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Vibration and Control of Rotating Tapered Thin-Walled Composite Beam
Using Macro Fiber Composite Actuator

Vadiraja D. N.1 and A. D. Sahasrabudhe2

Abstract: Rotating beams are flexible struc-
tures, which are often idealized as cantilever
beams. Structural modelling of rotating thin-
walled composite beam with embedded MFC ac-
tuators and sensors using higher shear deforma-
tion theory (HSDT) is presented. A non-Cartesian
deformation variable (which represents arc length
stretch) is used along with two Cartesian deforma-
tion variables. The governing system of equations
is derived from Hamilton’s principle and solution
is obtained by extended Galerkin’s method. Op-
timal control problem is solved using LQG con-
trol algorithm. Vibration characteristics and opti-
mal control for a box beam configuration are dis-
cussed in numerical examples. Gyroscopic cou-
pling between lagging-extension motions is found
to have significant effect and cannot be neglected.
Effects of bending vibration suppression using
MFC actuators and sensors are highlighted.

Keyword: HSDT, LQG, MFC, Thin-walled
beams.

1 Introduction

Turbo machines, helicopter blades, tilt rotor air-
crafts, robot manipulators, compressors, spinning
space structures and henceforth can be modeled
as rotating cantilever beams. The forces transmit-
ted from the rotating cantilever beams are a source
of vibration. This results in inefficient working of
a system. The vibration control is necessary for
safe and efficient working of these structures. It
is well known that thin walled composite mate-
rials facilitate substantial reduction in weight or
increase load carrying capacities, superior fatigue
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characteristics and facilitate structural tailoring.

Experimental and theoretical analysis of free vi-
bration characteristics of the rotating composite
box beams with elastic coupling using small de-
flection theory have studied by Ramesh and In-
derjit (1992). A finite element formulation for
thin walled composite beam with first order shear
deformation that is free from shear locking is
presented by Mitra; Gopalakrishnan and Bhat
(2004a). This beam element is having super con-
vergent property and which is used for wave prop-
agation analysis. Further, Vinod, Gopalakrishnan
and Ganguli (2006; 2007) presented spectral fi-
nite element of rotating isotropic Euler-Bernoulli
beam. Higher order shear deformation theory
(HSDT) was developed for thin walled compos-
ite beams by Suresh and Nagaraj (1996). The ro-
tating thin walled composite beam was analyzed
by Chandiramani; Librescu and Shete (2002).
Song and Librescu (1997), and Chandiramani; Li-
brescu and Shete (2002) have used geometrically
non-linear modeling method for deriving coupled
equations of motion including centrifugal stiffen-
ing and gyroscopic coupling. However, this ap-
proach leads to cumbersome formulation proce-
dure and non inclusion of gyroscopic coupling in
numerical analysis because linearization is possi-
ble only after discarding gyroscopic coupling. In
order to overcome this, Kane; Ryan and Baner-
jee (1987) and Yoo; Rayn and Scott (1995) have
used a new method for the rotating beams. This
method was named as dynamic modeling method
by Yoo and Shin (1998). Kane; Ryan and Baner-
jee (1987) have shown that centrifugal stiffening
and gyroscopic coupling can be captured without
considering large deformations. Dynamic model-
ing method employs a non-Cartesian deformation
variable in addition to two Cartesian deformation
variables and linear Cauchy strain measures. In
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the above method, the hybrid set of deformation
variables consist of arc length stretch, flapwise de-
formation and lagwise deformation. Yoo; Rayn
and Scott (1995) showed that this transformation
is equivalent to considering von Korman strain
measures for the beam. Recently, Yoo; Lee and
Shin (2005) have studied flapwise free vibration
studies of composite cantilever beam using this
method.

