μ = 100, υ = 0.0 Pickands’ c= -0.1871 (100 sam-
ples)
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Fig. 4 (c) μ = 100, υ = 0.2 Pickands’ c= -0.1189 (100 sam-
ples)
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Fig. 4 (d) μ = 100, υ = 0.5 Pickands’ c= -0.1293 (100 sam-
ples)
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Fig. 4 (e) μ = 100, υ = 4.0 Pickands’ c= -0.1212 (100 sam-
ples)

Figure 4: Results of the Galambos test and
Pickands test for the Duffing-Van Der Pol oscil-
lator.

form

dx1(t) =x2dt

dx2(t) =
(
−2ηx2 − 2dω2

π
tan

{πx1

2d

})
dt

+σ dw(t)

(40)

By comparing equation 40 with equation 14 we

get

a1 = x2

a2 = −2η x2 − 2dω2

π
tan

{πx1

2d

}
b1 = 0

b2 = σ

(41)

We use the notations

σ2
0 =

π S
2ηω2 , σ2 = 2π S, and n =

4d2

π2σ2
0

(42)

In the numerical study we take S= 0.0040, T =
30s, t0 = 5s, ω =10rad/s, and η = 0.05ω . The
values of n are 1, 2, and 5. Samples of the re-
sponse vector plotted in the form of phase-plane
plots are shown in figures 5(a), 5(b) and 5(c) for
n= 5, 2, and 1, respectively. The analytical re-
sults on the first order probability density function
of x(t) in the steady state are depicted in figures
5(d), 5(e), and 5(f) for n= 5, 2 and 1, respectively.
It is to be noted that, for a given value of excita-
tion intensity, smaller values of n implies smaller
values for the bounding parameter d. This fea-
ture is reflected in the response characteristics as
can be evidenced from the shape of phase-plane
plots (figures 5 (a)-(c)) and the probability den-
sity functions (figures 5 (d)-(f)). As has been
already noted, the displacement response in this
case would be limited between (−d,d). The re-
sults of Galambos test for n= 5, 2 and 1 are shown
in figures 5(g), 5(h), 5(i), 5(j), 5(k), and 5(l), re-
spectively. The Pickands test with 100 samples
revealed the value of c to be -0.2635, -0.4502 and
-1.0800, respectively. Based on the Galambos test
it can be concluded that for n= 5 and 2, Gumbel
model for the extremes could be used, while for
n= 1, the Weibull model is obtained. According
to the results from the Pickands test (at 5% sig-
nificance level), the Gumbel model for extremes
is acceptable for n= 5 (figure 5(m)) and not ac-
ceptable for n= 1. For the case of n= 2, one could
conclude that either the Gumbel or Weibull model
could be used.

5.4 Hysteretic oscillator (Bouc’s oscillator)

In this example we consider randomly driven non-
linear systems in which the force of resistance at
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Fig. 5 (a)

Fig. 5 (b)

Fig. 5 (c)

Fig. 5 (d)

Fig. 5 (e)

Fig. 5 (f)
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Fig. 5 (g)

Fig. 5 (h)

Fig. 5 (i)

Fig. 5 (j)

Fig. 5 (k)

Fig. 5 (l)
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Fig. 5 (m)

Figure 5: The tangent stiffness sdof system un-
der white noise excitations; ω = 10 rad/s; η =
0.05ω ; S = 0.0040(a) Phase-plane plot for n= 5;
(b) Phase-plane plot forn= 2; (c) Phase-plane plot
for n= 1; (d) pdf of displacement for n= 5; (e) pdf
of displacement for n= 2; (f) pdf of displacement
for n= 1; (g) unit exponential and the empirical
PDF n= 5; (h) unit exponential and the empirical
PDF n= 2; (i) unit exponential and the empirical
PDF n= 1; (j) results of the K-S test n= 5; (k) re-
sults of the K-S test n= 2; (l) results of the K-S
test n= 1; (m) PDF models for extremes n= 5.

any time instant is dependent upon the response
time history up to that time instant. These types
of oscillators are of interest in problems of earth-
quake engineering in which structures are de-
signed to display controlled inelastic behaviour
under the action of random earthquake induced
loads. A commonly used model for this class of
systems, exemplified through a randomly driven
sdof system, is given by