Lately, the vibration suppression using piezo-
electric material has been a major research area.
Sungsoo and Liviu (2000) studied optimal feed-
back control of shearable composite cantilever
beam. Vibration control of thin walled beam us-
ing acceleration feedback is presented by Mitra;
Gopalakrishnan and Bhat (2004b). Vasques and
Rodrigues (2006) have investigated the perfor-
mance of different control strategies in smart ac-
tive piezoelectric beam. Narayanan and Balamu-
rugan (2003) have presented the active vibration
control performance of shear deformable piezo-
laminated beam, plate and shell using finite el-
ement method. The study of optimal vibration
control of rotating composite beam with embed-
ded piezoelectric sensors and actuators is reported
by Chandiramani; Librescu; Saxena and Kumar
(2004). Reddy (1999) developed shear deforma-
tion composite plate theory with integrated sen-
sors and actuators. In all these works, monolithic
piezoelectric materials are used which are brittle
in nature. Recently, piezoelectric fibre based sen-
sors and actuators are attracting attention of re-
searchers. Different kinds of piezoelectric fibre
composites developed in recent years are active
fibre composites (AFC) developed by Bent; Ha-
good and Rodgers (1995), macro fibre compos-
ites (MFC) developed by Wilkie; Belvin and Park
(1996) and piezoelectric fibre reinforced com-
posite (PFRC) developed by Nilanjan and Ray
(2004). MFC sensors and actuators are having nu-
merous advantages over monolithic piezoelectric
materials are discussed by Park and Kim (2005) in
detail. Henry; Gyuhae and Daniel (2004) exper-
imentally investigated the performance of MFC
for sensing applications in inflated torus. Brock-
mann and Lammering (2006) formulated beam el-
ement for rotating thin walled composite beams

and studied vibration characteristics. Choi; Park
and Kim (2006; 2007) modelled first order shear
deformation theory of rotating thin walled beams
using MFC actuators and monolithic piezoelec-
tric sensors. In their study, the negative velocity
feedback control algorithm is used to suppress the
vibration. Analysis of damping performance by
placing sensors and actuators on inner, central and
outer surface of the box beam has been carried out
by Choi; Park and Kim (2006).

The purpose of the present study is to model the
dynamic modelling method to thin-walled com-
posite material with embedded MFC actuators
and sensors. The coupled linear equations of
motion describing axial, bending and rotational
motions, including gyroscopic coupling and cen-
trifugal stiffening are derived based on Hamil-
ton’s principle. Extended Galerkin’s method is
used to obtain an approximate solution. Linear
Quadratic Gaussian (LQG) output feedback con-
troller is used for optimal control with sensor cur-
rent as output. Numerical solutions are illustrated
for a box beam configuration.

2 2 Formulation

A composite beam of length L and hub radius
Ro, rotating with constant angular velocity Ω is
considered. The Cartesian inertial frame of ref-
erence (X , Y, Z) has its origin at the centre of
the hub. The beam coordinate system (x, y, z)
is located at offset Ro from the origin O. Fur-
ther, (i, j, k) and (I, J, K) represent unit vectors
in (x, y, z) and (X , Y, Z) coordinate systems re-
spectively (Figs. 1(a) and 1(b)). In addition to
above, a local coordinate system (s, n, z) asso-
ciated with the beam is also considered which is
shown in Fig. 1(b). Taper parameters in the beam
are taken as η = cr

ct = br
bt , where, cr, ct, br and

bt are the chord and breadth at root and tip of the
beam respectively. Midline cross-section profile
can be written as,

c(z) =
cr
η

[
1+

(η −1)(L− z)
L

]
;

b(z) =
br
η

[
1+

(η −1)(L− z)
L

] (1)

Instead of w, a non-Cartesian variable ŝ denot-
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Figure 1: Beam configuration and coordinate sys-
tem (a) beam geometry (b) beam cross-section (c)
sensors and actuators distribution

ing axial stretch is used in the present study.
u, v and ŝ represent displacements along (x, y, z)
axes respectively and θx, θy, φ represent rotations
about (x, y, z) axes respectively. The displace-
ments ŝ and w are related by [Yoo; Rayn and Scott
(1995)],

ŝ = w+
1
2

∫ z

0

[(
∂u
∂σ

)2

+
(

∂v
∂σ

)2
]

dσ (2)

The embedded MFC actuators and sensors are
distributed over the top and bottom surface of the
beam, respectively as shown in Figs. 1(b) and
1(c). Linear displacements u, v and w represent-
ing lag, flap and extensional motion respectively,
are obtained for shearable beam as in [Chandira-

mani; Librescu and Shete (2002)],

u = uo + zφ (3)

v = vo −xφ (4)

w =wo +[y +nm]θx − [x+nl]θy − [Fw +na]φ ′

+
4n3

3h2

[
l
(
θy−u′o

)−m
(
θx +v′o

)]
(5)