ẍ +2ηω ẋ +λ x+(1−λ )z = f (t)

ż = −γ |ẋ|z|z|n−1−β ẋ|z|n +Aẋ

for x(0) = x0, ẋ(0) = ẋ0, z(0) = z0

and 〈 f (t)〉= 0; 〈 f (t1) f (t2)〉= σ2δ (t1− t2)

(43)

Here by adjusting the values of the model pa-
rameters λ ,γ ,n,β and A, different shapes for the
hysteresis loops could be generated (Wen 1986).
These problems do not belong to the class of prob-
lems for which exact solution to the governing

FPK equation is presently possible. We begin by
recasting the above equation in the Ito form as

dx1(t) = x2dt

dx2(t) = (−2ηωx2−λ x1−(1−λ )x3)dt+σdw(t)

dx3(t) =
(−γ |x2|x3|x3|n−1−β x2|x3|n +Ax2

)
dt

(44)

This equation is in the form of equation 14 with
d= 3,m= 1 and

a1 = x2

a2 = (−2ηωx2 −λ x1 − (1−λ )x3)

a3 =
(−γ |x2|x3|x3|n−1−β x2|x3|n +Ax2

)
b1 = 0; b2 = σ ; b3 = 0

(45)

The equations can now be discretized to obtain
equations of the form 16-19. In doing so it may
be noted that

L1a1 =σ
L1a2 =−2ηωσ
L1a3 =σ

{−γsgn(x2)x3|x3|n−1−β |x3|n +A
}

L0a1 =a2

L0a2 =−λ a1 −a22ηω −a3(1−λ )

L0a3 =a2
{−γsgn(x2)x3|x3|n−1−β |x3|n +A

}
+a3

{
− γ |x2||x3|n−1

− γ |x2|x3(n−1)|x3|n−2sgn(x3)

−β x2n|x3|n−1sgn(x3)
}

(46)

In the numerical work we take η = 0.05, λ =
0.05, β = 0.5, ηω = 0.02, A = 1, n = 2 and γ =
0.5. The noise intensity is taken to be σ =1.0,
and the maximum over time duration T = 35s is
sought. Figures 6(a)-(c) illustrate the sample re-
sponse time histories in the form of phase-plane
plots. The results of Galambos test (sample size
= 759, u= 5.5794) are shown in figures 6(d) and
(e). The Pickands test with 100 samples leads to
c= 1.2405. The Hasofer-Wang test leads to W=
262.2 (N= 759,k= 41), so that the null hypothesis
of the test could be accepted at 5% significance
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Fig. 6 (a) Fig. 6 (b)

Fig. 6 (c) Fig. 6 (d)

Fig. 6 (e) Fig. 6 (f)

Figure 6: The Bouc’s oscillator under white noise excitations; η = 0.05; λ = 0.05; β = 0.5; ηω =
0.02; A = 1; n = 2; γ = 0.5; T = 35s. (a) Phase-plane plot ẋ(t)versus x(t); (b) Phase-plane plot x(t) versus
z(t); (c) Phase-plane plot ẋ(t)versus z(t); (d) unit exponential and the empirical PDF; (e) results of the K-S
test test (u= 5.5794, sample size = 759); (f) PDF models for extremes.
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level. Thus the Gumbel model is found to be suit-
able for modeling the extremes. Figure 6(f) com-
pares the results of 5000 sample simulations on
extremes of x(t) with a prediction from a Gumbel
model whose parameters have been estimated us-
ing 100 samples. The mutual agreement between
these two results is satisfactory.

5.5 Nonlinear system with two degrees of free-
dom

A model with two degrees of freedom with non-
linear stiffness characteristics is governed by the
following form of equations of motion

ẍ1 +2η1ω1ẋ1 +α1x3
1 +α2x2

1x2 +α3x1x3
2 +α4x3

2

+ω2
1 x1 = f1(t)

ẍ2 +2η2ω2ẋ2 +β1x3
1 +β2x2

1x2 +β3x1x3
2 +β4x3

2

+ω2
2 x2 = f2(t)

for xi(0) = xi0, ẋi(0) = ẋi0; i = 1,2

and 〈 fi(t)〉= 0, 〈 f1(t1) f2(t2)〉 = 0,

〈 fi(t1) fi(t2)〉= σ2
i δ (t1− t2); i = 1,2

(47)

where ηi (i = 1,2) are the damping coefficients,
and αi andβi (i = 1,2,3,4) are the system parame-
ters. Expressed in the Ito equation form, the above
equations read as

dy1(t) =y2dt

dy2(t) =
(
−2η1ω1y2 −ω2

1 y1 −α1y3
1 −α2y2

1y3

−α3y1y2
3 −α4y3

3

)
dt +σ1dw1(t)

dy3(t) =y4dt

dy4(t) =
(
−2η2ω2y4 −ω2

2 y3 −β1y3
1 −β2y2

1y3

−β3y1y2
3 −β4y3

3

)
dt +σ2dw2(t)

(48)

This set of equations is discretized to obtain equa-
tions of the form 16-19 which are used in the
simulation work. In the numerical work it is as-
sumed that ω1 = ω2 = 2π rad/s, η1 = 0.08, η2 =
0.05, α1 = 2, α2 = 4, α3 = 5, α4 = 2.5, β1 =
4, β2 = 5, β3 = 1.5 and β4 = 4. The noise inten-
sities are taken to be σ1 = 10 and σ2 = 0. Figures

Fig. 7 (a)

Fig. 7 (b)

Fig. 7 (c)

Figure 7: The two dof Duffing system under
white noise excitations; ω1 = ω2 = 2π rad/s,
η1 = 0.08,η2 = 0.05,α1 = 2,α2 = 4,α3 = 5,α4 =
2.5,β1 = 4,β2 = 5,β3 = 1.5, and β4 = 4; (a) unit
exponential and the empirical PDF; (b) results of
the K-S test (u= 1.3106, sample size = 335); (c)
PDF models for extremes.
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Table 4: Geometrical and structural data of the turbine blades considered in Section 5.6
Radial position Chord Relative thickness Twist EI flap EI edge Mass

(m) (m) (%) (Degrees) (MNm2) (MNm2) (kg/m)
1.46 0.01 40.0 0.0 1.50×1010 1.50 ×1010 3000
2.75 0.01 40.0 0.0 8.00 ×109 8.00 ×109 1500
2.96 0.01 40.0 0.0 2.00 ×109 2.00 ×109 510
6.46 3.30 30.6 8.0 5.86 ×108 1.40 ×109 390
9.46 3.00 24.1 7.0 2.40 ×108 8.51 ×108 315
12.46 2.70 21.1 6.0 1.21 ×108 5.24 ×108 250
15.46 2.40 18.7 5.0 6.09×107 3.28×108 206
18.46 2.10 16.8 4.0 3.05 ×107 2.08 ×108 173
21.46 1.80 15.5 3.0 1.43 ×107 1.23 ×108 138
24.46 1.50 14.4 2.0 5.68 ×106 6.18 ×107 94
27.46 1.20 13.3 1.0 1.71 ×105 2.64 ×107 55
28.96 1.05 12.8 0.5 7.70 ×105 1.60 ×107 40
29.86 0.96 12.5 0.2 4.50 ×105 1.16 ×107 31
30.56 0.89 12.2 0.0 2.70 ×105 8.60 ×106 25

7(a) and (b) show the results of the Galambos test
as applied to samples of y1(t) with (u = 1.3106
and sample size = 335). The Pickands test with
100 samples yielded c= -0.5260. The Hasofer-
Wang test leads to W= 229.4 (N = 335, k = 27)
for y1(t) so that the null hypothesis is accepted at
5% significance level. A Gumbel model was sub-
sequently selected, and figure 7(c) shows the com-
parison of empirical PDF of extremes with 5000
samples with the Gumbel model whose parame-
ters have been determined using 100 samples.