From Eqs. 2 and 5, the axial displacement com-
ponent in arc length stretch coordinate system is

ŝ =wo +[y+nm]θx − [x +nl]θy − [Fw +na]φ ′

+
4n3

3h2

[
l
(
θy −u′o

)−m
(
θx +v′o

)]
+

1
2

∫ z

0

[(
∂u
∂σ

)2

+
(

∂v
∂σ

)2
]

dσ

(6)

where l = dy
ds

; m = −dx
ds

; a = mx− ly. Fw and na
represents primary and secondary warping func-
tions respectively.

2.1 Piezoelectric constitutive equation

Strain in a piezoelectric material produces electri-
cal charge, which is referred as direct piezoelec-
tric effect. Conversely induced electric field in
a piezoelectric material results in a strain, which
is known as converse piezoelectric effect. The
standard linear piezoelectric constitutive relation
representing the direct and converse effect can be
written as,

D = eε+ ∈ E

σ = Cε −eTE
(7)

where D, e, ∈, E, ε , σ and C are electric dis-
placement, piezoelectric constant, permittivity
coefficient, electric field, strain, stress and elastic
constant respectively. Assuming the piezoelectric
fiber composite to be transversely isotropic in fi-
bre direction, converse piezoelectric effect can be
written as [Choi; Park and Kim (2006; 2007)],
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Assuming that the through thickness stress is neg-
ligible and piezoelectric fiber is aligned at θpfrom
the positive s-axis, the transformed reduced con-
stitutive equation for piezoelectric material can be
written as

⎧⎨
⎩

σ p
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σ p
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τ p
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(9)

Piezoelectric constant matrix e can be written in
the form of piezoelectric strain constant matrix d
and elastic constants Qi j as [Lam; Peng; Liu and
Reddy (1997)]

[e] = [d]
[
Q

p
i j

]
(10)

2.2 Passive composite constitutive equation

Transformed reduced stiffness matrix for compos-
ite passive host structure for the kth layer is written

as [Chandiramani; Librescu and Shete (2002)]
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2.3 Combined composite host and piezoelectric
constitutive equation

From Eqs. 9 and 11 combined constitutive equa-
tion for host and piezoelectric material can be
written as,

⎧⎨
⎩

σss

σzz

τsz

⎫⎬
⎭ =

⎡
⎣Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤
⎦

⎧⎨
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εss

εzz

γsz

⎫⎬
⎭−

⎧⎨
⎩

ess

ezz
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⎫⎬
⎭E1

{
τnz

τsn

}
=

[
Q44 Q45
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]{
γnz

γsz

}
(12)

where Qi j = Q
h
i j +

(
Q

p
i j −Q

h
i j

)
H(s, z,n).

H(s, z,n) is the Heaviside function and takes
value 1 when integrating over piezoelectric
material and 0 for host structure.

2.4 Equation of motion

The Hamilton’s variational equation is written as,
∫ t2

t1
[δT −δV +δW ]dt = 0 (13)

where

δV =
∫

τ
σi jδεi jdτ (14)

δT = −
∫

τ
ρ(R̈i ·δRi)dτ (15)

The position vector relative to the fixed origin
Oof a point on the deformed beam is obtained as,
R = Rok+xi+yj+ zk+ui+vj+wk. Differenti-
ating twice with respect to time, the acceleration
of point P can be written as,

R̈ =
(
ü+2Ωẇ−Ω2(x+u)

)
I+ v̈J

+
(
ẅ−2Ωu̇−Ω2(Ro + z+w)

)
K (16)
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Variational potential energy can be derived by
substituting Eqs. 3, 4, 6, 12 and strain displace-
ment relations (Appendix A) in Eq. 14. Varia-
tional kinetic energy can be derived by substitut-
ing Eqs. 3, 4, 6 and 16 in Eq. 15. Finally, substi-
tuting obtained kinetic and potential energies in
Hamilton’s principle, one can write equations of
motion,