5.6 Reliability of a wind turbine subjected to
dynamic wind loads

Here we consider the reliability of a wind turbine
structure when it is subjected to dynamic effects
of wind loads. This example serves to illustrate
the application of the proposed method for relia-
bility analysis when applied to large-scale vibra-
tion problems. The structure under study con-
sists of a typical 2MW wind turbine with 3 blades
with a hub height of 61m and blade length of 31m
(Figure 8(a)). The values of the other system pa-
rameters are summarized in Table 4 (Ahlstrom,
2005). The three-degree tilted rotor produces a
blade tip speed of 71m/s while running at a con-
stant speed of 22.3 rotations per minute. The
loads induced on the structure in this case are a

result of complex fluid-structure interaction. The
analysis in the present study is based on the soft-
ware Flex5 which enables the aeroelastic simu-
lation of wind turbines (Oye 1996). The analy-
sis here involves coupled aerodynamics and struc-
tural analysis. Aerodynamic simulation is used
for estimation of loads, and the structural analysis
is carried out based on modal decomposition and
time domain numerical integration. The structural
modeling consists of component mode synthesis,
in which the tower, turbine blades and the rotor
part are modeled as Euler-Bernoulli beams, and
the structural matrices for the built-up structure
are produced in terms of the modes of the indi-
vidual substructures in uncoupled states. In the
numerical work, the first two modes of the indi-
vidual substructures are included. This structural
model does not include the stiffening effect due
to centrifugal forces generated due to blade rota-
tion. The wind velocity is modeled as a sample
of stationary Gaussian random field with power
spectral density function S( f ) given by the well
known Kaimal spectra

f S( f )
σ2

1
=

(4 f Lc/Vhub)

(1+(6 f Lc/Vhub))
5/3

(49)

where Vhub is the mean wind speed at hub height
averaged over 10min, f is frequency in Hz, σ1 is
the standard deviation of wind velocity compo-
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nent that is obtained by multiplying turbulence in-
tensity (assumed to be 0.41) with the mean wind
speed, and Lc is the integral scale parameter of
the velocity component describing the size of the
large energy containing eddies in a turbulent flow.
A value of 170 is used for Lc as per IEC speci-
fication (IEC 1998). The hub height zhub in the
present example is 61m, and it is assumed that
Vhub = 10m/s. The variation of wind speed along
the height of the turbine is taken to be given by
u(z) = Vhub (z/zhub)

0.2, where u(z)is the veloc-
ity of wind at height z above the ground. The
cross-correlation between turbulent fluctuations at
points separated in lateral and vertical directions
is given by the coherence function

coh(r, f ) =

exp

⎛
⎝−8.8

√(
f r

Vhub

)2

+
(

0.12
ν
Lc

)2
⎞
⎠ (50)

Here r refers to the radial distance of any loca-
tion from the hub center, and ν is the magnitude
of projection of the separation vector between the
two points under consideration onto a plane nor-
mal to the average wind direction. Wind velocity
profile with a mean speed of 10m/s and turbulence
intensity of 41% is generated as per the above
spectral density function for 10min duration with
a time step of 0.08s. Figure 8(b) shows a typical
time history of wind velocity. The time histories
of the blade tip deflection, bending moment at the
blade root and at the tower base, are simulated us-
ing the Flex5 software (figures 8(c)-(g)). The fol-
lowing performance functions are considered:

1. The maximum clearance between the blade
tip and the tower over a duration of 10min
remains less than a prescribed limit (4.5m)
(performance function 1).

2. The maximum bending moment at the blade
root and at the tower base over a duration of
10min are < 3500kNm and < 30000kNm,
respectively (performance functions 2 and
3).

3. The maximum lateral and flap-wise tower
top acceleration over a duration of 10min is
< 2m/s2 (performance functions 4 and 5).

Fig. 8 (a)

Fig. 8 (b)

Fig. 8 (c)
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Fig. 8 (d)

Fig. 8 (e)

Fig. 8 (f)

Fig. 8 (g)
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Figure 8: Reliability analysis of a wind turbine
structure; (a) typical wind turbine structure; flap-
wise direction refers to the direction perpendicu-
lar to blade chord; edgewise direction is parallel
to the blade chord; blade torsion is referred with
respect to the axis along the blade length; (b) a
sample realization of the velocity of wind at tur-
bine hub shown for a mean wind speed of 10m/s
and turbulence intensity of 0.41; (c) flap-wise dis-
placement of the tower top; (d) blade tip deflec-
tion; (e) lateral displacement of the tower top; (f)
bending moment at blade root; (g) bending mo-
ment at tower base; (h) unit exponential and the
empirical PDF; (i) results of the K-S test; (j) PDF
of the extreme displacement.