δuo :ã4(θ ′′
x +v′′′o )− ã5θ ′′′

y + ã6uIV
o − (a43 + ã2)θ ′′

x

+(a44 + ã1)(θ ′
y−u′′o)− ã3v′′′o

+b1(üo−2Ωẇo −Ω2uo)+(M̃6 −M̃4)Ĩmmθ̈ ′
y

+M̃6 Ĩmmü′′o −Ω2[(M̃6−M̃4)Ĩmmθ ′
y

+M̃6 Ĩmmu′′o −Rzb1u′′o]− (E1ãp
3)′ = 0

(17)

δvo :ã3(−θ ′′
y +u′′′o )+ ã9θ

′′′
x + ã10vIV

o

+(a52 + ã8)θ ′′
y − ã4u′′′o

− (a55 + ã7)(θ ′
x +v′′o)+b1v̈o

− (M̃6 −M̃4)Ĩμθ̈ ′
x −M̃6 Ĩμ v̈′′o +2ΩM̃4 Ĩμφ̇ ′

−Ω2[−(M̃6−M̃4)Ĩμθ ′
x −M̃6 Ĩμv′′o −Rzb1v′′o ]

+(E1ãp
4)

′′
= 0

(18)

δwo :−a11w′′
o −a17φ ′′

+b1
(
ẅo −2Ωu̇o −Ω2(Ro + z+wo)

)
− (E1ãp

1)′ = 0

(19)

δθx :(a55 + ã7)(θx +v′o)− (a52 + ã8)θ ′
y + ã4u′′o

− (a33 + ã2)θ ′′
x +(a43 + ã2)(−θ ′

y +u′′o)

− ã9v′′′o +2Ω(Ixx −M̃4 Ĩμ)φ̇ + Ixxθ̈x

+(M̃6 −M̃4)Ĩμ(θ̈x + v̈′o)−M̃4 Ĩμ θ̈x

−Ω2[Ixxθx +(M̃6 −M̃4)Ĩμ(θx +v′o)
−M̃4 Ĩμθx]− (E1ãp

6)′ = 0

(20)

δθy :(a44 + ã1)(θy−u′o)− (a43 + ã2)θ ′
x + ã3v′′o

− (a22 + ã11)θ ′′
y +(a52 + ã8)(θ ′

x +v′′o)

+ ã5u′′′o +(M̃6 −M̃4)Ĩmm(θ̈y− ü′o)
+ Iyyθ̈y −M̃4 Ĩmmθ̈y

−Ω2[Iyyθ̈y +(M̃6 −M̃4)Ĩmm(θ̈y− ü′o)
−M̃4 Ĩmmθ̈y]+(E1ãp

9) = 0

(21)

δφ :−a77φ ′′ −a17w′′
o +a66φ IV +(Ixx + Iyy)φ̈

− Iwwφ̈
′′
+2Ω

[
(M̃4Ĩμ − Ixx)θ̇x +M̃4 Ĩμ v̇′o

]
−Ω2[Ixxφ − Iwwφ ′′ −Rzb1(Ixx + Iyy)]
− (E1ãp

10)
′ = 0

(22)

The forced boundary conditions are obtained as,

δuo :ã5θ ′′
y − ã4(θ ′

x +v′′o)− ã6u′′′o

− (a44 + ã1)(θy−u′o)+ ã3v′′o +(a43 + ã2)θ ′
x

+(M̃6 −M̃4)Ĩmmθ̈y +M̃6 Ĩmmü′o
+Ω2[−(M̃6−M̃4)Ĩmmθy −M̃6 Ĩmmu′o
−Rzb1u′o]+E1ãp

3 = 0

(23)

δu′o : ã4(θx +v′o)− ã5θ ′
y + ã6u′′o = 0 (24)

δvo :ã3(θ ′
y −u′′o)− ã9θ ′′

x − ã10v′′′o

+(a55 + ã7)(θx +v′o)+ ã4u′′o
− (a52 + ã8)θ ′

y +(M̃6 −M̃4)Ĩμ θ̈x +M̃6 Ĩμ v̈′o
−Ω2[(M̃6−M̃4)Ĩμθx +M̃6 Ĩμv′o −Rzb1v′o]
−E1ãp

4 = 0

(25)

δv′o : +ã3(−θy +u′o)+ ã9θ ′
x + ã10v′′o = 0 (26)

δwo : a11w′
o +a17φ ′+E1ãp

1 = 0 (27)

δθx :(a33 + ã12)θ ′
x − (a43 + ã2)(θy−u′o)

+ ã9v′′o +E1ãp
6 = 0

(28)

δθy :(a22 + ã11)θ ′
y− (a52 + ã8)(θx +v′o)

− ã5u′′o = 0
(29)

δφ :a77φ ′+ ã17w′
o −a66φ ′′′+ Iwwφ̈ ′

+Ω2(−Iwwφ ′ +Rzb1(Ixx + Iyy)φ ′′)
+E1ãp

10 = 0

(30)

δφ ′ : a66φ ′′ (31)

where R(z) = Ro(L − z) + 0.5(L2 − z2). Global
stiffness quantities ai j, ãi j and inertia quantities
for passive host structure are described by Song
and Librescu (1997) and Chandiramani; Librescu
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and Shete (2002) respectively. Global stiffness
quantities ãp

i j of piezoelectric material are de-
scribed in Appendix B.

The underlined terms in Eqs. 17-18 and 22 are
centrifugal stiffening terms. Song and Librescu
(1997) captured centrifugal stiffening effect us-
ing geometrically nonlinear modelling method. In
their approach, a set of nonlinear equations of mo-
tion are derived. Neglecting gyroscopic coupling
and using suitable assumptions nonlinear exten-
sion equation of motion is decoupled and inte-
grated to obtain axial force. This axial force is
substituted in the equation of motion to obtain
centrifugal stiffening effect.

However in the present method, a non-Cartesian
deformation variable representing axial stretch,
along with two Cartesian variables is used. Due to
this transformation, centrifugal stiffening and gy-
roscopic coupling effects can be captured in lin-
ear potential and kinetic energy equations respec-
tively. This makes the formulation less cumber-
some compared to geometrically nonlinear mod-
elling method. Moreover, this method provides
the advantage of inclusion of gyroscopic cou-
pling. The effect of gyroscopic coupling makes
the structural model more realistic and the effects
of gyroscopic coupling and centrifugal stiffening
on the free vibration are highlighted in the Section
4.

From Eqs. 17-22 it can be observed that all
the equations of governing system are coupled.
uo − wo, vo − φ and θx − φ motions are coupled
with gyroscopic terms. Depending on the com-
posite ply angle lay up, many constants in the gov-
erning system vanishes resulting in decoupling. It
can be observed that for a ply angle of θ = 0◦

and θ = 90◦, structural coupling between uo −vo,
uo −θx and uo −φ vanishes. Consequently, gov-
erning system of equations decouples into two
subsystems representing motions uo−wo−θy and
vo −θx −φ .

In the present study, extended Galerkin’s method
is used to obtain the approximate solution. In this
approach discretization is carried out within the
Hamilton’s equation. The natural boundary con-
ditions are taken back into the variational equa-
tion by carrying out reverse integration in space.

Hence, only geometric boundary conditions ap-
pear as boundary terms. Thus consider uo = ϕ1q1,
vo = ϕ2q2, wo = ϕ3q3, θx = ϕ4q4, θy = ϕ5q5 and
φ = ϕ6q6 where, ϕi(z) and qi(t) are vectors of trial
function which satisfy geometric boundary con-
ditions and generalized coordinates respectively.
Upon substituting these quantities, the equations
of motion can be written in the matrix form as,

Mq̈+Gcq̇+Kq = FCF +R(t)+Fu(t) (32)

where FCF

(
=

∫ L
0 2b1Ω2(Ro + z)dz

)
,R(t) and F

are centrifugal force vector, arbitrary excited load
and electric force vector respectively. Compo-
nents of electric force vector are defined in Ap-
pendix C.

2.5 Sensor equation

Total charge generated on the sensor surface is the
spatial summation of all the point charges on the
sensor layer (Ray, 1998),

qs(t) =
∫

A
D1H(s, z)dA (33)

Therefore, current on the surface of a sensor can
be written as,

i(t) =
dqs(t)

dt
= [Cs]q̇ (34)

Components of Cs are defined in Appendix C.