The basin of attraction of extremes of each of
the response quantities is determined using the
Galambos and Pickands tests, and by using peaks
contained in 5 samples of the response time his-
tories (each of 10min duration). It is confirmed
that the extremes belong to the basin of attrac-
tion of Gumbel random variable (figures 8(h) and
(i)). Accordingly, further analysis with 100 sam-
ple time histories of 10min duration lead to the
estimation of the Gumbel parameters for each of
the response quantities. Figure 8(j) illustrates the
PDF of the response of the extreme blade tip ob-
tained. The probability of failure for the five
performance functions was estimated to be, re-
spectively, 1.9923e-004, 1.3986e-004, 2.3359e-4,
1.3234e-006 and 2.721e-003. In this example, it

is of interest to note that the time required for one
sample calculation, including the wind generation
and aerodynamic simulation, is about 25mins on a
Pentium 2.66GHz 1GB RAM machine. Clearly, a
large-scale Monte Carlo simulation study for time
variant reliability on this type of structures is in-
feasible, especially to evaluate probability of fail-
ure of the order of 10−4 and less. It is also to be
noted that the analysis outlined here could be car-
ried out even when the time histories as shown in
figures 8(c)-(g) are obtained by actual measure-
ments on existing wind turbine structures. This
would mean that the procedures for extreme value
analysis discussed herein are applicable for study-
ing reliability of existing structures. An example
of this class of study is presented in the next sec-
tion.

5.7 Reliability of existing structures

The procedure for identification of the basin of at-
traction of extremes and subsequent modeling of
the PDF of extremes could also be applied when
the vibration data emanates from either labora-
tory or field measurements. To illustrate this pos-
sibility we consider the nonlinear system shown
in figure 9(a). The system here consists of a
cantilever aluminum beam (rectangular cross sec-
tion of 19.1× 3.1mm) that is suspended on two
steel wires (0.25 mm diameter), and is driven
by a band-limited (2-1000 Hz) random dynamic
base motion. The wires here are incapable of re-
sisting compressive forces, and consequently the
system possesses bilinear stiffness characteristics
with the wires contributing to increase in beam
stiffness only when they carry tensile forces. An
experimental study on this system was conducted
by mounting the beam on an electro-dynamic
shaker and by measuring the beam acceleration
response at a set of four points. The first five nat-
ural frequencies of the beam (without wires) esti-
mated using Euler-Bernoulli beam model, assum-
ing perfect fixity at the supported end, and with
Young’s modulus= 70GPa, are obtained as 6.62,
41.51, 116.24, 226.25, and 376.54rad/s, respec-
tively. The vibration data was acquired at a sam-
pling rate of 2048samples/s, and passed through
a band-pass filter of frequency range 2-1000Hz.
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Corresponding to each of the four measurements
{xi(t)}4

i=1 made, a normalized time function given

by yi(t) = xi(t)−mi
σi

is defined. Here mi and σi are,
respectively, the expected value and standard de-
viation of xi(t). This normalized data was sub-
jected to the extreme value analysis. Some of the
results from this study are shown in figures 9(b)
and (d). From these figures, we can conclude that
the extreme responses belong to the Gumbel do-
main of attraction for beam with and without the
presence of wires. The estimates of extreme re-
sponse over a time duration of 0.5s and with 500
samples are shown in figures 9(c) and (e). These
figures also show the empirical PDF of extremes
estimated using an extended ensemble of response
time histories leading to 5000 samples of extrema.
The empirical PDFs seem to compare well with
the data obtained from Gumbel model estimated
with limited samples.

It may be emphasized in the context of this exam-
ple that the performance functions that have been
studied here are related to quantities that are ac-
tually measured. It is possible that there could be
other performance functions of interest that may
be related to the quantities that are not directly
measured or are difficult to measure. This leads to
an interesting question on the possibility of esti-
mating reliability, based on measurements of cer-
tain accessible variables, with respect to quanti-
ties that are not measured. For instance, in the
beam structure (figure 9(a)), based on the mea-
sured acceleration response, one could estimate
the probability of the event that the beam would
yield near the support (as per, say, the Von Mises
criterion). It seems possible to answer questions
of this kind by combining the reliability analysis
framework discussed in this paper with methods
of dynamic state estimation. Here it becomes es-
sential to postulate a mathematical model for the
vibrating system. To clarify this point, we con-
sider a randomly excited sdof system, and assume
that the measurements have been made on the
displacement response. The governing equation
(termed as the process equation) is obtained as