2.6 Modal model

In formulating the reduced order model, it is as-
sumed that the lower order modes have lower en-
ergy associated and consequently are the most
easily excitable one. First r lower order modes
are utilized as a transformation matrix between
the generalized coordinates q and the modal co-
ordinates η . Therefore,

q(t) =
r

∑
i=1

ψiηi (35)

where ψ is the truncated eigen vector matrix. Eq.
32 can be written in reduced order form as,

Mη̈(t)+(Gc +Cd)η̇(t)+Kη(t)

= ψTFCF +ψTR(t)+ψTFu(t) (36)
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where M = ψTMψ ,Gc = ψTGcψ and K = ψTKψ
are r × r reduced mass, gyroscopic and stiff-
ness matrices respectively.Cd = 2ξiωi is the modal
damping matrix and ξi is the modal damping ra-
tio.

3 Optimal LQG control

In LQG controller, full state feedback LQR gain
and the Kalman filter state estimation is done sep-
arately. Kalman filter is designed with the as-
sumption of Gaussian distribution of white noise.
State space form of Eq. 36 can be written as,

Ẋ(t) = AX(t)+Bu(t)+Wf [FCF(t)+R(t)]+w(t)
(37)

where X = [ηTη̇T] is the state vector.

y(t) = CX(t)+v(t) (38)

where w(t) and v(t) are Gaussian white noises and
correlation matrices of these white noises can be
expressed as, E[w(t)w(t)T] = W ; E[v(t)v(t)T] =
V . Matrices A,B,Wf and C can be written as,

A =

[
0 I

−M
−1

K −M
−1(Cd +Gc)

]
;

B =

[
0

−ψTM
−1

F

]
;

Wf =

[
0

ψTM
−1

]
;

C = [0 Csψ ]

The optimal control u(t) is obtained from esti-
mated state and measured output. Therefore, the
actuator input voltage for the plant (Eq. 37) can
be written as [Frank and Vassilis (1995)]

u(t) = −KXe (39)

where K = R−1BTP is the LQR gain and P is ob-
tained by solving algebraic Reccati equation

PA+ATP+Q−PBR−1BTP = 0 (40)

Xe is the estimated state that is obtained by solving
the differential equation,

Ẋe = (A−BK −LC)Xe +Ly (41)

where L = SCTV−1 is the Kalman gain and S is
obtained by solving filter Reccati equation

AS +SA+W −SCTV−1CS = 0 (42)

4 Results and discussions

To validate the present method, the results of
present method are compared with the experi-
mental and theoretical results of Ramesh and In-
derjit (1992) for graphite epoxy beam are shown
in Tab. 1. For validation, considered material
properties are E1 =141.93 GPa; E2 =9.788 GPa;
G12 =6.135 GPa; ρ =1444.8 kg/m3, with beam
geometric configuration (Fig. 1) L = 0.84455 m;
Ro = 0.06985 m; h = 0.762 mm; c = 11.4046
mm; b =6.8834 mm; k =6 and θ = 30◦. Based
on the % deviation with the experimental results,
it can be observed that present results are in good
agreement with the experimental results. Further-
more, the results obtained by the present method
are in close agreement with the theoretical results
obtained by Ramesh and Inderjit (1992).

4.1 Numerical examples

The beam considered is of graphite-epoxy ma-
terial with propertiesE1 =206.8 GPa; E2 =5.17
GPa; G12 = G13 =3.1 GPa; G23 =2.5511 GPa;
γ12 =0.25; ρ =1528.15 kg/m3, with beam ge-
ometric configuration (Fig. 1) L =2.023 m;
Ro =0.2023 m; h =10.16 mm; c =0.127 m;
b =0.0254 m. The trial functions selected
to satisfy geometric boundary conditions at the
beam root (z = 0) are (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) =
([z2z3 . . .], [z2z3 . . .], [zz2 . . .], [zz2 . . .], [zz2 . . .],
[z2z3 . . .]).

Commercially available MFC properties are
(www.smart-material.com) considered as,
E1 =30.4 GPa; E2 =15.86 GPa; G12 = G13 =5.52
GPa; γ12 =0.31; ρ =8528 kg/m3; d11 =460 pC/N;
d12 =-210 pC/N; Ap =(85×57) mm; hp =0.3
mm.

The first three normalized eigen modes in lagging
and flapping motions respectively, for a 30◦ ply
angle are shown in Figs. 2 and 3. In both lagging
and flapping modes, the beam gets straightened
for rotating beam. It is because of centrifugal
stiffening effect increases with rotational speed.
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Table 1: Comparison of natural frequencies with experimental results

Rotati-onal speed (rad/s)
Ramesh and Inderjit (1992)
Expt. Theory Present %deviation with Expt. results

Flap I
0 21.1 19.8 19.84 5.97

1000 28.3 26.8 26.15 7.59

Lag I
0 37.6 37.1 36.35 3.32

1000 39.1 37.5 38.05 2.68

Flap II
0 127.8 124.2 129.6 1.39

1000 134.9 131 138.17 2.37

In lagging motion (Figs. 2(a)-2(c)), the gyro-
scopic coupling (GC) effect straighten the beam
more compared to the analysis neglecting GC.
In flapping motion (Figs. 3(a)-3(c)), plot with
and without GC are superimposed on one another.
Thus, the GC does not play significant role in flap-
ping motion. Hence the effect of GC between
flapping and twisting motion can be neglected.

In Fig. 4, the first two coupled natural frequen-
cies for various rotational speeds and taper pa-
rameters are illustrated. It is observed that a ta-
pered beam yields higher natural frequencies than
a uniform cross-section beam as shown in Figs.
4(a)-4(b). It is also shown that as the rotational
speed increases, the natural frequency also in-
creases causes the beam stiffened. Stiffening is
more pronounced at higher rotational speeds be-
cause of combined effect of taper and centrifu-
gal stiffening. It is also observed that as the
rotational speed increases, the dominant motion
changes from flap to lag and vice versa.

The first three gyroscopically coupled and uncou-
pled natural frequencies of coupled uo −wo −θy

motion for various rotational speeds are shown in
Fig.5. It is noticed that instability occurs for the
considered beam configuration at rotational speed
≈ 1520 rad/s, which means the dominant first nat-
ural frequency, becomes zero. Hence rotational
speed ≈ 1520 rad/s is the buckling speed. This re-
sult is well justified by Yoo and Shin (1998) who
observed similar trends for metallic beams.

Figure 6 shows the effect of ply angle on forced
vibration for a rotational speed 200 rad/s and
modal damping ratio of 0.0005. It demonstrates
that increase in the ply angle, tip displacement re-
duces. The maximum tip displacement reduces

by 1.24%, 16.18% and 52.24% for the ply angles
of 30◦, 60◦ and 90◦ respectively, as compared to
0◦ ply angle beam. The system response can be
altered by suitably selecting the ply angle, thus
composite beam facilitates to control the response
by structural tailoring.

The effect of number of modes considered in re-
duced order model is shown in Figs. 7(a) and
7(b). The beam considered in the present analysis
is composed of 6 layers of anti-symmetric con-
figuration with the ply angle of 30◦. Two collo-
cated actuator and sensor pairs located at 0 mm
and 100 mm from the root of the beam are con-
sidered. Number of reduced order modes should
be large enough, such that the effect of residual
modes can be neglected. Here number of reduced
order modes is selected by analyzing convergence
of tip displacement and actuator voltage. It is
found that first five low frequency modes are suffi-
cient for the convergence of tip displacement (Fig.
7(a)) and actuator voltage (Fig. 7(b)). Hence fur-
ther analysis is carried out by considering five low
frequency modes in the reduced order model.