{
ẋ1

ẋ2

}
=

4321 Measurement locations 

98.30 100.64

125.00125.00125.00

Wires

4 3 2 1

f(t)

Beam

f(t)     Support excitation 

499.00

(All dimensions are in mm)

Fig. 9 (a)

Fig. 9 (b)

Fig. 9 (c)
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Fig. 9 (d)

Fig. 9 (e)

Figure 9: Reliability analysis using experimen-
tally measured data; (a) cantilever beam sup-
ported on wires; (b) results of the K-S test (beam
without wire); (c) PDF of extreme displacement
y3(t) (beam without wire); (d) results of the K-
S test (beam suspended by wires); (e) PDF of
extreme displacement y3(t) (beam suspended by
wires).

[
0 1

−ω2 −2ηω

]{
x1

x2

}
+
{

0
f (t)
m

}
+
{

0
ξ (t)

}
(51)

Here ξ (t) is the process noise, and f (t) is the ex-
ternal excitation. The measurement equation is
given by

y(t) = x(t)+ς(t) (52)

Here ς(t) is the measurement noise. We model
the noise terms ξ (t) and ς(t) as zero mean, sta-
tionary Gaussian random processes. We consider
a performance function related to the highest reac-
tion transferred to the support, although we have
not been able to measure this force. The idea here
is to estimate the ‘hidden’ variable, that is, the re-
action

R̂(t) = ω2x̂1(t)+2ηω ˆ̇x1 (53)

where a hat over a variable indicates the estimate
of the corresponding state after the information
contained in the measurement y(t) has been as-
similated. Such estimates can be obtained by us-
ing the well known Kalman filtering techniques
for the class of linear dynamical systems carry-
ing Gaussian additive noises (Brown and Hwang
1992). For the purpose of illustration we con-
sider the system with η = 0.08, ω = 2πrad/s and
T = 35s and mimic numerically a measurement
situation. The process and measurement noises
ξ (t) and ς(t) are taken to be independent with
standard deviations of 0.04N and 0.02m, respec-
tively. The forcing function f (t) is modeled as
a zero mean, stationary white Gaussian random
process with a strength of 1.0N2. We discretize
the governing stochastic differential equation (as
in section 4.2). The measurement y(t) is obtained
numerically, and is seeded with random Gaussian
noise sequence ς(t) (equation 52). Based on the
Kalman filter algorithm, the estimate of R̂(t) is
obtained using equation 53. This is repeated for
all episodes of measurements. The resulting en-
semble of R̂(t) is subsequently used in the ex-
treme value analysis, and the results from this ex-
ercise are shown in figure 10. Here the W statistic
in the Hasofer-Wang test is obtained as 21.5 (N
= 3583 and k = 89) that lead to the acceptance of
the null hypothesis at 5% significance level. The
parameters of the Gumbel PDF are subsequently
estimated using 500 samples of R̂(t), and the re-
sulting PDF is marked as ‘Gumbel model’ in fig-
ure 10. This result is compared with the empiri-
cal PDF obtained with 5000 samples of R(t). The
mutual agreement between these two PDFs points
towards the acceptability of proposed procedure.
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Figure 10: Reliability analysis with respect to
an unmeasured response variable in an existing
structure; PDF of extreme of reaction transferred
to the support.

6 Discussion and closing remarks

The primary objective of this investigation has
been to combine Monte Carlo simulation meth-
ods with statistical inference methods on extreme
values to estimate the PDF of the extremes of re-
sponse of nonlinear dynamical systems driven by
white Gaussian noise excitations. Illustrative ex-
amples of reliability analysis of a wind turbine
structure based on numerical simulations, and re-
liability analysis of a nonlinear beam, based on
experimentally measured data are also discussed.
The study draws on the works that exist in the
mathematical literature on the determination of
domain of attraction of extreme value distribution
based on the availability of limited observation
data. In the present study the “observation” data is
taken to be the results of Monte Carlo runs of the
governing structural dynamics model. While the
limitation on available data is natural in the con-
text of extremes of environmental processes such
as earthquake, wind and floods, in the present
study this limitation is artificially enforced as re-
sulting from a perceived inability to perform large
number of Monte Carlo simulation runs on the
structural models. This can be considered to be
a reasonable view point especially when dealing
with prediction of reliability of large-scale engi-
neering structures, such as nuclear power plant