The bending vibration controlled response for a
rectangular pulse and rotational speed of 200 rad/s
are shown in Fig. 8(a). Co-located four actu-
ators and sensors are considered as equally dis-
tributed between 0 - 70% span of beam. Actua-
tors are numbered 1 to 4 starting from the root.
Voltages applied on each actuator are presented
in Fig. 8(b). It clearly shows that maximum tip
displacement and control voltages applied on all
four actuators for 60◦ ply angle is less as com-
pared to 30◦ ply angle. Also, settling time for 60◦

ply angle beam is less compared with 30◦ ply an-
gle beam.
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Figure 2: First three normalized lagging mode
shape variation (a) first mode (b) second mode (c)
third mode
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third mode
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Figure 4: First two coupled natural frequencies
with rotational speeds for various taper parame-
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Figure 7: Effect of number of modes considered
in reduced order model for rectangular forcing (a)
tip displacement (b) applied voltage on first actu-
ator
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Figure 8: Effect of ply angle for a rectangular
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displacement (b) actuator voltage
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The effect of taper parameter on tip displacement
and control voltage for a step forcing and rota-
tional speed of 200 rad/s are presented in Figs.
9(a) and 9(b) respectively. It is observed increase
in taper, decreases the maximum tip displacement
and maximum voltage applied on the 1st , 3rd and
4th actuators. But, increase in taper, marginally
increases applied voltage on the 2nd actuator. For
the present configuration, voltages applied on the
actuator are well below the upper limit of the
MFC actuator of 1500V.

5 Conclusions

In this work, structural modelling of rotating
beam including effect of embedded MFC sensors
and actuators using HSDT model has been pre-
sented. Equations of motion have been derived
using hybrid deformation variables, which em-
ploy stretch deformation instead of the conven-
tional axial deformation. Coupled analysis is per-
formed and the effect of gyroscopic coupling on
natural frequencies presented in numerical exam-
ple. Control problem has been solved by LQG al-
gorithm. Optimal performance of MFC actuators
and sensors for vibration suppression of rotating
composite beams has been studied. Results reveal
that,

• GC between lagging-extension is having
considerable effect on the system natural fre-
quency and mode shape and hence cannot be
neglected.

• Taper in beam enhances the first two natural
frequencies of the system.

• System response can be altered by changing
the ply angle orientation.

• MFC sensors and actuators can be used for
vibration sensing and feedback control of ro-
tating composite beams.

• Tip displacement and control voltage can be
reduced by increasing the fiber orientation.

Mathematical model is derived for arbitrary con-
figuration, which can be easily extended to other

configurations like elliptical cross-section and air-
foil cross-section beam in further studies. Struc-
tural model can be extended to include the effect
of pretwist and presetting as well. Optimal place-
ment of actuators and sensors is still a field of fur-
ther research.
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Appendix A: Linear strain displacement rela-
tions

εxx = u,x; εyy = v,y; εzz = ŝ,z; γxy = 1
2 (u,y +v,x);

Appendix B: Global stiffness quantities of
piezoelectric material

ãp
1 =

∮
P1ds;

ãp
3 =

∮ [
4P6

h2 −P4

]
mpds

ãp
3 =

∮ [
−4P3

h2 −P2

]
mpds;

ãp
6 =

∮ [
4P2mp

h2 +P1yp

]
ds;

ãp
9 =

∮ [
−4P6

h2 +P4

]
mpds;

ãp
10 =

∮
[4P4ψ +2P5]ds;

where, local piezoelectric constants are obtained
as,

P1 =
L11A12

A11
−L12; P2 =

L11B12

A11
−M12;

P3 =
L11D12

A11
−O12; P4 =

L11F12

A11
−L12;

P5 =
L11A16

A11
; P6 =

L11B16

A11
;

P7 =
L11D12

A11
;

Stiffness and piezo coefficients are,

(Ai j,Bi j,Di j,Fi j,Hi j, Ii j,Ji j)

=
∫ h/2

−h/2
Qi j

(
1,n,n2,n3,n4,n5,n6)dn;

(Li j,Mi j,Oi j,Ri j) =
∫ h/2

h/2−tP
ei j

(
1,n,n2,n3)dn;

Appendix C: Components of F and Cs

F1 =
ãp

3φ ′
1

hp
; F2 =

ãp
4φ ′′

2

hp
; F3 =

ãp
1φ ′

3

hp
;

F4 =
ãp

6φ ′
4

hp
; F5 =

ãp
9φ5

hp
; F6 =

ãp
6φ ′

6

hp
;

C1 =
h
6

mpφ ′′
1 ; C2 =

h
6

mpφ ′′
2 ; C3 = φ ′

3;

C4 =
h
6

mpφ ′
4; C5 =

h
6

mpφ ′
5; C6 = haφ ′′

6 ;