structures, in which, the typical probability of fail-
ure could be of the order of 10−5or even less. The
proposed method consists of a two level simula-
tion exercise. In the first, a few samples of re-
sponse time histories are generated, and all the ex-
tremes from these time histories are employed to
test the hypothesis on the basin of attraction of ex-
tremes to which the data belongs. Subsequently,
another set of simulations are performed wherein
the highest response over a given time duration
and across an ensemble is obtained. Based on this
data the parameters of the appropriate extreme
value PDF are estimated. The resulting PDF is
used for assessment of the structural reliability.
The sample size in the two stages of simulation is
largely independent of the value of reliability that
the model aims to evaluate. The proposed proce-
dure thus enables the evaluation of structural re-
liability with relatively less computational effort.
To clarify this point further, on a Pentium 2.4GHz
512MB RAM machine, the computation time for
determining the extreme value distribution of the
response of the Duffing system considered in sec-
tion 5.2, by Monte Carlo simulations using 5000
samples, was 80min 27s, while the time to com-
pute the same using the proposed procedure us-
ing 100samples was 2min 21s. In this sense the
proposed method aims to achieve what the meth-
ods based on variance reduction schemes aim to
achieve, albeit on an entirely different basis.

The following observations can be made based on
the study conducted in this work.

• The range of numerical examples consid-
ered in this study covers stochastic response
of linear and nonlinear sdof and mdof sys-
tems, and of large-scale models (such as the
wind turbine structure) and structures inves-
tigated using experimental techniques. The
use of white Gaussian model as an excitation
source is not restrictive since other forms of
spectral content could easily be accommo-
dated by adding additional filters. The Gum-
bel and Weibull models are useful models
for PDF of the extreme structural responses.
The results from this study are compared
with the results from out-crossing models for
a class of problems. The proposed method
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compares well with the results from large-
scale Monte Carlo simulations.

• In most cases the tests proposed by Galam-
bos, Pickands and Hasofer-Wang are ob-
served to lead to consistent results on the
forms of the extreme value PDFs, with
the exception being the case of dynamical
systems that possess limit cycle behaviour.
In these cases (section 5.2), the Galambos
and Hasofer-Wang methods seem to consis-
tently contradict the result from the Pickands
method. This aspect of the results remain un-
explained in this study, and it requires further
investigation.

• The study assumes the validity of the clas-
sical forms of extreme value distributions,
although it is well known that these distri-
butions are generally valid only for iid se-
quences of random variables. These forms
could be still applicable only when the ran-
dom variable sequences satisfy certain con-
ditions on the nature of their mutual depen-
dency. The authors are not aware of any sta-
tistical tests to ascertain if a given set of data
indeed satisfy such requirements. This as-
pect also requires further investigation. In
this context it must be emphasized that while
the study does not take into account the ef-
fect of dependency characteristics of the ran-
dom sequence on the form of asymptotic ex-
treme value distribution, in the determina-
tion of the model parameters such depen-
dency characteristics are indeed automati-
cally taken into account. The study does not
make any specific assumptions such as inde-
pendence of crossings and Poisson models
for number of level crossings, as is usually
done in the available analytical models for
extremes.

• The proposed method could be implemented
as a component in the seismic fragility anal-
ysis of large-scale structures. This has par-
ticular advantages since for the proposed
method issues such as structural nonlinear-
ity, non-Gaussian nature of loads/responses

and the size of the structure are not impedi-
ments in its implementaion.

• In situations where the structure under in-
vestigation is not easily amenable for math-
ematical modeling, as for example, in the
case of seismic safety assessment of struc-
tures with electronic components or other
“active” components, one often takes re-
course to qualification testing. This is true
in the field of earthquake engineering, and
for power plant components and equipment.
As has been illustrated, the proposed method
has the potential for applications in these sit-
uations also. This however would call for
more detailed test procedures than what per-
haps is considered adequate in a typical qual-
ification test. These aspects again require
further investigation.
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